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Abstract— MPSoC is evolving towards processor-pool (PP)-based 

architectures, which employ hierarchical on-chip network for 

inter- and intra-PP communication. Since the design space of PP-

based MPSoC is extremely wide, application-specific 

optimization of on-chip communication is a nontrivial task. This 

paper presents a systematic methodology for on-chip network 

design of PP-based MPSoC. The proposed approach allows 

independent configurations of PPs, which leads to efficient 

solutions than previous work. Since time-consuming simulation is 

inevitable to evaluate complicated on-chip network during 

exploration, we do early pruning of design space by a bandwidth 

analysis technique that considers task execution dependencies. 

Our approach yields the Pareto-optimal solutions between clock 

frequency and area requirements. The experiments show that the 

proposed technique finds more efficient architectures compared 

with the previous approaches. 

I. INTRODUCTION 

With the continuous evolution of semiconductor process 

technology, it is possible to integrate more than 160 million gates into 

a 100 mm2 chip with 45 nm CMOS technology [1]. Since a typical 

embedded processor uses a few million gates only, tens of processors 

can be integrated in a single chip to make an MPSoC (Multi-Processor 

System-on-Chip); it brings forth a design challenge of software as well 

as communication architecture. A traditional MPSoC where all 

processing components are tightly coupled is often unstructured as 

well as over-constrained. As a result, bringing a set of processing 

elements into a subsystem and, then, constructing a whole system in a 

well-structured form with multiple subsystems are considered as a 

promising solution. We call such a subsystem a processor-pool (PP), 

which is normally composed of processing elements, memories, and 

I/O components. 

Decoupled restructuring with PP-based design has many benefits 

such as good scalability, design reuse of subsystem, modularity, and 

so on. Examples of PP-based architecture can be found in the 

SHAPES project [2], GPUs from NVIDIA, AMD, and Intel, and Cell 

BE from IBM. They have usually two levels of communication 

architecture: inter- and intra-PP communication. For instance, a PP 

that is called „tile‟ in the SHAPES architecture consists of a set of 

heterogeneous processing component such as RISC, DSP, on-chip 

memory, and inter-tile communication interface. Intra-tile 

interconnection is multi-layer bus matrix, while packet-based 

switching network is used for inter-tile communication. 

Local memory access goes through intra-PP communication 

architecture that should support relatively short and frequent memory 

accesses with small latency. In contrast, an inter-PP communication 

architecture is likely to deal with relatively infrequent massive data 

stream. It implies that the preferred configurations of the two 

communication architecture types quite differ from each other. For 

intra-PP communication, short access latency can be obtained by using 

standard bus interface with relatively narrow bus widths [3][4][5]. 

Inter-PP communication architectures often come with wide data bus 

widths more than 512 or 1024 bits to achieve higher throughput. 

Therefore, the design of communication architecture for PP-based 

MPSoC requires exploration of explosively large search space to 

consider different wish lists of inter-/intra-PP communications. On the 

other hand, performance evaluation of communication architecture is 

commonly resorted to simulation due to its dynamic behavior; it 

prohibits designers from exploring sufficient design space to choose 

desirable solution(s) in a limited time budget. This makes application-

specific optimization of PP-based MPSoC a challenging problem. 

This paper proposes a systematic methodology to explore 

communication architecture of PP-based MPSoC to tackle those 

difficulties. Recently, bus matrix is considered as a promising solution 

to achieve high performance and parallelism for rapidly increasing on-

chip communications in chip multiprocessors [6] as well as MPSoCs 

[3][4][5]. Thus, in the current implementation of the proposed 

methodology, cascaded bus matrix architecture is used for both inter- 

and intra-PP communication. Considering other types of on-chip 

networks, such as ring-bus or NoC (Network-on-Chip), remains as a 

future work. 

The design parameters considered for both inter- and intra-PP 

communication are clock frequency, arbitration priority, cascaded bus 

matrix topology, and on-chip memory allocation. There is an 

additional parameter, off-chip memory allocation, for inter-PP 

communication. The proposed technique configures each of 

communication architectures differently. To our best knowledge, none 

of previous work has addressed hierarchical communication 

architecture exploration. Instead, they have focused on a flat 

communication architecture based on a bus matrix [11]-[14]. 

