
UMTS MPSoC Design Evaluation
Using a System Level Design Framework

Douglas Densmore1, Alena Simalatsar2, Abhijit Davare3,
Roberto Passerone2, Alberto Sangiovanni-Vincentelli1

1 University of California, Berkeley
2 University of Trento

3 Intel Corporation

ABSTRACT
Rapid design space exploration with accurate models is necessary
to improve designer productivity at the electronic system level. We
describe how to use a new event-based design framework, Metro II,
to carry out simulation and design space exploration of multi-core
architectures. We illustrate the design methodology on a UMTS
data link layer design case study with both a timed and untimed
functional model as well as a complete set of MPSoC architectural
services. We compare different architectures (including RTOSes)
explored with Metro II and quantify the associated simulation over-
head.

1. INTRODUCTION
In the race for higher performance computing, multi-processor

platforms offer flexibility and a wide range of alternative design
solutions that are able to optimally trade-off the design metrics of
interest. This is especially true for embedded applications, often
faced with hard to satisfy real-time and energy requirements which
are best addressed by a distributed implementation. This trend is
also apparent in the design of modern microprocessors, where the
use of multi-threaded cores is favored over faster clocks to speed
up the software execution. The design of multi-core architectures
is, however, made complex by a large design space, the difficulty
of integrating heterogeneous components, and time-to-market pres-
sures. We have argued that only with a coherent and general de-
sign methodology can we address all these challenges [14]. The
methodology should be applicable during all phases of the design
process from specification to implementation, it should support the
design chain across divisional and company boundaries, it should
favor re-use at all levels of abstraction and should be based on rig-
orous semantics foundations. Platform-based design (PBD) was
developed with these goals in mind.

A methodology can be applied even in the absence of supporting
tools and flows. However, there is no question that the full leverage

of the principles can be achieved only with appropriate design soft-
ware. In this paper we discuss the use of a new event-based design
framework, Metro II [4], for the simulation and design of multi-
processor platforms and present a non-trivial UMTS case study to
show the results that can be obtained from architecture exploration.
In particular, we show that this approach may be used to carry out
quick design space exploration with accurate, low-overhead simu-
lation.

This paper is organized as follows: Section 2 discusses related
work. Section 3 describes the Metro II design framework. Sec-
tion 4 describes the architectural model design. Section 5 exam-
ines the UMTS case study and results obtained. Finally, Section 6
concludes the paper.

2. RELATED WORK
The Metropolis [3] design framework was the precursor of Metro

II and it was developed for supporting the PBD methodology. This
framework was the first system to leverage the concept of a se-
mantic metamodel (abstract semantics) to manage the integration
of heterogeneous components, to allow declarative and operational
design entry, and to manage architectures and functionality in a
unified way. The concept of separation of concerns, mapping of
functionality to architectural components as a way of refining a de-
sign from specification to implementation, and communication as
a first class citizen were all instrumental to build the framework.
These concepts originated from work over years of research and
development. The roots of Metropolis can be found in Polis [2]
that was the first framework to be based on the separation of func-
tionality and architecture. Polis was based on a single model of
computation, Co-design Finite State Machines (CFSM), that cap-
tured locally synchronous, globally asynchronous designs typical
of the automotive design space. Its first extension was a commer-
cial tool developed by Cadence called VCC [9] based on the same
modeling paradigm where the architectural modeling, called archi-
tectural services, and the simulation environment were taken to the
next stage. In parallel, several research projects addressed similar
issues.

Design space exploration via separation of concerns is also pro-
moted by Spade [7], which is a Kahn process network (KPN) based
workbench. It employs a Y-chart based approach (Dan Gajski was
the first to represent the design process as a spiral moving from
function to architecture) to design with functionality and architec-
ture separated. In this case they are termed workload and resources
respectively. It employs trace-driven simulation where time can be

978-3-9810801-5-5/DATE09 © 2009 EDAA

accounted for and performance data collected. DESERT [12] is a
design space exploration tool which allows the designer to express
the flexibility in a platform by specifying structural constraints in
OCL. An efficient symbolic technique is used to explore only those
architectures that satisfy the constraints, thus pruning a large part of
the design space. In ForSyDe [13], the system is initially specified
as a deterministic network of synchronous processes, a model that
facilitates the functional description by abstracting away detailed
timing. The specification is then refined into an implementation
by applying a series of network transformations, that may or may
not preserve the semantics of the network. These transformations
can, for example, partition the system into sub-domains that run at
different speeds, corresponding to different implementations, thus
providing feedback on the performance of the refined model. A
few commercial offerings besides the original VCC work appeared
that address the issue of design exploration using mapping of func-
tional components to architectural ones (for example Coware Con-
vergenSC and Co-fluent Studio).

