
Hardware Aging-Based Software Metering
Foad Dabiri and Miodrag Potkonjak

Computer Science Department
University of California Los Angeles

email: {dabiri, miodrag} @ cs.ucla.edu

Abstract—Reliable and verifiable hardware, software and con-
tent usage metering (HSCM) are of primary importance for
wide segments of e-commerce including intellectual property and
digital rights management. We have developed the first HSCM
technique that employs intrinsic aging properties of components
in modern and pending integrated circuits (ICs) to create the first
self-enforceable HSCM approach. There are variety of hardware
aging techniques that range from electro-migration in wires to
slow-down of crystal-based clocks. We focus on transistor aging
due to negative bias temperature instability (NBTI) effects where
the delay of gates increases proportionally to usage times.

We address the problem of how we can measure the amount
of time a particular licensed software (LS) is used by designing
an aging circuitry and exposing it to the unique inputs associated
with each LS. If a particular LS is used longer than specified,
it automatically disables itself. Our novel HSCM technique uses
a multi-stage optimization problem of computing the delays of
gates, their aging degradation factors, and finally LS usage using
convex programming. The experimental results show not just
viability of the technique but also surprisingly high accuracy in
the presence of measurement noise and imperfect aging models.
HSCM can be used for many other business and engineering
applications such as power minimization, software evaluation,
and processor design.

I. INTRODUCTION AND RELATED WORK

Annual economic losses due to software, semiconductor
integrated circuits, and content piracy have surpassed the $100
billion level. Annual BSA and IDC Global Software Piracy
Studies estimate that more than 1/3 of software installed in
2006 on personal computers worldwide was illegal resulting
into almost $40 billion in revenue and similar profit losses
due to software piracy [1]. Table 1 shows the annual losses
due to software piracy for the last four years. KPMG and the
Alliance for Gray Market and Counterfeit Abatement claim
that gray market sales for integrated circuits (ICs) also account
for $40 billion in lost revenue each year and reduce profits of
IC manufacturers for almost $5 billion annually [2].

Our primary goal is not just to address software piracy prob-
lems using novel device aging-based security mechanisms, but
to enable new pricing models where the software fees are
functions of software use. The new techniques are generic in
the sense that they are directly applicable to content metering.
Hardware usage metering is a special case where all executed
functionality is considered as a single software package. The
economic and engineering ramifications of the new generation
of security protocols are significantly far reaching since it
is possible to design protocols for rapid zero knowledge
authentication and secret key exchange.

TABLE I
TABLE 1: LOSSES DUE TO WORLDWIDE SOFTWARE PIRACY TRENDS (IN

BILLION DOLLARS

Year 2003 2004 2005 2006
Losses ($B) 28.80 32.78 34.48 39.58

Computational security has been the traditional field of
study for intellectual property management. IP protection such
as software and hardware usage metering are among the
problems studied in this field. Web page access metering has
been addressed by a number of researchers and companies.
For example, Pitkow proposed techniques to uniquely identify
users and to compensate for the usage of proxies and cashes
[9]. A new mechanism for metering the popularity of web-sites
was proposed by Franklin and Malkhi [5]. Naor and Pinka’s
schemes measure the amount of service requested from servers
by clients [8]. Licensing has been the most popular methods
used for software protection among vendors.

Over $40 billion of installed third party software uses
GLOBEtrotter’s FLEX1m electronic commerce for software
technology. Today’s dominating software licensing mechanism
is based on the license key concept. A key is encrypted by
using a string of data that contains software package ID and its
usage constraints (e.g. expiration date) and the serial number
of the computer where the key is installed. The invocation of
the software package is done automatically when software is
invoked by using one of the password schemes [10].

Device aging is an irreversibly inherent process in essen-
tially all integrated circuits (ICs) and system technologies.
Electromigration impacts all tungsten contacts between tran-
sistors and wires and wires themselves. Transistor delay and
power characteristics deteriorate as a consequence of hot-
carrier-Induced (HCI) and Negative Bias Temperature Instabil-
ity (NBTI) effects. As a consequence of transistor activity, its
structure deteriorates following power laws. From the circuit
designers’ perspective, the NBTI degradation process mani-
fests as an increase of device threshold voltage (Vth), which
in turn results in the slowdown of transistor switching speed.
Similar degradation has also been observed in n-MOSFET
transistors but its effect is far less critical than NBTI on p-
MOSFET and hence it is negligible [4][6] [7].

