
On-Chip Communication Architecture Exploration

for Processor-Pool-based MPSoC

Young-Pyo Joo

School of EECS

Seoul National University

Seoul, Korea

youngpyo@iris.snu.ac.kr

Sungchan Kim

School of EECS

Seoul National University

Seoul, Korea

sungchan.kim@iris.snu.ac.kr

Soonhoi Ha

School of EECS

Seoul National University

Seoul, Korea

sha@iris.snu.ac.kr

Abstract— MPSoC is evolving towards processor-pool (PP)-based

architectures, which employ hierarchical on-chip network for

inter- and intra-PP communication. Since the design space of PP-

based MPSoC is extremely wide, application-specific

optimization of on-chip communication is a nontrivial task. This

paper presents a systematic methodology for on-chip network

design of PP-based MPSoC. The proposed approach allows

independent configurations of PPs, which leads to efficient

solutions than previous work. Since time-consuming simulation is

inevitable to evaluate complicated on-chip network during

exploration, we do early pruning of design space by a bandwidth

analysis technique that considers task execution dependencies.

Our approach yields the Pareto-optimal solutions between clock

frequency and area requirements. The experiments show that the

proposed technique finds more efficient architectures compared

with the previous approaches.

I. INTRODUCTION

With the continuous evolution of semiconductor process

technology, it is possible to integrate more than 160 million gates into

a 100 mm2 chip with 45 nm CMOS technology [1]. Since a typical

embedded processor uses a few million gates only, tens of processors

can be integrated in a single chip to make an MPSoC (Multi-Processor

System-on-Chip); it brings forth a design challenge of software as well

as communication architecture. A traditional MPSoC where all

processing components are tightly coupled is often unstructured as

well as over-constrained. As a result, bringing a set of processing

elements into a subsystem and, then, constructing a whole system in a

well-structured form with multiple subsystems are considered as a

promising solution. We call such a subsystem a processor-pool (PP),

which is normally composed of processing elements, memories, and

I/O components.

Decoupled restructuring with PP-based design has many benefits

such as good scalability, design reuse of subsystem, modularity, and

so on. Examples of PP-based architecture can be found in the

SHAPES project [2], GPUs from NVIDIA, AMD, and Intel, and Cell

BE from IBM. They have usually two levels of communication

architecture: inter- and intra-PP communication. For instance, a PP

that is called „tile‟ in the SHAPES architecture consists of a set of

heterogeneous processing component such as RISC, DSP, on-chip

memory, and inter-tile communication interface. Intra-tile

interconnection is multi-layer bus matrix, while packet-based

switching network is used for inter-tile communication.

Local memory access goes through intra-PP communication

architecture that should support relatively short and frequent memory

accesses with small latency. In contrast, an inter-PP communication

architecture is likely to deal with relatively infrequent massive data

stream. It implies that the preferred configurations of the two

communication architecture types quite differ from each other. For

intra-PP communication, short access latency can be obtained by using

standard bus interface with relatively narrow bus widths [3][4][5].

Inter-PP communication architectures often come with wide data bus

widths more than 512 or 1024 bits to achieve higher throughput.

Therefore, the design of communication architecture for PP-based

MPSoC requires exploration of explosively large search space to

consider different wish lists of inter-/intra-PP communications. On the

other hand, performance evaluation of communication architecture is

commonly resorted to simulation due to its dynamic behavior; it

prohibits designers from exploring sufficient design space to choose

desirable solution(s) in a limited time budget. This makes application-

specific optimization of PP-based MPSoC a challenging problem.

This paper proposes a systematic methodology to explore

communication architecture of PP-based MPSoC to tackle those

difficulties. Recently, bus matrix is considered as a promising solution

to achieve high performance and parallelism for rapidly increasing on-

chip communications in chip multiprocessors [6] as well as MPSoCs

[3][4][5]. Thus, in the current implementation of the proposed

methodology, cascaded bus matrix architecture is used for both inter-

and intra-PP communication. Considering other types of on-chip

networks, such as ring-bus or NoC (Network-on-Chip), remains as a

future work.

The design parameters considered for both inter- and intra-PP

communication are clock frequency, arbitration priority, cascaded bus

matrix topology, and on-chip memory allocation. There is an

additional parameter, off-chip memory allocation, for inter-PP

communication. The proposed technique configures each of

communication architectures differently. To our best knowledge, none

of previous work has addressed hierarchical communication

architecture exploration. Instead, they have focused on a flat

communication architecture based on a bus matrix [11]-[14].

