
An Approximation Scheme for Energy-Efficient Scheduling of

Real-Time Tasks in Heterogeneous Multiprocessor Systems

Chuan-Yue Yang†, Jian-Jia Chen‡, Tei-Wei Kuo†, Lothar Thiele‡

†Department of Computer Science and Information Engineering, National Taiwan University
‡Computer Engineering and Networks Laboratory (TIK), ETH Zürich

Email: †{r92032, ktw}@csie.ntu.edu.tw, ‡{chen, thiele}@tik.ee.ethz.ch

Abstract—As application complexity increases, modern embedded

systems have adopted heterogeneous processing elements to enhance

the computing capability or to reduce the power consumption. The

heterogeneity has introduced challenges for energy efficiency in hardware
and software implementations. This paper studies how to partition

real-time tasks on a platform with heterogeneous processing elements

(processors) so that the energy consumption can be minimized. The
power consumption models considered in this paper are very general

by assuming that the energy consumption with higher workload is larger

than that with lower workload, which is true for many systems. We

propose an approximation scheme to derive near-optimal solutions for
different hardware configurations in energy/power consumption. When

the number of processors is a constant, the scheme is a fully polynomial-

time approximation scheme (FPTAS) to derive a solution with energy
consumption very close to the optimal energy consumption in polynomial-

time/space complexity. Experimental results reveal that the proposed

scheme is very effective in energy efficiency with comparison to the state-

of-the-art algorithm.

Keywords: Multiprocessor scheduling, Heterogeneous multipro-

cessor, Energy-efficient scheduling.

I. INTRODUCTION

To prolong the battery lifetime in battery-driven embedded systems

and to reduce the electricity cost of server systems, low-power

and energy-efficient designs have been one of the active areas in

the past decade in both academics and industry. Adopting micro-

architectural techniques, system designers can apply dynamic power

management (DPM) and dynamic voltage scaling (DVS) to adjust

the system mode and the supply voltage dynamically for energy

saving, respectively. In addition, to conquer the dramatic increasing

power density of electronic circuits, multiprocessor platforms have

been adopted for the improvement of performance without incurring

too much energy overhead. As real-time constraints are required to

maintain the stability of systems, one of the key issues in embedded

systems is to minimize the energy consumption under the timing

requirements.

Energy-efficient task scheduling/partition in homogeneous multi-

processor systems has been studied extensively in the literature, e.g.,

[1], [3]–[5], [7], [15], [16], [18]. However, only few results have

been developed for energy-efficient task partition in heterogeneous

multiprocessor systems. Specifically, Yu and Prasanna [17] proposed

a heuristic algorithm based on Integer Linear Programming (ILP) for

processors with discrete speeds. Huang, Tsai, and Chu [9] developed

a greedy algorithm based on affinity to assign frame-based real-time

tasks with re-assignment in pseudo polynomial-time to minimize the

energy consumption when any processing speed can be assigned

for a processor. Luo and Jha [14] developed heuristics based on

This research was done while Chuan-Yue Yang was visiting TIK, ETH
Zürich, and is supported in part by grants from ROC National Science Coun-
cil 97-2221-E-002-206-MY3, 95-2221-E-002-094-MY3, NSC-096-2917-I-
564-121, and the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement n◦ 216008.

the list-scheduling strategy for tasks with precedence constraints in

heterogeneous distributed systems. Unfortunately, the above research

results for energy consumption minimization in heterogeneous multi-

processor systems do not provide guarantees on quality or feasibility

of the derived solutions. To our best knowledge, the approaches by

Hung, Chen, and Kuo [10] for platforms with one DVS processor

and one non-DVS processor are the only existing algorithms with

worst-case guarantees in energy consumption minimization or energy

saving maximization.

For the sake of effective use of multiprocessor environments, this

paper explores energy-efficient task partitioning of real-time tasks in a

system with heterogeneous processors (or processing elements). The

objective is to derive schedules that minimize the energy consumption

without violating the timing constraints. We consider both dynamic

power consumption and static power consumption of the processors,

while most existing researches for heterogeneous multiprocessor

systems, such as [6], [8]–[10], [17], only consider dynamic power

consumption. We assume that the energy consumption with higher

workload is larger than that with lower workload. For example,

systems with periodic real-time tasks without DPM or systems

with frame-based real-time tasks with DPM for discrete/continuous

available speeds both satisfy the above assumption, in which frame-

based real-time tasks have the same period/deadline. This general

energy consumption model covers the models used in [6], [8]–[10],

[17].

By applying the dynamic programming approach and trimming

some states by rounding, we develop an approximation scheme to

derive near-optimal solutions for different hardware configurations in

energy/power consumption. The proposed scheme is proved as a fully

polynomial-time approximation scheme (FPTAS) when the number of

processors is a constant. System designers can specify a parameter

for trading the quality of the derived solution, in terms of energy

consumption, to the running time of the algorithm. It takes more

time/space complexity for deriving a more energy-efficient solution.

Performance evaluations for heterogeneous DVS multiprocessor sys-

tems with comparison to the state-of-the-art approach [9] show that

our derived solutions could improve 10% ∼ 15% when static/leakage

power consumption is negligible and improve 30% ∼ 60% when

static power consumption is non-negligible.