Some work has been done in the area of multi-processor SoC
platforms analysis. Kempf et al. [6] have proposed a SystemC-
based methodology that makes use of a Virtual Processing Unit to
schedule a set of tasks, which are then simulated using a discrete
event model. In [8] Mahadevan et al. have presented a generic
SystemC-based simulation framework named ARTS. It allows the
analysis of the system model with respect to different mappings
of application tasks (represented as a direct acyclic graph) onto
computing components and an operating system chosen for task
scheduling. The ARTS framework requires precharacterization of
the tasks mapped onto processing elements and employs the event-
driven model as a basis for mapping technique. Le Moigne et al.
describe a SystemC implementation of a generic RTOS model for
real-time systems, supporting basic performance analysis for dif-
ferent scheduling policies [11]. They present two approaches to
scheduling tasks on a single processor. The first uses a dedicated
SystemC thread in order to simulate the behavior of an RTOS. The
second avoids using the thread and embeds the RTOS procedures
in the tasks. The second approach has advantages in terms of simu-
lation performance, but makes it hard to explore different hardware
architectures.

3. DESIGN FRAMEWORK OVERVIEW
Metro II [4] is inspired by Metropolis since it is also based on ab-

stract semantics and implements a PBD design methodology. How-
ever, it takes it a step further allowing designers to import designs
that are developed using tools foreign to Metro II. Concurrency,
synchronization, timing, and causality are all represented explicitly
in Metro II. Further, the execution semantics is “purified” with re-
spect to those of Metropolis by cleanly separating the functional
execution of the components, their quantity (e.g., time and power)
annotations, and the execution of the component assembly that sat-
isfies a set of implicit and explicit constraints.

A component is the basic building block in Metro II. Compo-
nents communicate through ports with compatible interfaces. Two
events are associated with each method call on a port: a begin event
and an end event. Imperative code within the component may con-
trol how events are executed, but separate declarative constraints
over events can be used to influence execution as well. A key fea-
ture of Metro II is the ability to specify the functional and archi-
tectural models separately. The two are then mapped together to
produce a system model with performance metrics. Mapping is re-
alized by adding declarative constraints between events from the
functional model and events from the architectural model.

Metro II has a three-phase execution semantics. Each process in

Metro II has two states: running or suspended. Processes execute
concurrently until an event is proposed on a required (output) port
or until they are blocked on a provided (input) port. Once all pro-
cesses are suspended, the simulation switches to the second phase
of execution. In this phase, events are annotated by annotators,
which represent the metrics of interest within the model. In this
way, events and the methods they correspond to can be associated
with cost. In the third and final phase, events are enabled accord-
ing to schedulers and constraint solvers. These enabled events then
become inactive again while simultaneously allowing their associ-
ated processes to resume to the running state. A collection of three
completed phases is referred to as a round. Figure 1 illustrates the
process states and the three phases in the execution semantics.

Phase 1 Phase 2 Phase 3

Physical

Time

FC FC

AC AC

Constraint

Solver

1. Block Processes at Interfaces 2. Annotate Events

3b. Enable Some Events

Logical

Time

Resource

Scheduler

Start Propose Event(s) or Block

Enable Event or Resume Process

Running Suspended

3a. Schedule

Resolution

Figure 1: Metro II Three Phase Execution Semantics

The functional model covered in more detail in Section 5 is de-
scribed as a process network or actor-oriented model, where con-
currently executing processes communicate with each other through
point-to-point channels. Metro II allows this communication to
be specified either declaratively or imperatively. In the imperative
model, the writer and reader query the FIFO via method calls -
exposing more events to the framework and leading to more phase
changes. In the declarative model, fewer phases changes take place,
but the burden is instead placed on the constraint solver in phase 3.
These tradeoffs will be examined more in Section 5.4.

4. MPSOC MODELING
Metro II supports the development of separate architecture ser-

vice models to complement the functional modeling effort. In this
work we create models with multiple processing elements which
provide “costs” when mapped to a functional design. This section
details the development of architectures used in the UMTS case
study covered in Section 5.