Since simulation is typically resorted to evaluate on-chip

communication of the underlying architecture, early pruning of design

space is required to shorten the exploration time and explore wider

design space. To this end, we compute the lower bound of memory

bandwidth requirement for a given application considering task

scheduling information. Any architecture candidates that fail to meet

this requirement are excluded from simulation.

The paper is organized as follows. In the next section, we

overview the related work and state our novel contributions. Section

III provides background on the proposed approach and the problem

definition, which are followed by the explanation of the overall design

flow in Section IV. Section V and VI explain the details of the

exploration algorithm. Then, we show the experimental results in

This work was supported by BK21 project, System IC 2010 project of
Korea Ministry of Knowledge Economy, and Acceleration Research sponsored

by KOSEF research program (R17-2007-086-01001-0). The ICT and ISRC at

Seoul National University and IDEC provided research facilities for this study.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Section VII to validate the proposed technique. Lastly, Section VIII

concludes the paper and addresses future extensions.

II. RELATED WORK

Target communication architectures in previous work on

exploring on-chip communication architecture of MPSoC span

hierarchical shared bus, crossbar-based bus matrix, and NoC. For bus-

based architectures, main design decisions include mapping of

processing components to buses, memory allocation, and bus topology

generation [7][8][9]. The effects of floorplan to hardware area and

achievable clock frequency of buses are also investigated in [10].

To provide more communication bandwidth, crossbar-based bus

matrix architectures have been actively researched recently [11]-[14].

For a single bus matrix, main objective is to reduce the complexity of

bus matrix by reducing the number of buses and merge logical

memory segments into a physical memory through life-time analysis.

In [11], a static bandwidth analysis is proposed to prevent exploring

invalid design space and full system simulation for the qualified

architectures is used to see if they satisfy given bandwidth constraints.

The idea of pruning the design space by bandwidth analysis is similar

to ours. The difference is that they compute the average bandwidth

with respect to the whole execution time of application while we

account for varying bandwidth requirements due to burst

communication requests. An approach in [12] considers floorplanning

to estimate wire delay for a global clock of a bus matrix. And the final

topology is determined by ILP (Integer Linear Programming) formulas.

Cascaded bus matrix topologies are searched to satisfy the given

bandwidth constraints with reduced cost; simulated annealing [13] and

MILP (Mixed ILP) [14] approaches have been proposed for this

purpose.

There have been extensive researches on NoC architecture

exploration. They mainly focus on the selection and mapping of tiles

to network topology [15], buffer allocation in router design [16], and

QoS (Quality-of-Service) support [17]. Since these works consider

inter-PP communication only, interaction between inter- and intra-PP

communications is not accounted for.

The contributions of our work compared with related approaches

can be summarized as follow:

First, we propose a systematic method of communication

architecture exploration, considering both inter- and intra-PP

communications for a PP-based MPSoC. We seek for individual

configurations of inter-/intra-PP communications considering clock

frequency, arbitration priority, cascaded bus matrix topology, and on-

/off-chip memory allocations. As a result, each of communication

architectures can be designed efficiently.

Second, to cope with the extremely huge design space, we perform

static analysis for the lower bound of bandwidth requirement,

considering the varying bandwidth requirements according to the task

schedule. The bandwidth requirement analysis eliminates invalid

design space, reducing the number of simulations during exploration.

Lastly, the proposed method is flexible enough to easily consider

different types of on-chip network architectures. Although we consider

bus matrix architectures only in this paper, other architectures, such as

hierarchical shared buses, packet-based NoCs, or ring-buses, can be

easily brought into the proposed framework.

III. BACKGROUND AND PROBLEM DEFINITION

A. Terminology and Problem Definition

This section explains a task model of application and a target

communication architecture to define the problem to be solved in this

paper. An application g=(V,E) is specified as a graph where V is a set

of vertices to represent coarse grain tasks and E is a set of edges for

communicating channels between tasks. A task is a primitive unit of

mapping onto a processing element (PE). We distinguish two types of

memory segments: one is dedicated for each PE and the other is

shared for communications between tasks. We define such memory

segments as logical memory blocks (LMBs). A LMB is associated to a

PE for the tasks mapped on the PE to use their own local memory

access. On the other hand, each channel of a task graph is associated

with an LMB that represents a shared memory for inter-processor

communication. Multi-application is modeled by a set of graphs

G={g}. To each application g∈G, there is a deadline by which its

execution is required to be completed once enabled.