The rest of this paper is organized as follows: Section II defines

the system models and the studied problem for systems with hetero-

geneous processors. Section III presents energy-efficient algorithms

for task partition. The simulation results for performance evaluation

are presented in Section IV. Section V concludes this paper.

II. SYSTEMS MODELS

This section presents the processor models, task models, energy

models, and problem definitions.

978-3-9810801-5-5/DATE09 © 2009 EDAA

A. Processor Models

We explore energy-efficient scheduling for systems equipped with

M heterogeneous (unrelated) processing elements, abbreviated as

PEs, or processors, where each PE has its own power characteristics

and processing capability. We assume that the number of PEs, denoted

by M , is a fixed constant. These M given PEs are named as

m1, m2, . . . , mM . The power consumption function Pj(s) of PE mj

at the adopted processing speed s can be divided into two parts

P dep
j (s) and P ind

j , where P dep
j (s) and P ind

j are dependent and

independent on the adopted processing speed, respectively [19].

The dynamic power and the short-circuit power are the major con-

tributions towards the speed-dependent power consumption function

P dep
j (s). The speed-independent power consumption P ind

j mainly

comes from the leakage power consumption. If the leakage power

consumption is related to the adopted processing speed, it could

be divided into two parts and contribute to P dep
j (s) and P ind

j

accordingly.

For PEs under micro-meter manufacturing, the speed-dependent

power consumption dominates the power consumption of a PE. As

the speed-independent power consumption becomes comparable to

the speed-dependent power consumption for PEs with nano-metro

manufacturing, some dynamic power management techniques might

be adopted to reduce the energy consumption by turning on/off

PEs dynamically. The energy overhead, denoted by Eon
j ≥ 0, to

turn on/off PE mj depends on its cache size and some hardware

characteristics.

As we focus on systems with heterogeneous PEs, the processing

capabilities of PEs might be different from each other. This means

some applications/tasks might require much less computation in

some specific PEs than others. We assume each PE has its own

voltage island, and can adjust its processing speed independently.

The maximum (minimum, respectively) available speeds of PE mj

is smax
j (smin

j , respectively). For the ideal DVS PE mj , any

speed in the range of [smin
j , smax

j] can be used for execution. For

the non-ideal DVS model, the PE can only use discrete speeds

smin
j = sj,1 < sj,2 < · · · < sj,kj

= smax
j for execution, where kj is

the number of available speeds on PE mj . Without idling, the number

of cycles executed over the processor mj in an interval (t1, t2] is
R t2

t1
sj(t)dt, and the energy consumption is

R t2
t1

Pj(sj(t))dt, where

sj(t) is the adopted processing speed at time t on PE mj .

B. Task Models

The tasks executed on the target platform is a task set T consisting

of N tasks, τ1, τ2, . . . , τN . Executing task τi on PE mj requires ci,j

execution time at speed smax
j in the worst-case. We consider periodic

real-time tasks without precedence constraints, in which each task

τi has its period pi and relative deadline pi. The workload of task

τi while it is assigned to PE mj can then be characterized by its

utilization at the maximum speed ui,j =
ci,j

pi
.

Specifically, if all the tasks have the same period D, i.e., pi = D
for all task τi ∈ T with the same arrival time, the task set is so-called

frame-based task set. Moreover, as shown in [13], for frame-based

real-time tasks with precedence constraints, one could apply pipeline

scheduling to transform the problem as tasks without precedence

constraints. Section II-C will explain how to evaluate the energy

consumption of periodic real-time tasks and frame-based real-time

tasks.

To schedule these tasks, global scheduling or partition scheduling

could be adopted. This paper explores how to perform partition

scheduling, in which each task is assigned to one PE for execution.

Moreover, since energy-efficient scheduling for periodic real-time

tasks on a processor is optimal by applying the earliest-deadline-first

(EDF) strategy [2], for the rest of this paper, we simply use EDF for

task scheduling after partitioning tasks in T.

C. Energy Consumption

Suppose that Ej(Uj) is the energy consumption when Uj is the

workload assigned to PE mj without violating the timing constraints.

The energy consumption function Ej(Uj) can be defined by any

workload Uj in the range of (0, 1]. Without loss of generality, if

no task is assigned to PE mj , i.e., Uj = 0, we can simply set the

energy consumption of mj as 0 (or a constant). Moreover, if Uj > 1,

Ej(Uj) is set to ∞.

There is no assumption on the energy consumption model for

systems which our proposed algorithm is applicable to. However,

our proposed algorithm works with performance guarantees if all

functions Ej()’s confirm the following equation:

Ej((1 + σ)Uj) ≤ Ej((1 + δ)Uj) ≤ (1 + ǫ)Ej(Uj), (1)

for any Uj > 0, (1+ δ)Uj ≤ 1, 0 ≤ σ ≤ δ, where δ is a polynomial

function of constant ǫ in a specified range. Equation (1) means that

1) the energy consumption on PE mj is a non-decreasing function

of Uj , and

2) the energy consumption on PE mj of workload (1 + δ)Uj is

no more than that of workload Uj times (1 + ǫ).