Our approach is built on creating and leveraging key con-
nections: (i) the correlation between the switching activity
stress on each gate and its delay increase; (ii) the correlation
between the inputs to the IC and the stress on each gate; and

978-3-9810801-5-5/DATE09 © 2009 EDAA

(iii) integration of a finite-state-machine (FSM) and circuitry.
The key technical challenges of the new e-commerce se-

curity approach are: (i) creation of a circuitry that has the
property that from the aging of its gates one can reconstruct
how often each of a number of input vectors is applied;
(ii) creation of the input to the circuitry for each software
package (or dataset) that facilitate the reconstruction; (iii)
extraction of the increase of the delay of each gate and
calculation of corresponding time of usage for each gate in
the presence of measurement and aging model errors; and
(iv) development of hardware mechanisms that are resilient
to physical and other security attacks for enforcing software
digital right management.

The last task is already solved in recent papers [11][3] by
connecting the circuitry to existing of new finite state machine
(FSM). FSM allows the overall integrated circuit to operate
only if it receives the anticipated output response from the
circuitry. The third task is solved optimally and is described
in this paper. The reminder of the paper is organized in the
following way: Section II introduces the preliminaries for our
method and in Section III, we demonstrate the high level
approach in our technique followed by an illustrative example.
Section IV covers the details of our novel software metering
technique and we show its effectiveness through simulation
results in Section V. Conclusions and future directions in
hardware aging based software metering are summarized in
Section VI.

II. PRELIMINARIES

Negative bias temperature instability (NBTI) has become
one of the major causes for performance degradation of
nanoscale circuits. We use this intrinsic property to character-
ize degradation of digital circuits and utilize it for intellectual
property management.

Modern digital circuits are composed of CMOS gates. In
CMOS devices, the NBTI-induced threshold voltage shift will
occur over time, depending on the operating conditions of the
device. The interaction of inversion layer holes with hydrogen-
passivated Si atoms can break the SiH bonds, creating an
interface trap and one H atom that can diffuse away from the
interface (through the oxide) or can anneal an existing trap.
The interface trap generation is modeled successfully in the
ReactionDiffusion framework [12].

Bias temperature stress under constant voltage (DC) causes
the generation of interface traps (NIT) between the gate
oxide and silicon substrate, which translate to device threshold
voltage (Vt) shift and loss of drive current (Ion). The NBTI
effect is more severe for PMOS FETs than NMOS FETs due
to the presence of holes in the PMOS inversion layer that are
known to interact with the oxide states [6].

Before we introduce models used for NBTI effects on digital
circuits, let’s first review how gate delay is dependent on
different parameters. The propagation delay of a CMOS based
digital gate can be expressed as:

d =
CLVdd

Id
=

CLVddLeff

µCoxWeff (Vgs − Vth)α
(1)

where α is the velocity saturation index, Vdd is the supply
voltage, CL contains the parasitic capacitance and other pa-
rameters are technology dependant constants.Using equation
1 the delay degradation, ∆d, for a given gate can be derived
as:

∆d

d0
=

α∆Vth

Vgs − Vth
(2)

where d0 is the original delay of the gate without any
Vth degradation, and can be extracted from third-party time
analysis tools.

NBTI causes circuit aging which will introduce a shift in
Vth over time. The shift in the transistor threshold voltage,
∆Vth, can be derived using analytical models at [6][4]. Now,
the question is how does Vth degrade as a device is being used.
There are several studies which cover this issue thoroughly and
model the aging of digital circuits. In [6], an analytical model
of NBTI degradation has been introduced which relates Vth

degradation to usage time as follows:

Fig. 1. Vth dependency on DC and AC stress as a function of stress time.
This graph is taken from [11]

∆Vth = KC × αSS
2
3
i × t

1
6 (3)

which illustrates the power dependency of Vth degradation
with a fixed time exponent of 1/6. Equation 3 will be the
basis of our hardware-aging based software metering since it
relates gate usage time (stress) to Vth shift. When a gate is
being used it means that it is under either DC or AC stress.
We use ’gate usage time’ and ’stress time’ interchangeably in
this paper.

A. Problem Definition

The goal of IP protection under study in this paper is to
perform hardware, software and component metering (HSCM)
and particularly to determine how much a piece of software
is used on a particular device. Assume we have a set of
k software (applications, components...), Σ = {S1, ..., Sk},
where each software Si is run multiple times for an unknown
arbitrary time ti. The objective is to find the tis efficiently
with highest accuracy in the presence of measurement errors
and imperfect degradation models.