An architecture used in this work is modeled as shown in Figure 1;

it consists of several PPs and one global communication architecture

(GCA) for inter-PP communication. Each of PPs includes PEs, on-chip

SRAMs, and an interface to GCA. GCA contains on-chip SRAMs and

an off-chip DRAM interface. We denote a memory component in

architecture by a physical memory block (PMB): LMBs defined in the

task model will be mapped to PMBs. Interconnect architectures for

both inter- and intra-PP communications are cascaded bus matrices. A

bus matrix consists of multiple arbitration points (APs) as depicted on

the right side of Figure 1. We assume that bus matrices in a PP use a

single clock while each PP may have a different clock frequency.

Here is a list of abbreviations for summary:

 PP: processor-pool

 PE: processing element

 LMB: logical memory block

 PMB: physical memory block

 GCA: global communication architecture

 AP: arbitration point

The problem addressed in the paper is to find an on-chip

communication architecture for a given set of applications G={g}

satisfying the associated deadline requirements D: The following

design axes are explored: 1) on-chip memory synthesis by configuring

the number of PMBs and the mapping of LMBs onto PMBs, 2)

finding a topology of cascaded bus matrix, 3) finding the clock

frequency of each cascaded bus matrices, and 4) deciding arbitration

priorities in each bus matrix.

B. Quantum-inspired Evolutionary Algorithm

Evolutionary Algorithms (EAs) maintain a population of solutions

for a given problem, selecting the best in each generation to make a

better solution survive to final as in natural adaptation. Like all other

EAs, QEA also consists of representation of individuals (solutions),

fitness evaluation function, and population dynamics [18]. The only

difference is that it uses quantum bits (Q-bits) as probabilistic

representation for individuals instead of binary representation of genes.

The probabilistic representation of Q-bit is described with two values,

α and β, where |α|2 and |β|2 mean the probabilities that the

corresponding Q-bit becomes 0 or 1 respectively, as shown in the

lower part of Figure 2. QEA does not require a crossover operation

PP0 PP1 … PPn-1

GCA

PE0 PE1 PE2

AP

Interface

to DRAM

SRAM1

PMB2

SRAM2

PMB3

Interface

to GCASRAM0

PMB1

DRAM0

PMB0
Figure 1. Processor-pool-based MPSoC architecture.

between multiple solutions, which makes the implementation of QEA

simpler than genetic algorithm (GA).

For the diversity of generated solutions, we can deploy multiple

groups at the same time, each of which has its own probabilistic

representation of Q-bit stream. This redundancy results in better

solution by preventing from being stuck in local optima, even though

too excessive duplication may slow down the proposed technique. In

the figure, the length of individual Q-bit stream is m, while the number

of groups and the number of generated individuals in a group are n and

p respectively. Overall procedure of QEA can be summarized as

follows:

1) For each group, p individuals (solutions) are generated based

on the probability that Q-bits of the group imply. Then, a set of

individuals from all groups at generation t, P(t), is generated. Each of

individuals in P(t) is repaired by application dependent rules to make

valid solutions.

2) Then, we evaluate generated individuals P(t) and save a set of

the best solutions of groups, B(t), from P(t).

3) Based on B(t), the Q-bit stream of each group is adjusted so as

to make newly generated individuals close to the best solution in

probability: α and β values are adjusted, which is called “Q-bit

rotation”.

4) Among the best solutions for all groups, the best one is saved

for the highest solution.

5) If the termination condition is met, we stop the evolution

process and output the best solution obtained so far. A termination

condition is usually defined by the maximum number of generations

or by the case that all individuals are converged probabilistically to

the best solution. For the case that neither of above conditions are met,

we go back to the step 1 for the next generation.

IV. PROPOSED DESIGN FLOW

Figure 3 shows the overall procedure of the proposed exploration

framework. There are three inputs: 1) the task model of applications,

2) memory traces for each task, and 3) the minimum bandwidth

requirements for the tasks to access LMBs. The proposed exploration

consists of two nested loops. The outer loop corresponds to the

generation of a new architecture template by adding an on-chip SRAM

to each of PPs and GCA, which increases the maximum bandwidth of

communication architecture. Since not all PMBs will be used, this

increase does not mean the cost increase of all PPs. The other

parameters remain undetermined.