Once the energy consumption of a PE satisfies Equation (1), the

energy consumption is non-decreasing and the variance is limited

when the workload is increased. With such a property of the energy

consumption, our algorithm can provide worst-case guarantees in

energy consumption minimization. For the rest of this subsection,

we are going to present those models in which Equation (1) holds.

Ideal DVS: If there is no DPM for reducing the speed-

independent power consumption, we can simply assume that P ind
j is

a constant. For energy-efficient scheduling of periodic real-time tasks

in such a case, as shown by Aydin et al. [2], an optimal solution is to

execute at a constant speed such that the utilization is either 100%
or at the minimum speed with utilization less than 100%. Namely,

the energy consumption Ej(Uj) is

Ej(Uj) =

8

>

>

<

>

>

:

0 if Uj = 0,

L(P dep
j (smin

j) + P ind
j) if 0 < Uj ≤

smin
j

smax
j

,

L(P dep
j (Ujs

max
j) + P ind

j) if
smin

j

smax
j

< Uj ≤ 1,

(2)

where L is the interval for evaluating the energy consumption.1

Figure 1(a) illustrates an example, when Pj(s) = s3 + P ind
j for

some constant P ind
j .

If we can apply DPM without any energy/timing overhead to turn

on/off the PE, we might have to execute at the critical speed to reduce

the energy consumption [4], [12]. The critical speed scrit
j on PE mj

is defined as the available speed with the minimum energy consump-

tion for execution on mj . That is, Pj(s
crit
j)/scrit

j ≤ Pj(s)/s for any

smin
j ≤ s ≤ smax

j . For such systems, as shown in [4],

Ej(Uj) =

8

>

>

<

>

>

:

0 if Uj = 0,

LPj(s
crit
j)

Ujsmax
j

scrit
j

if 0 < Uj ≤
scrit

j

smax
j

,

LPj(Ujs
max
j) if

scrit
j

smax
j

< Uj ≤ 1.

(3)

As a result, it is clear that the conditions in Equation (1) are satisfied

for such systems. Figure 1(b) presents an example for Equation (3).

1If the hyper-period of these tasks exists, L is the hyper-period.

0 sj
min

sj
maxE

n
er

g
y
 C

o
n
su

m
p
ti

o
n

Workload Uj

(a) Ideal DVS, smin
j > 0

0 sj
crit

sj
maxE

n
er

g
y
 C

o
n
su

m
p
ti

o
n

Workload Uj

(b) Ideal DVS, scrit
j > 0

0 sj
min
 sj

crit
sj
maxE

n
er

g
y
 C

o
n
su

m
p
ti

o
n

Workload Uj

(c) Ideal DVS, Eon
j > 0

0 sj
min sj,2 sj,3 sj

maxE
n
er

g
y
 C

o
n
su

m
p
ti

o
n

Workload Uj

(d) Non-ideal DVS, Eon
j > 0

Fig. 1. Examples of energy consumption functions Ej(Uj) when smax
j is normalized to 1.

If it takes non-negligible energy overhead Eon
j of turning on/off

PE mj , unfortunately, periodic real-time tasks have no such good

properties of Equation (1) since we cannot define Ej(Uj) due

to the ignoring of period/deadline in the definition of Ej().2

However, the energy consumption function for frame-based real-time

tasks with common deadline D can still satisfy Equation (1).

Specifically, if we apply workload-conserving scheduling (the

processor is never idle when there is a job in the ready queue), the

energy consumption function Ej(Uj) in Equation (3) is revised to

min

DPj(s
crit
j)

Ujsmax
j

scrit
j

+ Eon
j , DPj

`

max
˘

smin
j , Ujs

max
j

¯´

ff

when 0 < Uj ≤
scrit

j

smax
j

, where L in Equation (3) is revised to D.

Figure 1(c) shows an example of the energy consumption function

Ej(Uj) with non-negligible Eon
j .

Non-Ideal DVS: For a non-ideal DVS PE mj , if Ujs
max
j is

not an available speed on mj , we can simply use two nearest

adjacent available discrete speeds to satisfy the timing constraints

[11]. Thus, when the speed switching overhead is negligible, the

energy consumption function Ej(Uj) of a non-ideal DVS PE mj can

be defined by (a.) revising Ej(Uj) as L(Pj(sj,k)
sj,k+1−Ujsmax

j

sj,k+1−sj,k
+

Pj(sj,k+1)
Ujsmax

j −sj,k

sj,k+1−sj,k
) for all

sj,k

smax
j

< Uj ≤
sj,k+1

smax
j

, 1 ≤ k < kj

and (b.) replacing critical speed scrit
j with the available discrete speed

on mj that has the minimum energy consumption for executing in

Equations (2) and (3). Figure 1(d) shows an example of such an

energy consumption function, where kj = 4 and Eon
j > 0. As a

result, the conditions in Equation (1) are still satisfied.