Since simulation is typically resorted to evaluate on-chip 

communication of the underlying architecture, early pruning of design 

space is required to shorten the exploration time and explore wider 

design space. To this end, we compute the lower bound of memory 

bandwidth requirement for a given application considering task 

scheduling information. Any architecture candidates that fail to meet 

this requirement are excluded from simulation. 

The paper is organized as follows. In the next section, we 

overview the related work and state our novel contributions. Section 

III provides background on the proposed approach and the problem 

definition, which are followed by the explanation of the overall design 

flow in Section IV. Section V and VI explain the details of the 

exploration algorithm. Then, we show the experimental results in 
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Section VII to validate the proposed technique. Lastly, Section VIII 

concludes the paper and addresses future extensions. 

II. RELATED WORK 

Target communication architectures in previous work on 

exploring on-chip communication architecture of MPSoC span 

hierarchical shared bus, crossbar-based bus matrix, and NoC. For bus-

based architectures, main design decisions include mapping of 

processing components to buses, memory allocation, and bus topology 

generation [7][8][9]. The effects of floorplan to hardware area and 

achievable clock frequency of buses are also investigated in [10]. 

To provide more communication bandwidth, crossbar-based bus 

matrix architectures have been actively researched recently [11]-[14]. 

For a single bus matrix, main objective is to reduce the complexity of 

bus matrix by reducing the number of buses and merge logical 

memory segments into a physical memory through life-time analysis. 

In [11], a static bandwidth analysis is proposed to prevent exploring 

invalid design space and full system simulation for the qualified 

architectures is used to see if they satisfy given bandwidth constraints. 

The idea of pruning the design space by bandwidth analysis is similar 

to ours. The difference is that they compute the average bandwidth 

with respect to the whole execution time of application while we 

account for varying bandwidth requirements due to burst 

communication requests. An approach in [12] considers floorplanning 

to estimate wire delay for a global clock of a bus matrix. And the final 

topology is determined by ILP (Integer Linear Programming) formulas. 

Cascaded bus matrix topologies are searched to satisfy the given 

bandwidth constraints with reduced cost; simulated annealing [13] and 

MILP (Mixed ILP) [14] approaches have been proposed for this 

purpose. 

There have been extensive researches on NoC architecture 

exploration. They mainly focus on the selection and mapping of tiles 

to network topology [15], buffer allocation in router design [16], and 

QoS (Quality-of-Service) support [17]. Since these works consider 

inter-PP communication only, interaction between inter- and intra-PP 

communications is not accounted for. 

The contributions of our work compared with related approaches 

can be summarized as follow: 

First, we propose a systematic method of communication 

architecture exploration, considering both inter- and intra-PP 

communications for a PP-based MPSoC. We seek for individual 

configurations of inter-/intra-PP communications considering clock 

frequency, arbitration priority, cascaded bus matrix topology, and on-

/off-chip memory allocations. As a result, each of communication 

architectures can be designed efficiently. 

Second, to cope with the extremely huge design space, we perform 

static analysis for the lower bound of bandwidth requirement, 

considering the varying bandwidth requirements according to the task 

schedule. The bandwidth requirement analysis eliminates invalid 

design space, reducing the number of simulations during exploration. 

Lastly, the proposed method is flexible enough to easily consider 

different types of on-chip network architectures. Although we consider 

bus matrix architectures only in this paper, other architectures, such as 

hierarchical shared buses, packet-based NoCs, or ring-buses, can be 

easily brought into the proposed framework. 

III. BACKGROUND AND PROBLEM DEFINITION 

A. Terminology and Problem Definition 

This section explains a task model of application and a target 

communication architecture to define the problem to be solved in this 

paper. An application g=(V,E) is specified as a graph where V is a set 

of vertices to represent coarse grain tasks and E is a set of edges for 

communicating channels between tasks. A task is a primitive unit of 

mapping onto a processing element (PE). We distinguish two types of 

memory segments: one is dedicated for each PE and the other is 

shared for communications between tasks. We define such memory 

segments as logical memory blocks (LMBs). A LMB is associated to a 

PE for the tasks mapped on the PE to use their own local memory 

access. On the other hand, each channel of a task graph is associated 

with an LMB that represents a shared memory for inter-processor 

communication. Multi-application is modeled by a set of graphs 

G={g}. To each application g∈G, there is a deadline by which its 

execution is required to be completed once enabled. 