The grey box in the figure is associated with the inner loop where

we use QEA to synthesize architecture candidates, xij in Figure 2; it

allocates LMBs to PMBs, determines bus matrix topologies, and

configures the operating conditions, such as clock frequency and

arbitration priority. An initial architecture template has a single off-

chip DRAM on GCA.

Generated architectures, xij, are evaluated first through a static

analysis that examines whether all PMBs and APs in the generated bus

matrix topology satisfy their associated minimum bandwidth

requirements. The sustainable bandwidth of a PMB should be greater

than the total bandwidths of the LMBs allocated to the PMB. Likewise,

any AP in an architecture candidate should support all of the

bandwidth requirements associated with the tasks passing through the

AP at the same time. The algorithm to extract the lower bound of

minimum bandwidth requirement from traces is explained in Section

V. Based on the bandwidth requirement analysis, all candidates in

which any PMBs or APs fail to meet the associated bandwidth

requirements are discarded. In case no candidates remains, a candidate

which can provide highest bandwidth is selected as a member of B(t).

In such a way, time-consuming simulation of invalid candidates is

avoided without missing potential solutions. To obtain B(t), we

compute the score (or fitness) of each candidate considering all of

sustainable bandwidth, on-chip memory and bus matrix area, and

clock frequency which will be explained in the next section in detail.

After B(t) is constructed, the fitness of architecture candidates in

B(t) should be evaluated to choose the best one at generation t.

Simulation promises more accurate evaluation, but pays too long

evaluation time to simulate all candidates in B(t). Therefore we make a

compromise between the quality of solutions and exploration time. At

each generation, we take the worst solution (or the most expensive

candidate) in B(t), and perform simulation since it is mostly likely to

satisfy the design constraints. If it meets all the constraints, we update

the global best solution. And we move to the next generation.

Although more efficient solutions may exist in B(t), they are not

simulated and discarded. But the evolutionary algorithm converges to

a better solution anyway as generation is iterated. When an iteration of

the inner loop is finished, QEA checks the termination condition to see

if the current loop should be continued or not. The termination

condition can be the convergence of solution qualities or its maximum

iteration count given by the designer.

When QEA reaches any termination condition in the inner loop,

the numbers of PMBs are increased by one for each of PPs and GCA

to generate a new architecture template for exploring higher

performance solutions. Then the inner loop starts again based on the

Task-level

traces

Task model
Minimum bandwidth

requirements

Initial architecture template

•LMB to PMB allocation

•Bus-matrix topology

•Clock frequency

•Bus-matrix arbitration priority

Bandwidth and fitness analysis

Valid

candidates

exist?

Simulate the worst

Meet

constraint?

Solutions found

Termination

condition?

Yes

No

Yes

Need more

on-chip memory?

Add a PMB to

PPs and GCA only if

they use every PMBs

No

Yes

No

Find Pareto-optimal of clock and

on-chip area

End

New architecture template

P(t) generation

Yes

Update the best

NoB(t) generation

Figure 3. Overall procedure of the proposed approach.

b

b1 b2 bn

x11 x12 x1p

q1

… xn1 xn2 xnp

qn

…

…

m quantum

bits

,

1
22

Q(t)

P(t)

B(t)

best

m binary

string

① Generate populations based on Q-bits

② Evaluate P(t) and choose B(t)

③ Q-bit adjustment

④ Evaluate B(t) and choose the best

⑤ Migrate global solution on migration-condition

1

2

3

45

Figure 2. Overall QEA procedure.

new architecture template. The maximum number of on-chip

memories on each PP or GCA is increased up to as many as the

number of LMBs. After the outer loop is finished, we obtain a set of

architectures that satisfy the given deadline constraints. Based on on-

chip area and clock frequency of the networks, we establish Pareto-

optimal solution sets.

V. TRACE GENERATION AND BANDWIDTH REQUIREMENT

CALCULATION

As explained in the previous section, the minimum bandwidth

analysis allows us to avoid simulating invalid architecture candidates

that have insufficient sustainable bandwidth of interconnect

components, APs and PMBs. Memory access traces are obtained from

the initial run of application execution on an in-house execution-

driven multiprocessor simulator for this purpose. In this simulation,

we assume an ideal communication network so that the traces contain

the ordering of traces as well as processor execution time between

traces excluding any communication architecture effects. Execution

dependencies between communicating tasks are annotated as special

symbols in the traces. Thus, the trace-driven simulator in the

exploration process is aware of task execution dependencies of a given

application.