4.1 General Architecture
Architectures in Metro II are services which map to the func-

tional models and provide costs. They minimally need to:
1) Contain components which expose events to the functional

model for mapping. These components (called architectural tasks)
each have their own thread of execution. These threads will gener-
ate events associated with ports. These ports have events associated
with their interface functions and correspond to functional model
events. 2) Register the events associated with architectural tasks to
the necessary annotators and schedulers. This association will pro-
vide the costs of the architectural services and ultimately the cost
of the overall simulation.

The architecture models to be discussed in this work are com-
posed of the following three portions: 1) Tasks - active components
which serve as the mapping target for each component in the func-
tional model. 2) Operating System - explicit, imperative mecha-

Runtime

Processing

Element 1

os_port:

request_job()

run_job1()
run_jobN()

Profiled

Processing

Element 1

Runtime

Processing1

Cycle Accurate

Pipeline

Instruction

Memory

run_proc()

Request Queue

Task1

Operating System

thread

thread
thread

Application

Code

request_job_event

1. Active component

(task) continually

attempts to propose

jobs to OS

2. OS threads

wait for jobs to

come in

4. Threads then

propose jobs on

specific

processing

elements

run_job_event

run_proc()

3. OS schedules

events to run by

unblocking

threads

5. Thread uses

task information

to “set the

program” for

processing

element

6. Processing

elements run

and pass their

cycle counts

back to the OS

7. OS updates

annotation table

based on

processing

element cycle

count results

Task 2 Task N

Runtime

Processing

Element 2

Runtime

Processing

Element N

A
R
M
9

M
ic
ro
B
la
z
e

A
R
M
7

Profiled

Processing

Element N

F
IF
O

S
h
a
re
d
 M

e
m

MPSoC Design

Figure 2: MPSoC Architecture Service Topology

nism for scheduling and assigning tasks to processing elements. 3)
Processing Elements - workhorses of the architectural model. Used
to model the core cost of a service. Figure 2 illustrates these three
aspects.

4.2 Architectural Tasks
Tasks are lightweight, active components in the architecture model.

The thread for each task constantly proposes events for its provided
services. Mapping creates a rendezvous constraint between the
event generated by the task thread and the functional event. There-
fore, there is a 1:1 mapping between these tasks and functional
components. Due to the rendezvous constraint, the task remains
blocked until the corresponding event from the functional model is
proposed. Step 1 in Figure 2 illustrates the task’s role in architec-
ture model execution.

4.3 Operating System
The operating system assigns tasks to processing elements (in a

many-to-one relationship). It also carries out phase 1 scheduling -
reducing the work to be done in phase 3. This is done by pruning
the events proposed in the first phase. An investigation of schedul-
ing policies is in Section 5.4. An OS is an active component with N
threads (where N is the number of processing elements it controls).
It maintains a queue of requested jobs which processing elements
query to determine their execution status. The queue contains pro-
posed events, processing element assignments, proposal order, and
assigned priorities. Scheduling controls how events are added to
and removed from this queue. Access to this queue is coordinated
such that there are a limited number of outstanding requests for a
given processing element. Steps 2-5 in Figure 2 illustrate the OS’s
role in the architecture model execution.

The OS is also used to access the annotation tables for events.
The annotation tables are used by the annotator in phase 2. These
tables relate event costs to architectural services. The OS updates
the appropriate entry in the table after a request is completed and
the true cost known. The OS may also add cost related to overhead
(e.g. context switching). Tables are updated dynamically at runtime
and do not require to be statically created with the netlist. Tasks

themselves need know nothing about this process and only need to
indicate which service they require.

4.4 Processing Elements
The third piece of the architecture platform are the actual pro-

cessing elements. Steps 6-7 in Figure 2 illustrate two different types
of processing elements that may be used and the interface to inform
them which processing routine they should compute a cost for.

4.4.1 Runtime Processing
The first architectural modeling style is runtime processing. In

this style, the processing elements are cycle accurate, microarchi-
tectural models which execute code dynamically.

The OS provides information gathered from the task as to which
operation is requested. The instruction memory of the processing
element is loaded with pre-compiled code for the operation. The
second step is then to execute that code at runtime which returns
the cycle requirements for that code. The operating system will use
that information to update the annotation table.

While this style may result in a slower simulation time as com-
pared to the following approach, it simply requires that the code for
the function be available. It requires no other modeling work by the
user and is as accurate as the level of detail in the microarchitectural
model.