When the speed switching overhead is not negligible, the energy

consumption function of a PE for workload of a frame-based real-

time task set can also satisfy the conditions in Equation (1) with

some constants ǫ and δ depending on the hardware and period D.

However, when the speed switching overhead is not negligible, the

energy consumption function of a PE for workload of periodic tasks

can not satisfy the conditions in Equation (1). This is similar to the

effect of energy overhead of turning on/off an ideal DVS PE for

scheduling periodic tasks.

D. Problem Definition

Given an input task set T of N tasks on M heterogeneous PEs, a

task partition, abbreviated as partition, Θ is feasible if T
Θ
ℓ

T

T
Θ
j = ∅

∀ℓ 6= j, T
Θ
1

S

T
Θ
2

S

. . .
S

T
Θ
M = T, and

P

τi∈T
Θ
j

ui,j ≤ 1 ∀1 ≤

j ≤M , where T
Θ
j is the set of tasks assigned to PE mj in the task

partition Θ. In addition, given energy consumption function Ej(Uj)
for each PE mj satisfying Equation (1), the objective of the studied

2Since periodic tasks are considered, the procedure to turn off can be
assumed instantaneously with negligible energy overhead by treating the
overhead as a part of the overhead to turn on the PE.

problem is to find an optimal task partition Θ with the minimum

energy consumption among all feasible task partitions.

As the studied problem is NP-hard, the objective of this paper is

to derive approximate solutions. An algorithm is a ρ-approximation

algorithm for the problem if the derived solution has energy consump-

tion no more than ρ times of the energy consumption of an optimal

solution. Moreover, a fully polynomial-time approximation scheme

(FPTAS) is a (1 + ǫ)-approximation algorithm with polynomial-time

complexity by treating 1
ǫ

as an input parameter for any ǫ in specified

ranges. Unless NP = P , fully polynomial-time approximation

schemes are the best in terms of polynomial-time approximation

algorithms with worst-case guarantees.

Note that for energy consumption functions that do not satisfy

Equation (1), the proposed scheme can still be applied. Unfortunately,

there is no worst-case guarantee of the quality in terms of energy

consumption of the derived solutions.

III. ALGORITHMS FOR TASK PARTITION

This section first presents a dynamic programming for deriving

the optimal task partition for the studied problem in exponential time

complexity. The idea behind the dynamic programming is then used

to design our fully polynomial-time approximation scheme.

A. A Dynamic Programming

The basic idea of the dynamic programming is to keep tracing a

set of states S , where each state stands for a partition Θ for a subset

of task set T. The dynamic programming considers tasks in T one

by one. At the end, the final set of states will consist of several states,

including optimal task partitions. What we have to do is to pick an

optimal task partition in the final set of states as the solution.

More specifically, a state that stands for a partition Θ is presented

by a tuple θ = (Uθ
1 , Uθ

2 , . . . , Uθ
M), where Uθ

j =
P

τi∈T
Θ
j

ui,j .

Initially, as none task has been considered, the initial set of states

S0 only consists of one state θ = (0, 0, . . . , 0). Then the dynamic

programming takes each task in T into consideration in an arbitrary

order. When the ith task τi is considered, a set Si of new states

will be generated according to the existing states in Si−1. For

each state θ in Si−1, the dynamic programming constructs M
new states (Uθ

1 + ui,1, U
θ
2 , . . . , Uθ

M), (Uθ
1 , Uθ

2 + ui,2, . . . , U
θ
M), . . .,

(Uθ
1 , Uθ

2 , . . ., Uθ
M + ui,M) and adds them into set Si. After all the

N tasks are considered, all feasible task partitions are in the set

SN . Thus, an optimal solution can be obtained by evaluating task

partitions in SN and picking the one which has the minimum total

energy consumption.

It is clear that the dynamic programming can be improved by

discarding some dominated states. A state θℓ is dominated by another

state θq if U
θq

j ≤ Uθℓ
j for ∀j = 1, 2, . . . , M . Dominated states

can be discarded without affecting the optimality of the derived

solutions, since energy consumption functions for PEs are non-

decreasing functions of workloads. Although the derived solution of

the above dynamic programming is optimal in energy consumption

minimization, it requires exponential time and space complexity, i.e.,

O(MN). Therefore, more efficient implementation is required to

derive near-optimal solutions in polynomial time.

B. An FPTAS

The reason why the dynamic programming in Section III-A is

with exponential time and space complexity is that there are too

many states in the sets S1,S2, . . . ,SN .Thus, in order to improve the

efficiency of the dynamic programming to obtain a fully polynomial-

time approximation scheme, we have to prune some states in the

sets S1,S2, . . . ,SN so that the number of states does not increase

exponentially in the input size. Moreover, state pruning must be done

carefully to limit the sacrifice in the optimality of the final result.

We use a user-specified constant ǫ to achieve to above contradicted

objectives such that the time complexity is polynomial in the input

size and 1
ǫ

and the approximation factor is 1 + ǫ.