III. CONCEPTUAL BASIS

In this section, we describe the high level approach to
software metering technique that we use for IP protection.
The first step of the proposed method is to use a predesigned

circuitry which is embedded into a device and/or chip and is
used as the aging circuitry for device characterization. This
circuitry is called the aging circuit and is required to possess
the following properties; the aging circuit is a especially
structured circuit composed of logic gates which under NBTI
age in a way that gate degradation can be measured effectively.
Every software Si is associated with a unique input vector
ρi. Whenever that software is used, the corresponding input
vector will be fed to the aging circuit and causes DC stress
on a unique subset of the gates in the aging circuitry.

Figure 2 illustrates the NBTI-based aging effect on circuit
characteristics and how we can use extract and use that
information for software metering. The diagram on the left
represents the high-level physical process of aging whereas
the right diagram is the steps of utilizing the aging process
for software metering.

Fig. 2. The diagram on the left represents the high-level physical process of
aging whereas the right diagram is the process of utilizing the aging process
for software metering

At any given point of time, in order to measure software
usage, the following steps are followed:

• Gate Delay Calculation: We measure the delay of several
paths from the inputs of the aging circuit to its outputs.
Path delays lead us to the calculation of individual
gate delays using optimization techniques which will be
covered in Section IV.

• Aging Factor Extraction: Once the delay of each gate
is found, using the models in Section II we extract
the degree to which each gate has been degraded, and
therefore extract how long each individual gate has been
under stress (usage).

• Software Metering: Each gate goes under stress for some
set of software. Since software Si has a unique signature
vector ρi, it contributes to the aging of a subset of gates
in the aging circuitry. Once the total usage of each gate is
known, through another stage of optimization, individual
execution (running) time of software is calculated.

To give more insight on our proposed software metering,
we will illustrate the above procedure through a simple small
example.

IV. HARDWARE, SOFTWARE AND COMPONENT METERING

Hardware Software and Component Metering (HSCM)
is a multi-step process which involves aging circuit de-
sign/selection, signature vector generation, gate delay mea-
surement, aging factor extraction and finally software meter-
ing. In this section, we will cover all these steps in detail to
make HSCM an applicable process.

A. Aging Circuitry

In order to make the process of HSCM feasible, we use
a predesigned circuit which enables accurate measurement of
degradation and software/hardware usage. The aging circuitry
is represented by a tuple AG = (G, p, q) where G = (V,E)
is the directed graph representing the topology of the net-
work and V and E are the sets representing the gates and
connections (edges) in the circuit. Furthermore, p and q are
input and output bits of the circuit respectively. For each gate
vi ∈ V in the aging circuitry, there is a delay di associated
with it. Depending on what inputs are fed into the aging
circuitry, some of the gates will be under stress and experience
aging and degradation caused by NBTI. As we discussed in
Section II, this aging causes a shift in threshold voltage and
eventually an increase in gate delay. The whole idea of HSCM
is based on processing the changes in gate delays and extract
software/hardware usage.

The selection of the aging circuitry is very important and
can affect the HSCM process significantly. A ’good’ aging
circuit would be the one that can produce information usable
for accurate software metering. Since all the information a
circuit can give us is embedded inside gate characteristics,
specially delay, we need to utilize a circuit which through
standard methods of path delay measurements, individual gate
delays can be calculated with highest degrees of accuracy even
in the presence of measurement noise. Through the usage of
path delays, individual gate delays can be extracted under the
condition that there exist paths that are less-correlated and
therefore inherit more entropy.

B. Input Vectors

An exact method to extract gate delays may require solving
a linear system of equations of size O(2N), where N is
the number of primary inputs. For large circuits with large
numbers of primary inputs, the exact method is not com-
putationally feasible. Therefore, we only use |S| number of
input configurations where |S| is the number of software
applications/components used on the device. Ideally, we would
like to select input vectors such that the subset of gates under
stress corresponding to each vector, enable us to pick as many
paths as possible that are less-correlated and can be used to
extract gate delays.

As we saw in Section III, for each software Si, we assign
a unique input vector ρi, called ’signature vector’. While a
software Si is being run on the system ρi will be fed constantly
to the aging circuitry. This feeding causes DC stress to a subset
of gates in the circuit and cause degradation and aging of the
corresponding gates. For brevity, we don’t cover the signature

vector creation process but there several techniques that fulfill
the purpose such as m-of-n codes as a class of binary codes.