4.4.2 Profiled Processing
The second style is profiled processing where precomputed per-

formance metrics are stored for lookup. Again the OS will indicate
which services are requested. The processing element can perform
trivial table lookups or more complex calculations based on the cur-
rent state of the processing element. Characterization methods for
this approach have been shown in [10], [5], and [15]. An advan-
tage of this approach are fast lookups as compared to the runtime
processing approach. Drawbacks are that the modeling is often
more limited in its usage, granular interaction between services is
not fully captured, and characterization must be carried out prior
to simulation. This precharacterization however only needs to be
done once per computation routine.

5. UMTS CASE STUDY
It is possible to explore different types of applications (e.g. stream

based or control applications) with MetroII. Due to the space lim-
its we present only a UMTS Data Link layer case study, where we
enumerate 48 different points in the explored design space.

5.1 Functional Model
We focus on the User Equipment Domain of the UMTS pro-

tocol [1], which is of interest to mobile devices and is subject to
stringent implementation constraints. The protocol stack of UMTS
for the User Equipment Domain has been standardized by the 3rd
Generation Partnership Project (3GPP) up to the Network layer,
including the Physical (PHY) and Data Link (DLL) layers. Our
model includes the implementation of the Unacknowledged mode
of the DLL layer, which is composed of the functionality of the Ra-
dio Link Control (RLC) and Medium Access Control (MAC) sub-
layers. For the purposes of this case study, our model was largely
separated into the RLC and MAC functionality as well as both re-
ceiver and transmitter portions. Simulation consists of processing
100 packets, each packet being 70 bytes. The functional model
is represented as dataflow with blocking read and blocking write
FIFOs and is shown in Figure 3.

The time annotation of the functional model is carried out by
means of a scheduler. The scheduler is modeled as a finite state

TR Buffer Segmentation
RLC Header

Add
Ciphering

FIFO

TrCH Type

Switch
CT MUX TR Format Sel

PHY

CT DEMUX
Rx TCH Type

Switch
Deciphering

RLC Header

Rem
Reassembly

MAC RLC

RLC

MAC

Receiver

Transmitter

read()write()

read()

write()

read()

write()

Transmitter RLC Dataflow

Transmitter MAC Dataflow

Receiver Dataflow

Figure 3: UMTS Metro II Functional Model

machine which controls the execution of the system. Each process
is activated by the typical firing conditions of process networks,
i.e., the availability of data at the input FIFO, and the availability of
space at the output FIFO. When a firing condition is satisfied, the
process triggers the scheduler by sending a “Ready_to_Run” signal
through the dedicated bi-directional scheduling channel and then
waits for permission to start computation, which will be granted by
the scheduler when the resources are available and when no higher
priority process is ready to run. In logically zero time the process
runs to completion, and stops before the results are written to the
output FIFO. The scheduler will again trigger the process to post
its outputs at the correct time, which will not only account for the
process execution latency, but also for the time spent in running
higher priority processes that had become active and preempted its
execution. In this manner, a process is never physically suspended
as a result of preemption, thus reducing the overhead due to con-
text switches. Instead, the scheduler verifies if any preemption has
occurred, and, if so, updates the completion time by delaying it by
the appropriate amount.

5.2 Architecture Model
The architecture model assigns one task for each of 11 UMTS

components (TR Buffer and PHY were not mapped as they rep-
resent the environment). The OS employs three different schedul-
ing policies: round robin (RR), priority (PR) based on processing
requirements, and first-come, first-serve (FCFS). Processing ele-
ments communicate through point to point FIFO links or through
shared memory, whose arbitration effects influence processor uti-
lization.

The runtime processing elements were fed C code reflecting the
kernels of each UMTS component. The runtime processing ele-
ment used was a cycle accurate datapath model of the Leon 3 Sparc
processor. The pre-profiled processors use the same code but carry
out offline characterization as detailed in [10] and [5]. The proces-
sors profiled were the ARM7, ARM9, and Xilinx’s MicroBlaze.

5.3 Mapped System
Table 1 describes the 48 mappings investigated. These vary from

1 PE to 11 PEs. Partitions are broken down by Rx, Tx, RLC,
and MAC functionality. Each is categorized into one of 9 separate
classes based on the number of processing elements and the mix of
pre-profiled and runtime processing elements. Mappings are fur-
ther categorized as purely runtime processing (R), purely profiled
processing (P) elements, or a mix (M).