Given a user-specified constant ǫ with an input instance, we first

find a constant δj for each PE mj such that Ej((1 + δj)Uj) ≤
(1+ǫ)Ej(Uj) for any (1+δj)Uj in (0, 1]. As shown in Section II-C,

since Ej() is a function satisfying the conditions in Equation (1), the

constant δj must exist and is polynomial in ǫ. Such a constant δj

can be obtained from the observation on the curve of Ej() and a

binary search, or from the algebraic calculation for some cases. For

example, when Pj(s) = sα+P ind
j for some 1 ≤ α ≤ 3 and constant

P ind
j , δj can be set as ǫ

7
when 0 < ǫ ≤ 7. After δj is determined,

we define another constant γj =
ln (1+δj)

N
that will be used when we

round down the workload of the states on PE mj .

The basic idea of the pruning process is to round down the

workload Uj on each PE mj except that on PE m1 for all states

when constructing sets Si.
3 If two states θℓ and θq agree with all

rounded workloads for m2, m3, . . . , mM , either θℓ dominates θq or

θq dominates θℓ, and hence, we can discard one of them. Assuming

that the number of distinct workload Uj after rounding down is nj

for all 2 ≤ j ≤M , the number of different (rounded) states in Si is

at most K =
Q

2≤j≤M nj . Therefore, the principle for designing a

polynomial time algorithm is to make sure that nj is polynomial in

the input size and 1
ǫ

for all 2 ≤ j ≤ M . Of course, the more states

kept after rounding down usually lead to a more precise solution.

Algorithm 1, denoted by Algorithm MTRIM, sketches our proposed

approximation scheme. For each iteration to consider task τi, we

first create a temporary set S ′ of states, and then round down the

workloads of the states in S ′ into a set Si of rounded states by using

Procedure PRUNE in Algorithm 1. After considering all the tasks in

T, we choose the state θ∗ in SN with the minimum (rounded) energy

consumption as the solution. As θ∗ is a rounded state, we can then

determine a corresponding task partition Θ∗ by backtracking. The

detail of the rounding process for workloads of PE mj is presented

in Procedure PRUNE in Algorithm 1.

In Procedure PRUNE, we first round down the workloads on

mM , mM−1, . . . , m2 from Step 1 to Step 9, and then choose the

(rounded) state with the minimum workload on PE m1 from Step 11

to Step 14 to represent all the states agreeing with all workloads on

PE mj for all 2 ≤ j ≤ M . For rounding workloads on mj with

j ≥ 2, the details are presented from Step 2 to Step 8 of Procedure

PRUNE. In Step 2, we first sort states in S according to Uθ
j in a

non-decreasing order, says θ1, θ2, . . . , θ|S|. Then in Step 3, Uθ1
j is

3One could also round down U1, but it makes the complexity higher.

Algorithm 1 : MTRIM

Input: (T, {Ej()}, M, ǫ);

1: determine δj according to Ej() and ǫ, and let γj =
ln (1+δj)

N
for

each PE mj ;

2: S0 ← {(0, 0, . . . , 0)};
3: for i← 1 to N do

4: S ′ ← {(Uθ
1 + ui,1, U

θ
2 , . . . , Uθ

M), (Uθ
1 , Uθ

2 +
ui,2, . . . , U

θ
M), . . . , (Uθ

1 , Uθ
2 , . . . , Uθ

M + ui,M)|θ ∈ Si−1};
5: remove state θ from S ′ where there exists Uθ

j > 1;

6: Si ← PRUNE(S ′, M);

7: find the state θ∗ in SN with minimum
PM

j=1 Ej(U
θ∗

j);

8: return the corresponding task partition Θ∗ of the state θ∗;

Procedure: PRUNE(S , j);

1: if j ≥ 2 then

2: sort states in S as θ1, θ2, . . . , θ|S| so that Uθℓ
j ≤ U

θq

j if ℓ < q;

3: θ ← θ1;

4: for ℓ← 2 to |S| do

5: if Uθℓ
j ≤ (1 + γj) · U

θ
j then

6: U
θℓ
j ← Uθ

j ;

7: else

8: θ ← θℓ;

9: return PRUNE(S , j − 1);

10: else

11: divide S into subsets so that Uθℓ
y = U

θq
y for ∀y = 2, 3, . . . , M

for all θℓ, θq in the same divided subset;

12: S♭ ← ∅;
13: for each of the divided subset of S , find one state θ that has

the minimal Uθ
1 and add it into S♭;

14: return S♭;

set as the first distinct workload Uθ
j . All remaining states in S are

checked one by one according to the sorted order. If the workload

Uθℓ
j of a state θℓ is no greater than (1+ γj)U

θ
j , it is rounded to Uθ

j .

Otherwise, the workload U
θℓ
j of the state θℓ is chosen as the next

distinct workload Uθ
j , and the checking continues for the remaining

states until all states in S have been checked. Suppose that there are

nj distinct workloads named U θ̂1

j , U θ̂2

j , . . . , U
θ̂nj

j after the rounding

process for workloads on PE mj , where U
θ̂i+1

j > (1 + γj)U
θ̂i
j for

all i < nj .