Based on traces with execution dependencies annotated, we

calculate the minimum bandwidth requirement for each task to access

an LMB. Figure 4(a) illustrates an example of simple traces for three

PEs. A trace for task is a sequence of blocks and the arrows between

blocks indicate execution dependencies. For instance, a block MA0 of

PA cannot start until a block MB0 of PB is finished. Note that there can

be some delay to trigger successive blocks due to overhead such as

synchronization or polling.

Let mi,j be a block of taski that contains accesses to lmbj. Let

EST(mi,j) and LFT(mi,j) be the earliest start and the latest finish times

of a block mi,j. EST(mi,j) can be obtained by scheduling all of its

preceding blocks in ASAP (as soon as possible) manner and LFT(mi,j)

by scheduling all successive blocks in ALAP (as late as possible)

manner until the deadline. In the computation of EST(mi,j) and

LFT(mi,j), we ignore all communication overhead to achieve the lower

bound of the bandwidth requirement. {previ,j} and {nexti,j} are sets of

preceding and successive blocks of mi,j. EXEmin(mi,j) is the minimum

execution time of a block mi,j. di means a deadline of an application

where taski belongs to. Then EST(mi,j) and LFT(mi,j) become

, ,
,

, ,
,

, , ,

max({ ()}) if { } 0
() ,

0 otherwise

min({ ()}) if { } 0
() , where

 otherwise

() () (

i j i j
i j

i j i j
i j

i

i j i j min i

EFT prev prev
EST m

LST next next
LFT m

d

EFT m EST m EXE m

, , ,

) and

() () ().

j

i j i j min i jLST m LFT m EXE m

Let Mi,j be a set of blocks of taski that contains access to lmbj. Let

ACCi,j be the total memory access counts to lmbj by taski. Then, we

compute the minimum bandwidth BWmini,j of taski to lmbj as

 ,
,

, ,max({ (}) min({ ()})

i j
i j

i j i j

ACC
BWmin

LFT M EST M

Figure 4(b) shows the case of a block MC1 on a PE PC. Note that

blocks on the same PE have implicit execution dependencies since

they cannot be overlapped.

VI. QEA DESCRIPTION OF THE PROPOSED METHODOLOGY

In the proposed technique, the inner loop of architecture

exploration is performed by a QEA-based heuristic, where it is crucial

to generate valid candidate solutions and properly evaluate them. In

this section, we describe the QEA used in the proposed methodology

focusing on the Q-bit representation of architecture and the fitness

evaluation of a solution.

A. Q-bit Representation

Figure 5 shows a Q-bit representation for an architecture that

consists of the following four parts.

1) Mapping LMBs onto PMBs

This part indicates where each LMB is allocated by dividing the

part into as many sections as the number of associated LMBs. For PPi,

it considers the LMBs confined in the pool, which include all local

LMBs as well as the shared LMBs between processing elements in the

same pool. Then an LMB can be mapped to a PMB in the pool or in

GCA. Therefore, each section is given an integer that is associated

with a PMB or the interface to GCA of the pool. The maximum

integer is the number of PMBs in the pool or in GCA. For GCA, this

part represents the mapping of shared LMBs between pools to PMBs

in GCA.

2) Cascaded bus matrix topology generation

The Q-bit representation of cascaded bus matrix topology

describes the sequence of bus matrices for paths from PEs to PMBs as

shown in Figure 6(a). To construct a cascaded bus matrix topology for

each of PPs, we consider a pool of bus matrices in NPE ×(NPMB+1) grid

form where NPE is the number of PEs and NPMB the number of PMBs

in a PP of interest. For GCA, NPE is replaced with NPP where NPP is

the number of PPs. Then, any path for a PE to access a PMB is made

by choosing an arbitrary bus matrix at each row of grid. During

constructing a path, the following two restrictions are applied: First, a

PE is connected to a single bus matrix. For instance, in Figure 6(b),

PE0 accesses PMBs only through bus matrix (0,0) in the first row of

the grid. Second, a PMB too is connected to a single bus matrix. Thus,

PMB1 is connected to bus matrix (3,2) in the fourth row of the grid. As

shown in Figure 6, a path for a PE-PMB pair is described as a set of

integers indicating bus matrices chosen at the rows. Suppose that a

path for PE0 and PMB0 in Figure 6 is constructed to visit bus matrices

(0,0), (1,1), (2,1), and (3,0). Then, the corresponding Q-bit

representation is {0,1,1,0} as in Figure 6(a). Once the entire paths are

built, there might be redundant bus matrices that have a single master

and a single slave interface; they are removed in the repair procedure.

dt=10090756040301510 dt=10085301510

The earliest start time The latest finish time

PA

(b)(a)

20

MB0

MA0PA

PB

PC
MC0 MC1

MB1 MB0

MA0

MC0 MC1

MB1PB

PC

Figure 4. (a) Traces with dependencies annotated and (b) the minimum

bandwidth calculation.