C. Gate Delay Characterization
The Digital Oscillation test is a known method for mea-

suring path delays in digital circuits. In order to measure the
propagation delay of a path, one input to a circuit is flipped
and a change in the output is observed. This delay can be
measured, and, with backtracking from the output to the input,
the path is detected.

In this phase of our method, we measure and compute the
delay of each gate in the aging circuitry using a set of path-
delay measurements in the circuit. The delay of each path pi

from one primary input to one primary output is:

dpi
=

∑
∀vi∈pi

dvi
(4)

where the sum is taken over all the gates in the path pi. Let’s
assume that we generate m distinct path delays similar to
equation 4. The set of m measurements can be presented as:

dpi
= aT

i x + vi,∀i; 1 ≤ i ≤ m (5)

where x ∈ <nis a vector of gate delays which is to be
estimated, dpi ∈ < is the measured path delay value and
vis are the measurement errors. We assume that the vis
are independent, identically distributed (IDD) with a normal
distribution. In statistical estimation, a widely used method,
called maximum likelihood (ML) estimation, is to estimate x
as:

x̂ml = argmaxxpx(dp) = argmaxxl(x) (6)

where px(dp) is the likelihood function of x and
l(x) = logpx(dp) is the log of the likelihood function
which makes it easier to work with equation 6. Maximum
likelihood estimation (MLE) is a popular statistical method
used to calculate the best way of fitting a mathematical
model to some data. Modeling real world data by estimating
maximum likelihood offers a way of tuning the free
parameters of the model to provide an optimum fit.

The likelihood function in this case is:

px(dp) =
m∏

i=1

p(dpi
− aT

i x) (7)

so the log-likelihood function would be:

l(x) = logpx(dp) =
m∑

i=1

log(p(dpi − aT
i x)) (8)

The ML estimate is any optimal point for the problem:

maximize :
m∑

i=1

log(p(dpi
− aT

i x)) (9)

When vi’s are Gaussian with zero mean and variance σ2 and
density function calculate p(z) = (2πσ2)−

1
2 e

−v2

2σ2 , the log-
likelihood function would be:

l(x) = −(m/2)log(2πσ2)− 1
2σ2

‖Ax− dp‖2
2 (10)

where A is the matrix with rows aT
1 , aT

2 , ..., aT
m. Therefore

the maximum likelihood problem becomes equivalent to the
solution of a least-square approximation which can be solved
efficiently using convex programming.

D. Aging Factor Extraction and Software Usage Metering

The next step is to extract degradation factors and software
usage. We divide this section into two: If the aging models in
Section II are perfect or if the aging and degradation models
include errors themselves.

1) Perfect Aging Models: The next step is to extract degra-
dation factors and software usage. We divide this section into
two parts: (i) If the aging models in Section II are perfect
and (ii) if the aging and degradation models include errors
themselves.

2) Perfect Aging Models: The gate delays measured in
Section IV-C are used directly to determine individual gate
degradation factor; for each gate vi in the aging circuitry we
have:

∆Vthi
=

di − d0

d0

Vgs − Vth

α
(11)

ti = Θ(∆Vthi) = (
∆Vthi

KC × αSS
2
3
i

)6

Θ(∆Vthi
) is the function wich maps threshold voltage change

to usage time (stress time) of each gate.
The last phase of our HSCM techniques is the calculation

of software usage. Let’s assume that each software Si is run
for the total amount of τi. First of all, the total amount of each
software’s execution is important and not how that time has
been broken over time. In other words, if a software is run
for a period of time T0, its effect on aging is equivalent to
multiple runs which add up to T0. Furthermore, the ordering
of execution among other software is also irrelevant. In order
to see why these clams are in fact true, remember that NBTI is
a time dependant aging effect on digital circuits, and the total
time that a gate is under stress is what causes the degradation.

Each and every software has caused stress on a specific
subset of gates in the aging circuit through it’s unique input
vector. Let assume for each software Si, the set of gates
φi = {vi1 , .., viki} are the gates which are under stress when
software Si is being run and ki is the total number of gates
which software Si puts stress on. Therefore, for each arbitrary
gate vi, there is a set of software which causes stress on it,
called ϕi = {Si1 , .., Siri

}, where ri is the total number of
software which cause stress on gate vi.