After presenting Algorithm MTRIM, we now show that the algo-

rithm is with polynomial time complexity in the input size and 1
ǫ

and has an approximation factor 1 + ǫ. For the following analysis,

we assume that the derived task partition is feasible. At the end

of this section, we will present how to deal with the case that the

derived solution is infeasible. For brevity, let Θ∗ be the task partition

derived from Algorithm MTRIM and θ∗ be the corresponding rounded

state. The following lemma provides the approximation ratio of

Algorithm MTRIM when the derived solution Θ∗ is a feasible task

partition of T.

Lemma 1: The total energy consumption of the solution derived

from Algorithm MTRIM is no greater than (1 + ǫ) times of that of

an optimal solution if the derived task partition is feasible.

Proof: It is not difficult to see that
PM

j=1 E(Uθ∗

j) is a lower

bound of the energy consumption of an optimal solution. For task τi,

when we invoke Procedure PRUNE(S ′, M), the workload of a state

might be rounded down by at most a factor of (1+γj) on PEs mj for

all 2 ≤ j ≤M . Since Procedure PRUNE(S ′, M) is invoked N times

in Algorithm MTRIM, the actual workload Uj =
P

τi∈T
Θ∗

j
ui,j on

PE mj for the task partition Θ∗ is at most (1 + γj)
N times of Uθ∗

j .

Moreover,

(1 + γj)
N =

„

1 +
ln (1 + δj)

N

«N

≤ eln (1+δj) = 1 + δj .

Therefore, we have Ej(Uj) ≤ Ej((1 + γj)
NUθ

j) ≤ Ej((1 +
δj)U

θ
j) ≤ (1 + ǫ)Ej(U

θ
j), where the last inequality comes directly

from the setting of δj in Algorithm MTRIM. Thus, the energy

consumption of each PE is no greater than (1 + ǫ) times of that

in a lower bound of an optimal solution, so is the total energy

consumption.

Then Lemma 2 shows the number of states in Si is polynomial in

the input size and 1
ǫ

.

Lemma 2: The number of states in Si is at most K = O(NM−1 ·
Q

2≤j≤M
1
δj

log λj) and is polynomial in the input size and 1
ǫ

, where

λj is
min{1,

PN
l=1 ul,j}

minτl∈T ul,j
for ∀1 ≤ i ≤ N .

Proof: Let U θ̂1
j , U θ̂2

j , . . . , U
θ̂nj

j be the nj distinct workloads

on PE mj in an increasing order after rounding the workloads on

PE mj in Procedure PRUNE. If U θ̂1
j > 0, we know that U

θ̂nj

j >

(1 + γj)
nj−1U θ̂1

j . Thus,

(1 + γj)
nj−1 <

U
θ̂nj

j

U θ̂1

j

≤
min{1,

PN
l=1 ul,j}

minτl∈T{ul,j}
= λj .

Similarly, we have (1 + γj)
nj−2 < λj when U θ̂1

j = 0. Therefore,

nj < 2 +
ln λj

ln (1+γj)
≤ 2 +

ln λj
γj

1+γj

= 2 + ln λj

„

1 + N
ln (1+δj)

«

= O(N
log λj

δj
),

where the second inequality comes from ln x ≥ x−1
x

when x > 1.

The number of states in Si is the same as the number of the

divided subsets constructed in Step 11 of Procedure PRUNE. It is

equal to
Q

2≤j≤M nj and can be bounded by K = O(NM−1 ·
Q

2≤j≤M

log λj

δj
), where K is polynomial in N, 1

ǫ
and the number

of bit required to encode the input if M is considered as a constant.

By applying the above lemmas, we can show that Algorithm

MTRIM is a fully polynomial-time approximation scheme if the

derived solution is feasible.

Theorem 1: Algorithm MTRIM is a fully polynomial-time approx-

imation scheme for the energy-efficient task partition problem when

the derived solution is feasible and the number of PEs M is a

constant.

Proof: The time complexity of Algorithm MTRIM is dominated

by the loop from Step 3 to Step 6 and each iteration is domi-

nated by the rounding process in Procedure PRUNE. By Lemma 2,

when we consider task τi, there are KM states in set S ′, where

K = O(NM−1 ·
Q

2≤j≤M
1
δj

log λj). As we will sort these states in

set S ′ for O(M) times, the time complexity for Procedure PRUNE

is O(M · KM log (KM)). Thus, the overall time complexity of

Algorithm MTRIM is O(N · M · KM log (KM)). According to

Lemma 2, we know it is polynomial in N, 1
ǫ

and the number of

bit required to encode the input while M is a constant. Moreover, as

the derived solution is at most 1 + ǫ times of the optimal solution

when it is feasible, we conclude the proof.

Remarks: When the solution Θ∗ derived from Algo-

rithm MTRIM is not a feasible task partition for T, we should be

a little bit careful. We can sort all states θ’s in SN in terms of the

rounded total energy consumption (
PM

j=1 Ej(U
θ
j)). Then, starting

from the state with the minimum rounded total energy consumption,

we backtrack its corresponding task partition and check if the task

partition is feasible. If it is feasible, we return the solution; otherwise,

we try the next state repetitively. If there exist some feasible task

partitions in SN , Algorithm MTRIM can return the best one as the

solution. However, we can not provide any worst-case performance

guarantee for the derived solution in this case. Unfortunately, as

deriving a feasible task partition is NP-complete, unless P = NP,

there does not exist any polynomial-time algorithm for deriving a

feasible task partition even if feasible task partition exists.