Q-bit string :

④ Arbitration priority : 0 ~ (NPE-1)

LMB0

PP0

…… LMBn-1

…… PPn-1 GCA

② Cascaded bus matrix topology

: BM id for each row of BM XxY

① LMB to PMB mapping : PMB id

③ Clock : Min. ~ Max. clock freq.

PP0 …… PPn-1 GCA

Row0 …… Rowy-1

PE0-PMB0 …… PEm-1-PMBn-1

PE0 …… PEn-1

Row1

1 2 3 4

Figure 5. Q-bit representation of an architecture.

The bus matrices (0,1), (0,2), (2,2), (3,0), (3,2), and (3,3) belong to

this case. As a result, we obtain a cascaded bus matrix topology as

shown in Figure 6(c).

3) Clock frequency of bus matrix

The Q-bit representation of clock frequency is straightforward.

The selected clock frequency is randomly generated with an integer

value, then repaired to meet the bandwidth constraints. It helps QEA

to generate proper architecture candidate more quickly.

4) Arbitration policy of bus matrix
This part sets the priority of a PE to access PMBs. For every PE, a

random priority is given.

B. Cost Evaluation Function

Another important part in a QEA-based heuristic is a cost function

to evaluate architecture candidates generated by the inner loop of the

proposed design flow. The cost function considers the bandwidth of an

architecture candidate under consideration as well as implementation

related parameters such as clock frequency and on-chip area. The cost

function Cost is formulated as

 1

0

 if 0
, where

 otherwise

 if 0
 and

0 otherwise

(/) (/) .

APN
i i i i

i

max sum max avg

BWcost BWCost
Cost

SYSscore

BW BWreq BW BWreq
BWcost

SYSscore area area clk clk L

BWi is the bandwidth of APi that is defined by the product of the

bus widths and the clock frequency. In this paper, bus widths are set to

32 bits, while a clock frequency is considered as a design parameter.

BWreqi is the minimum bandwidth requirement of an APi. NAP is the

number of APs that target architecture has. Thus BWcost represents

the amount of deficient bandwidth. SYSscore is the gain by using

small on-chip memory and bus matrix area and low clock frequency. α

and β are the coefficients for the gain factor of area and clock. These

terms control the search direction of QEA to bias toward a specific

design objective. By those two terms, the cost depends more on the

deficiency of bandwidth or implementation cost once the bandwidth

requirement is satisfied. L is a term to represent a reward for

architecture that satisfies the given time constraints. L is set to a value

larger than the maximum score of the candidates that fail to the

constraints. Otherwise L is set as zero.

VII. EXPERIMENTS

We have implemented the proposed design flow in C++. A trace-

driven simulator was implemented as a separate SystemC program

operating at cycle-accurate level. As mentioned in Section V, we used

an in-house execution-driven multiprocessor simulator to extract

traces. To estimate the on-chip memory area of architectures, we used

CACTI 4.2 [19]. To obtain on-chip bus matrix area, we synthesize and

route bus matrices varying the dimension from 1 master and 1 slave to

16 masters and 16 slaves using Design compiler and Astro of

Synopsys. Memory and bus matrix area information is obtained under

0.13 um CMOS technology. All experiments were conducted on a

workstation with 3.0-GHz Xeon processor and 4.0-GB main memory

running Linux.

As an application, we used a Picture-in-Picture (PiP) application

that consists of one H.264 encoder for 4CIF-sized frame and two for

CIF-sized frames as depicted in Figure 7. The application has 39 tasks

with 75 LMBs and 54 inter-task communication channels. The target

PP-based architecture is composed of 3 PPs and GCA. PPs have 5, 8

and 8 PEs respectively.

In the first experiment, we compare the proposed approach with

the exploration on flat communication architectures as in [8]-[11],

which use a global clock without considering different communication

requirements of PPs. For both approaches, we assumed that maximum

clock frequency of generated architectures is 300MHz. The parameters

of QEA used in the experiments are shown in Table I.

TABLE I. THE PARAMETERS OF QEA.