5.4 Results
Results relating to design effort, processing time, framework sim-

ulation time, and event processing are analyzed. Five different

Type Partition # Type Partition
1 1: R 11 S 25 7: M S (4), 9 (5), 7 (6), µ (7)
2 2: P 11 µ 26 7: M S (4), 9 (5), µ (6), 7 (7)
3 2: P 11 7 27 7: M µ (4), S (5), 7 (6), 9 (7)
4 2: P 11 9 28 7: M µ (4), S (5), 9 (6), 7 (7)
5 3: R 4 S (1) 29 7: M µ (4), 7 (5), S (6), 9 (7)
6 4: P 4 µ (1) 30 7: M µ (4), 7 (5), 9 (6), S (7)
7 4: P 4 7 (1) 31 7: M µ (4), 9 (5), 7 (6), S (7)
8 4: P 4 9 (1) 32 7: M µ (4), 9 (5), S (6), 7 (7)
9 5: M 2 S (2), 2 µ (3) 33 7: M 7 (4), S (5), µ (6), 9 (7)
10 5: M 2 µ (2), 2 S (3) 34 7: M 7 (4), S (5), 9 (6), µ (7)
11 5: M 2 S (2), 2 7 (3) 35 7: M 7 (4), µ (5), S (6), 9 (7)
12 5: M 2 7 (2), 2 S (3) 36 7: M 7 (4), µ (5), 9 (6), S (7)
13 5: M 2 S (2), 2 9 (3) 37 7: M 7 (4), 9 (5), µ (6), S (7)
14 5: M 2 9 (2), 2 S (3) 38 7: M 7 (4), 9 (5), S (6), µ (7)
15 6: P 2 µ (2), 2 7 (3) 39 7: M 9 (4), S (5), µ (6), 7 (7)
16 6: P 2 7 (2), 2 µ (3) 40 7: M 9 (4), S (5), 7 (6), µ (7)
17 6: P 2 µ (2), 2 9 (3) 41 7: M 9 (4), µ (5), S (6), 7 (7)
18 6: P 2 9 (2), 2 µ (3) 42 7: M 9 (4), µ (5), 7 (6), S (7)
19 6: P 2 7 (2), 2 9 (3) 43 7: M 9 (4), 7 (5), µ (6), S (7)
20 6: P 2 9 (2), 2 7 (3) 44 7: M 9 (4), 7 (5), S (6), µ (7)
21 7: M S (4), µ (5), 7 (6), 9 (7) 45 8: R 1 S
22 7: M S (4), µ (5), A9 (6), 7 (7) 46 9: P 1 µ

23 7: M S (4), 7 (5), µ (6), 9 (7) 47 9: P 1 7
24 7: M S (4), 7 (5), 9 (6), µ (7) 48 9: P 1 9
(1)(Rx MAC, Tx MAC, Rx RLC, Tx RLC), (2)(Rx MAC, Rx RLC)
(3)(Tx MAC, Tx RLC), (4)(Rx MAC), (5)(Rx RLC), (6)(Tx MAC)
(7)(Tx RLC) (S = Sparc, µ = Microblaze, 7 = ARM7, 9 = ARM9)

Table 1: Mapping Scenarios for UMTS Case Study

models were used: a timed SystemC [15] model, a timed Metro
II model, an untimed Metro II UMTS model, a SystemC architec-
tural model, and a Metro II architectural model. In specific con-
figurations, Metro II constraints were used as opposed to explicit
synchronization. The selection of constraints, functional model
configuration, architectural model parameters, and mapping assign-
ment is all achieved through small changes to the top level netlist.
All results are gathered on a 1.8 GHz Pentium M laptop running
Windows XP with 1GB of RAM.

5.4.1 Processing Time and Utilization
Figure 4 shows the UMTS estimated execution times (cycles)

along with the average processing element utilization. Utilization
is calculated as the percentage of simulation rounds in which archi-
tectural “proposed” events in the OS are “enabled”. Low utilization
indicates that a processing element cannot proceed and hence is un-
able to fulfill functional model requests. The x-axis (mapping #) is
ordered by increasing execution times. The data is collected for
each of the three scheduling algorithms.