In Section IV-D1, we measured the total stress time on each
and every individual gate in the aging circuitry. In this phase of
the HSCM, we extract the individual times that each software
has been used. We form a linear programming formulation as
follows: for each gate vi, the total stress time ti is equal to
the total execution time of software which cause stress on vi.
In other words:

ri∑
j=0

τj = ti (12)

where the sum is taken over all the execution times (τj) of
software which cause stress on gate vi. We construct the
following LP formulation:

Bτ = t (13)

where B is the coefficient matrix in which each row
represent the coefficients in equation 12 and τ and t are
software usage times and gate stress times respectively.

The structure of the aging circuit and the fact that |S| < |V |
enables solving the above LP problem efficiently using classic
LP solvers. The solution to equation 13 results in individual
software usage times and finishes our HSCM method. As one
can observe, many other variations can easily be adapted to
our techniques. For instance, one other commonly important
metric for IP protection and rights management is the number
of times a particular software/hardware is used as opposed to
the total usage times. In this scenario, the only modification
is to feed the signature vector for constant duration of time,
say tc. Then, we follow the same procedure and at the end, by
dividing τis by tc, we can extract the number of times each
software is used.

3) Aging Models with Uncertainty: Aging and degradation
models are continuously under study and researcher develop
more accurate models everyday. We generalize our HSCM
method to achieve minimum error in software metering in the
presence of uncertainty in aging models. Let’s assume that the
gate usage time t is a function of ∆Vth; t = Θ(∆Vth) with
some uncertainty υ. υ is a random variable which can possess
different probability distributions. We assume υ has a normal
distribution. Therefore, usage time for gate i can be expressed
as:

ti = Θ(∆Vthi
) + υi (14)

= Θ(
di − d0

d0

Vgs − Vth

α
) + υi

= Θd(di) + υi

Θd is the composition of delay-threshold voltage and
threshold voltage-aging functions. As we discussed in Section
IV-D2, gate usage time is in fact the total running time of
software that cause stress on that gate:

ti =
j=ri∑
j=1

τij (15)

the above sum is takes over all software in ϕi. Equations
14 and 14 lead to the following set of linear equations with
gaussian noise:

ti = bT
i τ̄ + υi,∀1 ≤ i ≤ k (16)

where bi is the vector which represent which software con-
tributes to ti:

bij = 1,∀Sj ∈ ϕi (17)
= 0, otherwise

Equation 17 is similar to 5 and can be solved in a simi-
lar fashion. Uncertainty and imperfections in aging models,
may possess different properties and probability distributions.
Therefore different uncertainty models can be incorporated in
this formulation and be solved accordingly. The solution to
set of equations in 16 is the running times of software which
completes our HSCM method. At this stage, we use remote
activation scheme that aims to protect integrated circuits (IC)
and intellectual property (IP) [3].

V. SIMULATION RESULTS

In this section, we simulate our HSCM method to prove the
concept of hardware aging-based software metering, especially
under the NBTI effect. We use an 8 × 8 butterfly aging
circuit (which accepts 16-bit input vectors). In the simulation
testbenches, we assume k = 30 different software applications
may be run on the target device. At each point of time, we
select each software randomly and assign a random execution
time in the range of [1000 − 5000] seconds. The device is
assumed to operate for the total amount of 200000 seconds
before the HSCM is performed. Once run times and execution
ordering were determined, we find the subset of gates in
the aging circuit that will be under stress for that particular
software, and, using equation 3, the corresponding threshold
voltages are shifted. In order to integrate model imperfections,
we added a normal noise to our calculations; for path delay
measurement, the standard deviation of the error is increased
from 1 to 8 times of the initial delay of a gate. As for the model
imperfections, we added a gaussian error with zero mean and
standard deviation equal to 0.001 volts.

Once the aging circuit was artificially under stress, we
measured the delay of m paths in the circuit with an injected
random gaussian error. We then followed our HSCM steps.
Simulation results are illustrated in Figures 3, 4 and 5.

Fig. 3. Average software metering error for different delay measurement
errors. Increase in the number of path delays in HSCM methos decreases the
average error.