An architecture used in this work is modeled as shown in Figure 1; 

it consists of several PPs and one global communication architecture 

(GCA) for inter-PP communication. Each of PPs includes PEs, on-chip 

SRAMs, and an interface to GCA. GCA contains on-chip SRAMs and 

an off-chip DRAM interface. We denote a memory component in 

architecture by a physical memory block (PMB): LMBs defined in the 

task model will be mapped to PMBs. Interconnect architectures for 

both inter- and intra-PP communications are cascaded bus matrices. A 

bus matrix consists of multiple arbitration points (APs) as depicted on 

the right side of Figure 1. We assume that bus matrices in a PP use a 

single clock while each PP may have a different clock frequency. 

 

 
Here is a list of abbreviations for summary: 

 PP: processor-pool 

 PE: processing element 

 LMB: logical memory block 

 PMB: physical memory block 

 GCA: global communication architecture 

 AP: arbitration point 

The problem addressed in the paper is to find an on-chip 

communication architecture for a given set of applications G={g} 

satisfying the associated deadline requirements D: The following 

design axes are explored: 1) on-chip memory synthesis by configuring 

the number of PMBs and the mapping of LMBs onto PMBs, 2) 

finding a topology of cascaded bus matrix, 3) finding the clock 

frequency of each cascaded bus matrices, and 4) deciding arbitration 

priorities in each bus matrix. 

B. Quantum-inspired Evolutionary Algorithm 

Evolutionary Algorithms (EAs) maintain a population of solutions 

for a given problem, selecting the best in each generation to make a 

better solution survive to final as in natural adaptation. Like all other 

EAs, QEA also consists of representation of individuals (solutions), 

fitness evaluation function, and population dynamics [18]. The only 

difference is that it uses quantum bits (Q-bits) as probabilistic 

representation for individuals instead of binary representation of genes. 

The probabilistic representation of Q-bit is described with two values, 

α and β, where |α|2 and |β|2 mean the probabilities that the 

corresponding Q-bit becomes 0 or 1 respectively, as shown in the 

lower part of Figure 2. QEA does not require a crossover operation 

PP0 PP1 … PPn-1

GCA

PE0 PE1 PE2

AP

Interface

to DRAM

SRAM1

PMB2

SRAM2

PMB3

Interface

to GCASRAM0

PMB1

DRAM0

PMB0  
Figure 1. Processor-pool-based MPSoC architecture. 



between multiple solutions, which makes the implementation of QEA 

simpler than genetic algorithm (GA). 

For the diversity of generated solutions, we can deploy multiple 

groups at the same time, each of which has its own probabilistic 

representation of Q-bit stream. This redundancy results in better 

solution by preventing from being stuck in local optima, even though 

too excessive duplication may slow down the proposed technique. In 

the figure, the length of individual Q-bit stream is m, while the number 

of groups and the number of generated individuals in a group are n and 

p respectively. Overall procedure of QEA can be summarized as 

follows: 

1) For each group, p individuals (solutions) are generated based 

on the probability that Q-bits of the group imply. Then, a set of 

individuals from all groups at generation t, P(t), is generated. Each of 

individuals in P(t) is repaired by application dependent rules to make 

valid solutions. 

2) Then, we evaluate generated individuals P(t) and save a set of 

the best solutions of groups, B(t), from P(t). 

3) Based on B(t), the Q-bit stream of each group is adjusted so as 

to make newly generated individuals close to the best solution in 

probability: α and β values are adjusted, which is called “Q-bit 

rotation”. 

4) Among the best solutions for all groups, the best one is saved 

for the highest solution. 

5) If the termination condition is met, we stop the evolution 

process and output the best solution obtained so far. A termination 

condition is usually defined by the maximum number of generations 

or by the case that all individuals are converged probabilistically to 

the best solution. For the case that neither of above conditions are met, 

we go back to the step 1 for the next generation. 