UMTS Estimated Execution Time and Utilization for Various OS Scheduling Policies

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

1 4 14 31 37 26 27 33 13 5 8 45 48 12 24 29 30 43 19 35 10 21 36 42 17 2 22 28 39 41 32 25 34 44 20 23 38 11 15 18 40 3 7 9 16 6 47 46

Mapping

E
x
e
c
u

ti
o

n
 C

y
c
le

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

P
e
rc

e
n

ta
g

e
 U

ti
li

z
a
ti

o
n

 p
e
r

P
E

RR Ex PR Ex FCFS Ex RR Util PR Util FCFS Util

Figure 4: UMTS Estimated Execution Time vs. Utilization

For round robin scheduling, the lowest and highest execution
times are obtained with mapping #1 (11 Sparcs) and mapping #46
(1 µBlaze) respectively. Mapping #1 is 2167% faster than mapping
#46. This shows a large range in potential performances across

mappings. It is interesting to note that there are 23 different map-
pings which offer better performance than the 11 µBlaze or 11
ARM7 cores (mappings 2 and 3). This illustrates that inter-processor
communication is a bottleneck for many designs and despite hav-
ing more concurrency, those designs cannot keep pace with smaller,
more heavily loaded mappings. Among all 4 processor systems,
mapping #14 (two ARM9s used for Rx, two Sparcs used for Tx)
and #31(Rx MAC on µBlaze, Rx RLC on ARM9, Tx MAC on
ARM7, and Tx RLC on the Sparc) have the lowest execution times.
Many of the execution times are similar and the graph shows that
there are essentially 4 performance groupings.

The lowest utilization values for round robin occur in the 11 pro-
cessor setups (average of 15%). The highest is 100% for all single
processor setups. The max utilization before 100% is 39%. This
gap points to ineffciency in the round-robin scheduler. It may be
a goal of the other scheduling algorithms to close this gap. Also
notice that for similar execution times, utilization can vary as much
as 28% (e.g., in mappings #41 and #32).

The priority based scheduling keeps the same relative ordering
amongst the execution times but reduces them on average by 13%.
The highest is an 18% reduction (e.g., in #22) and the smallest re-
duction is 9% (e.g., in #8). The utilization numbers are actually re-
duced as well by an average of 2%. The largest reduction was 7%
(e.g., in #6) and the smallest was 1% (e.g., in #31). As expected
there was no change to the utilization or execution times for map-
pings involving either 11 processing elements (fully concurrent) or
those with 1 element (no scheduling options). The utilization drop
results from high priority, data dependent jobs running before low
priority, data independent jobs.

FCFS scheduling also does not change the relative ordering of
execution times but is not as successful at reducing them. The av-
erage reduction is only 7%. The maximum reduction is 11% (e.g.,
in mapping #24) and the minimum reduction is 4% (e.g., in #5).
However, utilization is increased by 27%. The max increase was
45% (e.g., in #31) and the minimum improvement was 20% (e.g.,
in #5). FCFS increases utilization due to the fact that many jobs
with lower priority often request processing in the same round as
high priority jobs. While technically they are both “first”, priority
would negate this fact. FCFS’s round robin tie breaking scheme
helps smaller jobs in this case.

The analysis of execution and utilization for UMTS shows that
high utilization is difficult to obtain due to the data dependencies in
the application. Also, some of the partitions explored do not bal-
ance computation well amongst the different processing elements
in the architecture. Many of the more coarse mappings only make
this problem worse. A solution is to further refine the functional
model to extract more concurrency. From an execution time stand-
point, scheduling can improve the overall execution time but not
enough to make a large majority of these mappings desirable for an
actual implementation.

An accuracy comparison was performed with mappings #2, #6,
and #46. These actual designs were created on the Xilinx ML310
development board where mappings #2 and #46 had only a 3.1%
and 2% increase respectively in execution time. Mapping #46 in-
accuracy is due to start up code and IO operations not captured
by the model. #2 suffers from a slightly oversimplified point-to-
point communication scheme in the model as compared to the Fast
Simplex Links (dedicated point-to-point data streaming interfaces)
used by the MicroBlazes. For mapping #6 (when scheduling af-
fects the outcome) the increase was 16.2% (RR), 18% (PR), and
15%(FCFS), which implies the requirement of more refined OS
model to capture the actual scheduling overhead. This compar-
ison shows that Metro II simulation can closely (within 5%) re-

flect actual implementations and in the cases where the difference
is greater, a tradeoff between modeling detail, simulation perfor-
mance, and accuracy can be quickly analyized.