IV. PERFORMANCE EVALUATION

Simulation Setup: We performed a series of simulations to

demonstrate the strength of our proposed approximation scheme.

The simulation setup was similar to that in [9]. There were nearly

30 types of PEs, including general-purpose embedded processors,

such as ARM9 and ARM11, and digital signal processors (DSP),

such as TMS320C and TMS320D, in our simulations. For each

configuration, we chose M PEs from the PE types to form a target

hardware platform, where M = 2, 4, 6. Due to space limitation, we

only present the simulation results for ideal DVS PEs. Moreover, to

evaluate the performance for different energy consumption models,

we performed simulations for periodic real-time tasks when Eon
j

was 0 and simulations for frame-based real-time tasks with common

period D = 50ms when Eon
j was non-negligible. The number N of

tasks was N = 6, 8, 10, 12, 14. The worst-case execution time ci,j

of task τi on PE mj was set randomly from 1000us to 3000us at

speed smax
j .

In addition to the models in [9], we also simulated energy

consumption models with non-negligible speed-independent power

consumption P ind
j and energy overhead of turning on/off PE mj ,

i.e., Eon
j . In order to make the speed-independent power consumption

non-negligible in the task partition problem, P ind
j should be defined

according to the workload of task sets. We set

P

τi∈T
ui,j

M
smax

j as

the critical speed scrit
j of PE mj to define P ind

j , i.e., P ind
j =

2κj(s
crit
j)3 when P dep

j (s) = κjs
3 for some constant κj . As the

energy overhead of turning on/off PE mj depended on its cache

size and some hardware characteristics, Eon
j was assumed in a range

from 0.05 · DPj(s
crit
j) mJ to β · DPj(s

crit
j) mJ for a constant

0.05 < β < 1.

Our proposed approximation scheme was evaluated by setting ǫ
as different values, compared with the greedy-based algorithm in

[9]. The energy consumption of the task partition derived from

Algorithm MTRIM divided by that of the task partition derived from

the greedy-based algorithm in [9] was defined as the Normalized

Energy Consumption, which is adopted as the performance metrics

of our simulations. We simulated each configuration for 128 input

instances independently and reported the average value.

Simulation Results: Figure 2 shows the average normalized

energy consumption of Algorithm MTRIM in our simulations, where

P ind
j = 0 stands for the results of energy consumption models of

Ej(Uj) = κj(Ujs
max
j)3 the same as the model in [9], P ind

j > 0
stands for the results of energy consumption models with non-

negligible speed-independent power, and β = 0.10, β = 0.15, and

β = 0.20 stand for the results of energy consumption models with

different ranges of energy overheads Eon
j to turning on/off PE mj .

Figures 2(a) and 2(b) are the results by setting ǫ as 0.5 and 1,

respectively, when M = 2. According to Figures 2(a) and 2(b), the

difference between the results of ǫ = 1 and that of ǫ = 0.5 is less

than 0.2%. Thus, it is sufficient to set ǫ as 1 for Algorithm MTRIM

 40

 50

 60

 70

 80

 90

 100

6 8 10 12 14

A
v
er

ag
e

N
o
rm

al
iz

ed
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

%
)

Number of Tasks

Pj
ind

 = 0

Pj
ind

 > 0

β = 0.10

β = 0.15

β = 0.20

(a) M = 2, ǫ = 0.5

 40

 50

 60

 70

 80

 90

 100

6 8 10 12 14

A
v
er

ag
e

N
o
rm

al
iz

ed
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

%
)

Number of Tasks

Pj
ind

 = 0

Pj
ind

 > 0

β = 0.10

β = 0.15

β = 0.20

(b) M = 2, ǫ = 1

 30

 40

 50

 60

 70

 80

 90

 100

6 8 10 12 14

A
v
er

ag
e

N
o
rm

al
iz

ed
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

%
)

Number of Tasks

Pj
ind

 = 0

Pj
ind

 > 0

β = 0.10

β = 0.15

β = 0.20

(c) M = 4, ǫ = 1

 30

 40

 50

 60

 70

 80

 90

6 8 10 12 14

A
v
er

ag
e

N
o
rm

al
iz

ed
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

%
)

Number of Tasks

Pj
ind

 = 0

Pj
ind

 > 0

β = 0.10

β = 0.15

β = 0.20

(d) M = 6, ǫ = 1

Fig. 2. The average normalized energy consumption of Algorithm MTRIM

to obtain a near-optimal solution for the studied problem. Moreover,

for the energy consumption model with negligible speed-independent

power and energy overhead of turning on/off PEs, the results of

Algorithm MTRIM are almost the same as that of the greedy-based

algorithm proposed in [9]. This is because the derived solutions

were very close to optimal values when M = 2. As a result, the

greedy-based algorithm proposed in [9] is sufficient for this model

when M = 2. But for the other energy consumption models, Algo-

rithm MTRIM could improve the greedy-based algorithm proposed

in [9] by at least 30%.