 

 

IV. PROPOSED DESIGN FLOW 

Figure 3 shows the overall procedure of the proposed exploration 

framework. There are three inputs: 1) the task model of applications, 

2) memory traces for each task, and 3) the minimum bandwidth 

requirements for the tasks to access LMBs. The proposed exploration 

consists of two nested loops. The outer loop corresponds to the 

generation of a new architecture template by adding an on-chip SRAM 

to each of PPs and GCA, which increases the maximum bandwidth of 

communication architecture. Since not all PMBs will be used, this 

increase does not mean the cost increase of all PPs. The other 

parameters remain undetermined. 

The grey box in the figure is associated with the inner loop where 

we use QEA to synthesize architecture candidates, xij in Figure 2; it 

allocates LMBs to PMBs, determines bus matrix topologies, and 

configures the operating conditions, such as clock frequency and 

arbitration priority. An initial architecture template has a single off-

chip DRAM on GCA. 

Generated architectures, xij, are evaluated first through a static 

analysis that examines whether all PMBs and APs in the generated bus 

matrix topology satisfy their associated minimum bandwidth 

requirements. The sustainable bandwidth of a PMB should be greater 

than the total bandwidths of the LMBs allocated to the PMB. Likewise, 

any AP in an architecture candidate should support all of the 

bandwidth requirements associated with the tasks passing through the 

AP at the same time. The algorithm to extract the lower bound of 

minimum bandwidth requirement from traces is explained in Section 

V. Based on the bandwidth requirement analysis, all candidates in 

which any PMBs or APs fail to meet the associated bandwidth 

requirements are discarded. In case no candidates remains, a candidate 

which can provide highest bandwidth is selected as a member of B(t). 

In such a way, time-consuming simulation of invalid candidates is 

avoided without missing potential solutions. To obtain B(t), we 

compute the score (or fitness) of each candidate considering all of 

sustainable bandwidth, on-chip memory and bus matrix area, and 

clock frequency which will be explained in the next section in detail. 

 

 
After B(t) is constructed, the fitness of architecture candidates in 

B(t) should be evaluated to choose the best one at generation t. 

Simulation promises more accurate evaluation, but pays too long 

evaluation time to simulate all candidates in B(t). Therefore we make a 

compromise between the quality of solutions and exploration time. At 

each generation, we take the worst solution (or the most expensive 

candidate) in B(t), and perform simulation since it is mostly likely to 

satisfy the design constraints. If it meets all the constraints, we update 

the global best solution. And we move to the next generation. 

Although more efficient solutions may exist in B(t), they are not 

simulated and discarded. But the evolutionary algorithm converges to 

a better solution anyway as generation is iterated. When an iteration of 

the inner loop is finished, QEA checks the termination condition to see 

if the current loop should be continued or not. The termination 

condition can be the convergence of solution qualities or its maximum 

iteration count given by the designer. 

When QEA reaches any termination condition in the inner loop, 

the numbers of PMBs are increased by one for each of PPs and GCA 

to generate a new architecture template for exploring higher 

performance solutions. Then the inner loop starts again based on the 
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Figure 3. Overall procedure of the proposed approach. 
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Figure 2. Overall QEA procedure. 



new architecture template. The maximum number of on-chip 

memories on each PP or GCA is increased up to as many as the 

number of LMBs. After the outer loop is finished, we obtain a set of 

architectures that satisfy the given deadline constraints. Based on on-

chip area and clock frequency of the networks, we establish Pareto-

optimal solution sets. 

V. TRACE GENERATION AND BANDWIDTH REQUIREMENT 

CALCULATION 

As explained in the previous section, the minimum bandwidth 

analysis allows us to avoid simulating invalid architecture candidates 

that have insufficient sustainable bandwidth of interconnect 

components, APs and PMBs. Memory access traces are obtained from 

the initial run of application execution on an in-house execution-

driven multiprocessor simulator for this purpose. In this simulation, 

we assume an ideal communication network so that the traces contain 

the ordering of traces as well as processor execution time between 

traces excluding any communication architecture effects. Execution 

dependencies between communicating tasks are annotated as special 

symbols in the traces. Thus, the trace-driven simulator in the 

exploration process is aware of task execution dependencies of a given 

application. 