5.4.2 Design Effort
The untimed Metro II UMTS functional model contains 11 pro-

cesses while the architectural model may contain up to 26 pro-
cesses. This is a large design spread across 85 files and 8,300 lines
of code. The changing of a mapping is trivial however, requiring
only changing a few macros and recompiling 2 files (2.3% of total;
<20 sec). All 48 mappings can be done in less than 16 minutes.

The conversion of the SystemC timed functional model to an
untimed Metro II functional model removes 1081 lines of code (re-
lated to scheduling and timing - both of which are in the archi-
tecture model). Metro II mapping removes much of the overhead
associated with SystemC model synchronization.

Metro II constraints for the read/write semantics of a FIFO only
require 60 lines of code which is 1.4% of the total code cost. The
average difference of the entire conversion to Metro II was only
1% per file. More than half of these lines (58%) have to do with
registering the constraints with the solvers.

The conversion of a SystemC runtime processing model (the
Sparc processing element) to Metro II only requires 92 additional
lines. This was a small 3.4% increase (2773 lines to 2681). This
includes adding support for loading new code at runtime, returning
the cost of operation to the netlist, and exposing events for map-
ping. This result is encouraging for importing code.

5.4.3 Framework Simulation Time
Figure 5 illustrates the percentage of the actual simulation run-

time spent in each of Metro II’s simulation phases for the 9 classes
of mappings. The SystemC entry indicates the time spent in the
SystemC simulation infrastructure upon which Metro II is built.

Runtime Spent in Different Phases

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 RTP

Avg

PP Avg Mix Avg Avg.

Class

P
e

rc
e

n
ta

g
e

 R
u

n
ti

m
e

�������

�	
����

�	
���

�	
����

Figure 5: Metro II Phase Runtime Analysis

On average, 61% of the time is spent in Phase 1 (lowest sec-
tion on the bar graph), 5% in Phase 2 (second section), and 17%
in Phase 3 (third section). For models with only runtime process-
ing elements (R) the averages are 93%, 0.9%, and 3% respectively.
This indicates that in runtime processing, the Metro II activities
of annotation and scheduling are negligible in the runtime picture.
For pure profiled (P) mappings they are 21%, 7% and 26%. In this
case one can see that Metro II now accounts for a greater percent-
age of runtime (phase 1 alone is representative of other simulation
environments). For mixed classes the numbers are 82%, 2.6% and
7.6%. Again the runtime processing elements dominate. It should

be noted that while Ps have higher averages, the average runtime to
process 7,000 bytes of data was 54 seconds. Phase 1 runtime (and
SystemC overhead) are the main contributors to overall runtime.

If we consider the SystemC timed functional model, Metro II
timed functional model, and the Metro II untimed functional model
mapped to an architecture, the Metro II timed functional model had
an average increase of 7.4% in runtime for the 9 classes while the
mapped version had a 54.8% reduction. This reduction is due to
the fact that Metro II phases 2 and 3 have significantly less over-
head than the timer-and-scheduler based system required by the
SystemC timed functional model.

Class Event/Ph. Comp. % Comm. % Coord. % Avg Wait
1 0.091 0.083 0.083 0.833 3839.240
2 0.091 0.083 0.083 0.833 3839.240
3 0.169 0.125 0.042 0.833 6276.190
4 0.169 0.125 0.042 0.833 6276.190
5 0.131 0.170 0.114 0.716 5117.003
6 0.169 0.170 0.114 0.716 6276.190
7 0.150 0.101 0.088 0.811 5691.130
8 0.176 0.319 0.043 0.638 6718.550
9 0.176 0.319 0.043 0.638 6718.550
Avg 0.147 0.166 0.072 0.761 5639.143

Table 2: Metro II Phase Event Analysis

5.4.4 Framework Event Analysis
Table 2 shows the average number of event state changes per

phase and the average number of phases an event waits.
On average, only 0.14 events are annotated or scheduled per

round. Because of the architectural model integration with the
UMTS functional model there are a limited number of synchro-
nization points (which satisfy a rendezvous constraint and hence
an event state change). As shown in Figure 5, Phases 2 and 3 do
not account for a large portion of the runtime so while the event
state change activity is low, it does not translate to increased run-
time. Runtime is not increased directly by changing an event’s state
but rather by the total number of events in phases 2 and 3.

Events in classes 1 and 2 on average wait 42% less than the worst
case. These classes are precisely those which provide maximum
concurrency (11 processing elements). The worst is in classes 8
and 9 (single processing elements). As one would expect, when
the scheduling overhead is lower and more processing elements are
available, events wait much less for resource availability.