Para-

meter

Coeff. # of

groups

(n)

of

 individuals

 in a group (p)

Prob.

threshold for

convergence

Max.

generation

count

Reward

L α β

Value 1 1 50 20 0.999 2000 1000

Figure 8 shows the Pareto-optimal solution space obtained from

the explorations based on the proposed approach and the flat

architecture-based approach. In the graph, the X-axis corresponds to

normalize on-chip areas while the Y-axis to average clock frequencies

of all PPs and GCA in each of Pareto-optimal solutions. The values of

the X-axis are normalized by the maximum on-chip area obtained

from the exploration, which is 1.0 in the graph.

As shown in Figure 8, the proposed approach results in much

efficient Pareto-optimal solutions than the flat architecture-based

approach. Since the required clock frequency of flat communication

architecture is probably dominated by the most bandwidth-hungry PP,

the average clock frequency is larger than the proposed solution at the

same on-chip area. The clock frequency difference between the

approaches grows larger as the communication requirements of PPs

become more diverse.

PE0 PE1 PE2 PE3

PMB0 PMB1 PMB2

PE0 PE1 PE2 PE3

PMB0 PMB1 PMB2

(0,0)

(1,1) (1,2)

(2,1)

(b) (c)

(0,3)

(1,3)

(2,3)

(3,3)

(0,2)

(1,2)

(2,2)

(3,2)

(0,1)

(1,1)

(2,1)

(3,1)

(0,0)

(1,0)

(2,0)

(3,0)

(a)

PE0-PMB0={0,1,1,0} PE2-PMB0={1,1,1,0}

PE0-PMB1={0,1,1,2} PE2-PMB1={1,1,1,2}

PE1-PMB0={0,1,1,0} PE3-PMB0={2,2,1,0}

PE1-PMB1={0,1,1,2} PE3-PMB1={2,2,1,2}

PE3-PMB2={2,2,2,3}

Figure 6. (a) Q-bit representation of cascaded bus matrix for each PE-PMB

path, (b) initially generated cascaded bus matrix topology, and (c) final

cascaded bus matrix topology.

(a)

PP1:

PE5~12

PP0:

PE0~4

Read DeB

VLC

GCA
Enc

4CIF

CIF1

CIF2

PE3 PE0,5~20

PE4 PE1,13~16

PE4 PE2,17~20

Read/Enc/DeB/VLC ME(4CIF:17/CIF:5 tasks)

PP2:

PE13~20

(b)

(c)

MEMEMEME

Figure 7. A PiP application: (a) H.264 encoder task model, (b) target

architecture, and (c) task-to-PE mapping

In the next experiment, we verify the proposed bandwidth analysis

technique compared with the average bandwidth analysis that is the

most popular method to evaluate the performance of communication

architecture as used in the previous work [11]. Considering (2), the

average bandwidth BWavgi,j of a task ti to access an LMB lmbj can be

calculated as

 ,
,

i j
i j

i

ACC
BWavg

d

We observe the followings from the graph: first, the Pareto-

optimal curves for both approaches decrease gradually according to

the increase of on-chip area as expected. Second, the proposed

approach yields more efficient Pareto-optimal solutions; lower clock

frequencies for every on-chip area are obtained compared with the

average bandwidth approach. Moreover, whereas the average

bandwidth approach is not able to produce a solution of smaller on-

chip area than 0.92, it is possible to explore more diverse design space

with our approach. From these observations, we verify that the

proposed bandwidth analysis technique provides more scalability.

Table II shows the performance of the exploration techniques. The

number of simulations performed by the average bandwidth approach

is greater than the proposed as shown in the column „# of simulated

architectures‟. This is because the average bandwidth is usually less

than the expected bandwidth from our analysis so that more

architecture candidates satisfy the average bandwidth requirement.

However, finding more candidates does not always mean more

solutions satisfying the constraints. As we see in the last column of the

table, the proposed approach finds more valid solutions even with the

smaller number of simulations.

TABLE II. PERFORMANCE COMPARISON OF THE PROPOSED APPROACH AND THE

AVERAGE BANDWIDTH-BASED APPROACH.