Based on traces with execution dependencies annotated, we 

calculate the minimum bandwidth requirement for each task to access 

an LMB. Figure 4(a) illustrates an example of simple traces for three 

PEs. A trace for task is a sequence of blocks and the arrows between 

blocks indicate execution dependencies. For instance, a block MA0 of 

PA cannot start until a block MB0 of PB is finished. Note that there can 

be some delay to trigger successive blocks due to overhead such as 

synchronization or polling. 

 

 
Let mi,j be a block of taski that contains accesses to lmbj. Let 

EST(mi,j) and LFT(mi,j) be the earliest start and the latest finish times 

of a block mi,j. EST(mi,j) can be obtained by scheduling all of its 

preceding blocks in ASAP (as soon as possible) manner and LFT(mi,j) 

by scheduling all successive blocks in ALAP (as late as possible) 

manner until the deadline. In the computation of EST(mi,j) and 

LFT(mi,j), we ignore all communication overhead to achieve the lower 

bound of the bandwidth requirement. {previ,j} and {nexti,j} are sets of 

preceding and successive blocks of mi,j. EXEmin(mi,j) is the minimum 

execution time of a block mi,j. di means a deadline of an application 

where taski belongs to. Then EST(mi,j) and LFT(mi,j) become 
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Let Mi,j be a set of blocks of taski that contains access to lmbj. Let 

ACCi,j be the total memory access counts to lmbj by taski. Then, we 

compute the minimum bandwidth BWmini,j of taski to lmbj as 
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Figure 4(b) shows the case of a block MC1 on a PE PC. Note that 

blocks on the same PE have implicit execution dependencies since 

they cannot be overlapped. 

VI. QEA DESCRIPTION OF THE PROPOSED METHODOLOGY 

In the proposed technique, the inner loop of architecture 

exploration is performed by a QEA-based heuristic, where it is crucial 

to generate valid candidate solutions and properly evaluate them. In 

this section, we describe the QEA used in the proposed methodology 

focusing on the Q-bit representation of architecture and the fitness 

evaluation of a solution. 

A. Q-bit Representation 

Figure 5 shows a Q-bit representation for an architecture that 

consists of the following four parts. 

 

 
1) Mapping LMBs onto PMBs 

This part indicates where each LMB is allocated by dividing the 

part into as many sections as the number of associated LMBs. For PPi, 

it considers the LMBs confined in the pool, which include all local 

LMBs as well as the shared LMBs between processing elements in the 

same pool. Then an LMB can be mapped to a PMB in the pool or in 

GCA. Therefore, each section is given an integer that is associated 

with a PMB or the interface to GCA of the pool. The maximum 

integer is the number of PMBs in the pool or in GCA. For GCA, this 

part represents the mapping of shared LMBs between pools to PMBs 

in GCA. 

2) Cascaded bus matrix topology generation 

The Q-bit representation of cascaded bus matrix topology 

describes the sequence of bus matrices for paths from PEs to PMBs as 

shown in Figure 6(a). To construct a cascaded bus matrix topology for 

each of PPs, we consider a pool of bus matrices in NPE ×(NPMB+1) grid 

form where NPE is the number of PEs and NPMB the number of PMBs 

in a PP of interest. For GCA, NPE is replaced with NPP where NPP is 

the number of PPs. Then, any path for a PE to access a PMB is made 

by choosing an arbitrary bus matrix at each row of grid. During 

constructing a path, the following two restrictions are applied: First, a 

PE is connected to a single bus matrix. For instance, in Figure 6(b), 

PE0 accesses PMBs only through bus matrix (0,0) in the first row of 

the grid. Second, a PMB too is connected to a single bus matrix. Thus, 

PMB1 is connected to bus matrix (3,2) in the fourth row of the grid. As 

shown in Figure 6, a path for a PE-PMB pair is described as a set of 

integers indicating bus matrices chosen at the rows. Suppose that a 

path for PE0 and PMB0 in Figure 6 is constructed to visit bus matrices 

(0,0), (1,1), (2,1), and (3,0). Then, the corresponding Q-bit 

representation is {0,1,1,0} as in Figure 6(a). Once the entire paths are 

built, there might be redundant bus matrices that have a single master 

and a single slave interface; they are removed in the repair procedure. 