Figures 2(c) and 2(d) show that the results of Algorithm MTRIM

by setting ǫ as 1 when M = 4 and 6, respectively. Note that, even

for models with negligible speed-independent power and energy over-

head of turning on/off PEs, Algorithm MTRIM still could improve

the greedy-based algorithm proposed in [9] by 10% ∼ 15% when

M ≥ 4. While the improvement for the other models is similar to

that when M = 2.

V. CONCLUSION

This paper explores energy-efficient real-time task scheduling

problems over heterogeneous multiprocessors (PEs). By adopting

partition scheduling, the problem could be transformed into how

to partition the input task set to the PEs such that the overall

energy consumption is minimized. We propose a fully polynomial-

time approximation scheme to partition the tasks when the number of

PEs is a constant. Our proposed approximation scheme can be applied

to wide diverse system models, in which, for each PE, (a) the energy

consumption is non-decreasing when the workload is increased and

(b) the energy consumption will not increase more than (1+ǫ) times

when the increase of the workload is within (1 + δ) times, for some

constants ǫ and δ. The proposed scheme can provide certain worst-

case performance guarantee when the derived solution is feasible.

Hence, designers can specify a parameter for trading the quality of

the derived solution, in terms of energy consumption, to the running

time of the algorithm. The proposed algorithm also answers the open

problem address in [10] for the existence of fully polynomial-time

approximation schemes to minimize the energy consumption of two

heterogeneous PEs, in which one is with DVS and the other is without

DVS. The simulation results show that our approximation scheme

could improve the state-of-the-art approach [9] by 10% ∼ 15% when

speed-independent power consumption is negligible and improve by

30% ∼ 60% when speed-independent power consumption is non-

negligible for ideal DVS PEs.

REFERENCES

[1] T. A. Alenawy and H. Aydin. Energy-aware task allocation for rate
monotonic scheduling. In Proceedings of the 11th IEEE Real-time and
Embedded Technology and Applications Symposium (RTAS’05), pages
213–223, 2005.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages
95–105, 2001.

[3] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of 17th International Parallel and
Distributed Processing Symposium (IPDPS), pages 113 – 121, 2003.

[4] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In IEEE Real-
time and Embedded Technology and Applications Symposium, pages
408–417, 2006.

[5] J.-J. Chen, T.-W. Kuo, C.-L. Yang, and K.-J. King. Energy-efficient real-
time task scheduling with task rejection. In DATE, pages 1629–1634,
2007.

[6] J.-J. Chen and L. Thiele. Energy-efficient task partition for periodic real-
time tasks on platforms with dual processing elements. In International
Conference on Parallel and Distributed Systems (ICPADS), page 161.

[7] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low energy
systems using variable supply voltage processors. In Proceedings of Asia
South Pacific Design Automation Conference, pages 449–455, 2001.

[8] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo. Multiprocessor synthesis for
periodic hard real-time tasks under a given energy constraint. In
ACM/IEEE Conference of Design, Automation, and Test in Europe
(DATE), pages 1061–1066, 2006.

[9] T.-Y. Huang, Y.-C. Tsai, and E. T.-H. Chu. A near-optimal solution for
the heterogeneous multi-processor single-level voltage setup problem.
In 21th International Parallel and Distributed Processing Symposium
(IPDPS), pages 1–10, 2007.

[10] C.-M. Hung, J.-J. Chen, and T.-W. Kuo. Energy-efficient real-time task
scheduling for a DVS system with a non-DVS processing element. In
the 27th IEEE Real-Time Systems Symposium (RTSS), pages 303–312,
2006.

[11] T. Ishihara and H. Yasuura. Voltage scheduling problems for dynam-
ically variable voltage processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 197–202, 1998.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the Design
Automation Conference, pages 275–280, 2004.

[13] H. Liu, Z. Shao, M. Wang, and P. Chen. Overhead-aware system-level
joint energy and performance optimization for streaming applications on
multiprocessor systems-on-chip. In EuroMicro Conference on Real-Time
Systems (ECRTS), pages 92–101, 2008.

[14] J. Luo and N. Jha. Static and dynamic variable voltage scheduling
algorithms for realtime heterogeneous distributed embedded systems. In
the 15th International Conference on VLSI Design (VLSID’02), pages
719–726, 2002.

[15] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy aware
scheduling for distributed real-time systems. In International Parallel
and Distributed Processing Symposium, page 21, 2003.

[16] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. In Proceedings of
the 8th Conference of Design, Automation, and Test in Europe (DATE),
pages 468–473, 2005.

[17] Y. Yu and V. K. Prasanna. Power-aware resource allocation for
independent tasks in heterogeneous real-time systems. In Proceedings
of the Ninth International Conference on Parallel and Distributed
Systems(ICPADS’02). IEEE, 2002.

[18] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection
for energy minimization. In Annual ACM IEEE Design Automation
Conference, pages 183–188, 2002.

[19] D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In IEEE Real-time and Embedded Tech-
nology and Applications Symposium, pages 397–407, 2006.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