Execution

time

of pruned

architectures

of simulated

architectures

of selected

architectures

Proposed 7 hr 36 min 264,800 90 56

Average

bandwidth
9 hr 28 min 408,800 158 29

VIII. CONCLUSION

In this paper, we have presented a systematic exploration

methodology of on-chip communication architecture for processor-

pool-based MPSoCs. In the current implementation, we consider bus

matrix architectures for both local communication network inside each

processor-pool and global communication architecture. Unlike the

previous work, the proposed approach allows different configurations

for each of PPs‟ communication architectures, which leads to efficient

solutions in terms of lower clock frequency and less on-chip area. To

avoid excessive usage of time-consuming simulation in the

exploration, we use an efficient bandwidth analysis technique to prune

inferior solutions failing to meet minimum bandwidth requirements.

The experimental results show that the application of the proposed

approach is able to draw much efficient Pareto-optimal solutions

compared with the previous works: always lower clock frequency at

the same on-chip area. As future work, we plan to support ring-bus or

NoC for global communication architecture. Another extension is the

consideration of power consumption estimation during the evaluation

of generated architectures.

ACKNOWLEDGMENT

The authors thank Hoeseok Yang and Kyunghyun Kim for their

help on the design of exploration algorithm and the experiments.

REFERENCES

[1] D. Wingard, “Tiles: the heterogeneous processing abstraction for
MPSoC,” in MPSoC ‟04, July 2004.

[2] P.S. Paolucci, A.A. Jerraya, R. Leupers, L. Thiele, and P. Vicini,
“SHAPES: a tiled scalable software hardware architecture platform for

embedded systems,” in Proc. CODES+ISSS, pp.176-172, October 2006.

[3] AXI, ARM, http://www.arm.com/products/solutions/AMBA3AXI.html

[4] STBus Interconnect, STMicroelectronics,

http://www.st.com/stonline/products/technologies/soc/stbus.htm

[5] SonicMX, Sonics Inc., http://www.sonicsinc.com

[6] Niagara 2 opens the floodgates, Microprocessor Report, November 2006.

[7] K.K. Ryu and V.J. Mooney III, “Automated bus generation for

multiprocessor SoC design,” IEEE TCAD, vol.23, no.11, pp.1531-1549,
November 2004.

[8] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE TCAD, vol.23,

no.6, June 2004.

[9] S. Kim and S. Ha, “Efficient exploration of bus-based System-on-Chip

architectures,” IEEE TVLSI, vol.14, no.7, pp.681-692, July 2006.

[10] S. Pasricha, N.D. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane,
“FABSYN: floorplan-aware bus architecture synthesis,” IEEE TVLSI,

vol.14, no.3, pp.241-253, March 2006.

[11] S. Pasricha, N.D. Dutt, and M. Ben-Romdhane, “BMSYN: bus matrix

communication architecture synthesis for MPSoC,” IEEE TCAD, vol.26,

no.8, pp.1454-1464, August 2007.

[12] S. Murali, L. Benini, and G. De Micheli, “An application-specific design

methodology for on-chip crossbar generation,” IEEE TCAD, vol.26,
no.7, pp.1283-1296, July 2007.

[13] J. Yoo, S. Yoo, and K. Choi, “Communication architecture synthesis of
cascaded bus matrix,” in Proc. ASPDAC, pp.171-177, January 2007.

[14] M. Jun, S. Yoo, and E.-Y. Chung, “Mixed integer linear programming-

based optimal topology synthesis of cascaded crossbar Switches,” in
Proc. ASPDAC, pp.583-588, January 2008.

[15] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, “NoC synthesis flow for customized domain specific

multiprocessor Systems-on-Chip,” IEEE TPDS, vol.16, no.2, pp.113-129,

February 2005.

[16] J. Hu, U.Y. Ogras, and R. Marculescu, “System-level buffer allocation

for application-specific Networks-on-Chip router design,” IEEE TCAD,
vol.25, no.12, pp.2919-2933, November 2006.

[17] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal, E. Rijpkema, P.
Wielage, and K. Goossens, “An efficient on-chip NI offering guaranteed

services, shared-memory abstraction, and flexible network

configuration,” IEEE TCAD, vol.24, no.1, pp.4-17, January 2005.

[18] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm for

a class of combinatorial optimization,” IEEE TEC, vol.6, no.6, pp.580-

593, December 2002.

[19] Cacti, HP, http://www.hpl.hp.com/research/cacti

140

160

180

200

220

240

260

280

0.85 0.9 0.95 1

A
v

er
a

g
e

cl
o

ck
 f

re
q

u
en

cy
 (
M

H
z)

Normalized on-chip area

Proposed

Average bandwidth

Flat architecture

Figure 8. The Pareto-optimal solutions of on-chip area and average clock

frequency.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