dt=10090756040301510 dt=10085301510

The earliest start time The latest finish time
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(b)(a)

20
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Figure 4. (a) Traces with dependencies annotated and (b) the minimum 

bandwidth calculation. 
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Figure 5. Q-bit representation of an architecture. 



The bus matrices (0,1), (0,2), (2,2), (3,0), (3,2), and (3,3) belong to 

this case. As a result, we obtain a cascaded bus matrix topology as 

shown in Figure 6(c). 

 

 
3) Clock frequency of bus matrix 

The Q-bit representation of clock frequency is straightforward. 

The selected clock frequency is randomly generated with an integer 

value, then repaired to meet the bandwidth constraints. It helps QEA 

to generate proper architecture candidate more quickly. 

4) Arbitration policy of bus matrix 
This part sets the priority of a PE to access PMBs. For every PE, a 

random priority is given. 

B. Cost Evaluation Function 

Another important part in a QEA-based heuristic is a cost function 

to evaluate architecture candidates generated by the inner loop of the 

proposed design flow. The cost function considers the bandwidth of an 

architecture candidate under consideration as well as implementation 

related parameters such as clock frequency and on-chip area. The cost 

function Cost is formulated as 
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BWi is the bandwidth of APi that is defined by the product of the 

bus widths and the clock frequency. In this paper, bus widths are set to 

32 bits, while a clock frequency is considered as a design parameter. 

BWreqi is the minimum bandwidth requirement of an APi. NAP is the 

number of APs that target architecture has. Thus BWcost represents 

the amount of deficient bandwidth. SYSscore is the gain by using 

small on-chip memory and bus matrix area and low clock frequency. α 

and β are the coefficients for the gain factor of area and clock. These 

terms control the search direction of QEA to bias toward a specific 

design objective. By those two terms, the cost depends more on the 

deficiency of bandwidth or implementation cost once the bandwidth 

requirement is satisfied. L is a term to represent a reward for 

architecture that satisfies the given time constraints. L is set to a value 

larger than the maximum score of the candidates that fail to the 

constraints. Otherwise L is set as zero. 

VII. EXPERIMENTS 

We have implemented the proposed design flow in C++. A trace-

driven simulator was implemented as a separate SystemC program 

operating at cycle-accurate level. As mentioned in Section V, we used 

an in-house execution-driven multiprocessor simulator to extract 

traces. To estimate the on-chip memory area of architectures, we used 

CACTI 4.2 [19]. To obtain on-chip bus matrix area, we synthesize and 

route bus matrices varying the dimension from 1 master and 1 slave to 

16 masters and 16 slaves using Design compiler and Astro of 

Synopsys. Memory and bus matrix area information is obtained under 

0.13 um CMOS technology. All experiments were conducted on a 

workstation with 3.0-GHz Xeon processor and 4.0-GB main memory 

running Linux. 

As an application, we used a Picture-in-Picture (PiP) application 

that consists of one H.264 encoder for 4CIF-sized frame and two for 

CIF-sized frames as depicted in Figure 7. The application has 39 tasks 

with 75 LMBs and 54 inter-task communication channels. The target 

PP-based architecture is composed of 3 PPs and GCA. PPs have 5, 8 

and 8 PEs respectively. 

 

 
In the first experiment, we compare the proposed approach with 

the exploration on flat communication architectures as in [8]-[11], 

which use a global clock without considering different communication 

requirements of PPs. For both approaches, we assumed that maximum 

clock frequency of generated architectures is 300MHz. The parameters 

of QEA used in the experiments are shown in Table I. 

 
TABLE I. THE PARAMETERS OF QEA. 