Finally it should be noted that runtime processing vs. pre-profiled
processing does not impact event proposal or event state change.
Comparing classes 1 with 2 or 3 with 4 confirms this. This con-
trasts heavily with the runtime of the simulation (in which PE type
is a key factor). The runtime processing in the microarchitectural
model is treated as a black box by Metro II such that the internal
events are unseen and do not trigger phase changes. This indicates
that SystemC components can be imported quite easily into Metro
II without affecting the three-phase execution semantics.

The 3rd, 4th, and 5th columns of Table 2 categorize events in
phase 1. Computational events request processing element services
directly. Communication events transfer data between FIFOs and
coordination events maintain correct simulation semantics and op-
eration. The table indicates that events in the system are heavily
related to coordination. Classes 8 and 9 have the lowest percentage
of coordination events (64%) since these are 1 PE systems.

6. CONCLUSIONS
We illustrated how an event-based design framework, Metro II,

may be used to carry out architectural modeling and design space

exploration. Experimental results show that Metro II is capable of
capturing functional modeling, architectural modeling, and map-
ping for a UMTS case study with limited overhead as compared
with a baseline SystemC model. We showed that the design effort
involved in carrying out 48 separate mappings with a variety of ar-
chitectural models is minimal. Within the framework, we detail the
runtime spent in the three different Metro II execution phases and
provide an idea of how events move throughout the system.

Future work involves identifying and removing events not rele-
vant for annotation or scheduling from Metro II’s second and third
phases, support for a wider variety of declarative constraints, and
the analysis of other case studies such as h.264.

7. REFERENCES
[1] 3rd Generation Partnership Project. General universal mobile

telecommunications system (UMTS) architecture. Technical
Specification TS 23.101, 3GPP, December 2004.

[2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-software co-design of embedded systems:
the POLIS approach. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic
system design environment. Computer, 36(4):45–52, 2003.

[4] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and Q. Zhu. A
next-generation design framework for platform-based design. In
Conference on Using Hardware Design and Verification Languages
(DVCon), February 2007.

[5] D. Densmore, A. Donlin, and A. L. Sangiovanni-Vincentelli. FPGA
architecture characterization for system level performance analysis.
In DATE06, Munich, Germany, March 6–10, 2006.

[6] T. Kempf et al. A modular simulation framework for spatial and
tempral task mapping onto mutli-processor SoC platforms. In
DATE05, Nice, France, April 16–20 2005.

[7] P. Lieverse, P. van der Wolf, and E. Deprettere. A trace
transformation technique for communication refinement. In CODES
’01: Proceedings of the Ninth International Symposium on
Hardware/Software Codesign, pages 134–139, 2001.

[8] S. Mahadevan, K. Virk, and J. Madsen. Arts: A systemc-based
framework for multiprocessor systems-on-chip modelling. Design
Automation for Embedded Systems, 11(4):285–311, 2007.

[9] G. Martin and B. Salefski. Methodology and technology for design
of communications and multimedia products via system-level IP
integration. In Proceedings of the conference on Design, automation
and test in Europe. IEEE Computer Society, 1998.

[10] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and
D. Langen. Source level timing annotation and simulation for a
heterogeneous multiprocessor. In DATE08, Munich, Germany, March
10–14 2008.

[11] R. L. Moigne, O. Pasquire, and J.-P. Calvez. A generic RTOS model
for real-time systems simulation with systemc. In DATE06, Paris,
France, Feb. 16–20, 2004.

[12] S. Neema, J. Sztipanovits, and G. Karsai. Constraint-based
design-space exploration and model synthesis. In EMSOFT03,
Philadelphia, PA, October 13–15 2003.

[13] I. Sander and A. Jantsch. System modeling and transformational
design refinement in ForSyDe. IEEE Trans. Computer-Aided Design,
23(1):17–32, January 2004.

[14] A. Sangiovanni-Vincentelli. Quo vadis, SLD? reasoning about the
trends and challenges of system level design. Proceedings of the
IEEE, 95(3):467–506, March 2007.

[15] A. Simalatsar, D. Densmore, and R. Passerone. A methodology for
architecture exploration and performance analysis using system level
design languages and rapid architecture profiling. In Third
International IEEE Symposium on Industrial Embedded Systems
(SIES), La Grande Motte, France, June 11–13, 2008.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