Para- 

meter 

Coeff. # of 

groups 

(n) 

# of 

 individuals 

 in a group (p) 

Prob. 

threshold for 

convergence 

Max. 

generation 

count 

Reward 

L α β 

Value 1 1 50 20 0.999 2000 1000 

 

Figure 8 shows the Pareto-optimal solution space obtained from 

the explorations based on the proposed approach and the flat 

architecture-based approach. In the graph, the X-axis corresponds to 

normalize on-chip areas while the Y-axis to average clock frequencies 

of all PPs and GCA in each of Pareto-optimal solutions. The values of 

the X-axis are normalized by the maximum on-chip area obtained 

from the exploration, which is 1.0 in the graph. 

As shown in Figure 8, the proposed approach results in much 

efficient Pareto-optimal solutions than the flat architecture-based 

approach. Since the required clock frequency of flat communication 

architecture is probably dominated by the most bandwidth-hungry PP, 

the average clock frequency is larger than the proposed solution at the 

same on-chip area. The clock frequency difference between the 

approaches grows larger as the communication requirements of PPs 

become more diverse. 
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Figure 6. (a) Q-bit representation of cascaded bus matrix for each PE-PMB 

path, (b) initially generated cascaded bus matrix topology, and (c) final 

cascaded bus matrix topology. 
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Figure 7. A PiP application: (a) H.264 encoder task model, (b) target 

architecture, and (c) task-to-PE mapping 



 
In the next experiment, we verify the proposed bandwidth analysis 

technique compared with the average bandwidth analysis that is the 

most popular method to evaluate the performance of communication 

architecture as used in the previous work [11]. Considering (2), the 

average bandwidth BWavgi,j of a task ti to access an LMB lmbj can be 

calculated as 
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,

i j
i j
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We observe the followings from the graph: first, the Pareto-

optimal curves for both approaches decrease gradually according to 

the increase of on-chip area as expected. Second, the proposed 

approach yields more efficient Pareto-optimal solutions; lower clock 

frequencies for every on-chip area are obtained compared with the 

average bandwidth approach. Moreover, whereas the average 

bandwidth approach is not able to produce a solution of smaller on-

chip area than 0.92, it is possible to explore more diverse design space 

with our approach. From these observations, we verify that the 

proposed bandwidth analysis technique provides more scalability. 

Table II shows the performance of the exploration techniques. The 

number of simulations performed by the average bandwidth approach 

is greater than the proposed as shown in the column „# of simulated 

architectures‟. This is because the average bandwidth is usually less 

than the expected bandwidth from our analysis so that more 

architecture candidates satisfy the average bandwidth requirement. 

However, finding more candidates does not always mean more 

solutions satisfying the constraints. As we see in the last column of the 

table, the proposed approach finds more valid solutions even with the 

smaller number of simulations. 

 
TABLE II. PERFORMANCE COMPARISON OF THE PROPOSED APPROACH AND THE 

AVERAGE BANDWIDTH-BASED APPROACH. 

 
Execution 

time  

# of pruned 

architectures 

# of simulated 

architectures 

# of selected 

architectures 

Proposed 7 hr 36 min 264,800 90 56 

Average 

bandwidth 
9 hr 28 min 408,800 158 29 

VIII. CONCLUSION 

In this paper, we have presented a systematic exploration 

methodology of on-chip communication architecture for processor-

pool-based MPSoCs. In the current implementation, we consider bus 

matrix architectures for both local communication network inside each 

processor-pool and global communication architecture. Unlike the 

previous work, the proposed approach allows different configurations 

for each of PPs‟ communication architectures, which leads to efficient 

solutions in terms of lower clock frequency and less on-chip area. To 

avoid excessive usage of time-consuming simulation in the 

exploration, we use an efficient bandwidth analysis technique to prune 

inferior solutions failing to meet minimum bandwidth requirements. 

The experimental results show that the application of the proposed 

approach is able to draw much efficient Pareto-optimal solutions 

compared with the previous works: always lower clock frequency at 

the same on-chip area. As future work, we plan to support ring-bus or 

NoC for global communication architecture. Another extension is the 

consideration of power consumption estimation during the evaluation 

of generated architectures. 
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Figure 8. The Pareto-optimal solutions of on-chip area and average clock 

frequency. 
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