In Figure 3 we applied our HSCM method for two different
scenarios; in the first run, we used the delay of 50 paths and
in the second run we used the delay of 100 paths. The x-
axis is the standard deviation of the measurement error which
has a normal distribution. The std is a multiple of the initial
delay of a NAND gate divided by 100. The y-axis, represent
the average software usage error. As you can see, the worst

average error in the presence of maximum measurement error
is around 8% when using only 50 paths and has been reduced
to less that 6% by measuring the delay of 100 gates.

Fig. 4. This graph shoes that when software are run for a long time,
∆Vth converges to a constant value and aging looses its dynamic nature
and therefore average error in software metering increases.

Fig. 5. When we scale up the aging circuit and feed the signature vectors
1/5 of the normal time, the accuracy increases again

Furthermore, we repeated the same procedure but this time,
increased the total runtime of the software by a factor of
5. As we anticipated, the software metering error increased
exponentially (4). The reason being is that, aging under NBTI
is a concave function which informally converges to an almost
constant amount. In other words, if you use the gates in a
circuit for a long time, all gates will age too much which
will fall into non-dynamic region of the curve in Figure 1.
By non-dynamic, we mean the almost flat region of the curve
which is less sensitive to usage time. In order to overcome
this problem, we can use the following technique: Instead of
feeding the signature vectors to the aging circuit for the whole
amount of time the software is running, we can feed the vector
for percentage of run time. This will reduce the aging factor
and enables us to stay in the dynamic region (where the ∆Vth

vs. stress time curve has larger derivative.
Figure 5 is the simulation results for the latter scenario

where software execution time was an average 5 times larger
than the first testbench. We used a Benes network (twice the
aging circuit in the first scenario) In this case, each signature
vector was fed to the aging circuitry for 1

10 of the execution
time. It is observed that average error rate is bounded by 6%
and 5% percent for 50 and 100 path delay analysis which is
even slightly better than the first scenario.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of soft-
ware/hardware metering through usage of hardware aging. In
our approach we target the question of how we can measure
the amount of time particular licensed software (LS) is used
by designing an aging circuitry and exposing it to the unique
inputs associated with each LS. If a particular LS is used
longer than specified, it automatically disables itself.

Our novel HSCM technique uses a multi-stage optimization
problem of computing the delays of gates, their aging degra-
dation factors, and finally software metering using convex
programming. The experimental results show not just viability
of the technique but also surprisingly high accuracy in the
presence of measurements noise and imperfect aging models.
We did reach of an accuracy with less that 5% of average
software metering error. HSCM can be used for many other
businesses and engineering applications in e-commerce such
as power minimization, software evaluation, and processor
design.

There are a potentially huge number of variations and
applications originating from our HSCM technique. In the
future, we will study the utilization of AC stress to reverse
the NBTI effect to some extent and therefore extend the usage
time of our aging circuit and increase the number of software
we can track. Further more, we believe more research on aging
circuitry and signature vectors can lead us to architectures and
input vectors which can increase the accuracy and usability of
hardware aging based metering. Also, other hardware aging
techniques will be explored, such as electromigration and
interconnect aging, which will lead to novel security and IP
management techniques in e-commerce.

REFERENCES

[1] http://w3.bsa.org/globalstudy/.
[2] http://www.certicom.com/index.php?action=sol silicon/.
[3] Yousra Alkabani, Farinaz Koushanfar, and Miodrag Potkonjak. Remote

activation of ics for piracy prevention and digital right management. In
ICCAD ’07, pages 674–677, Piscataway, NJ, USA, 2007. IEEE Press.

[4] H. Kufluoglu M. A. Alam B. C. Paul, K. Kang and K. Roy. Impact
of nbti on temporal performance degradation of digital circuits. IEEE
Electron Device Letters, 26(8):560–562, 2005.

[5] Matthew K. Franklin and Dahlia Malkhi. Auditable metering with
lightweight security. In FC ’97, pages 151–160, 1997.

[6] M. A. Alam K. Kang, H. Kufluoglu and K. Roy. Effcient transistor-level
sizing technique under temporal performance degradation due to nbti.
In ICCD06, 2006.

[7] Sanjay V. Kumar, Chris H. Kim, and Sachin S. Sapatnekar. An analytical
model for negative bias temperature instability. In ICCAD ’06, pages
493–496, New York, NY, USA, 2006. ACM.

[8] Moni Naor and Benny Pinkas. Secure accounting and auditing on the
web. In WWW7, pages 541–550, Amsterdam, The Netherlands, The
Netherlands, 1998. Elsevier Science Publishers B. V.

[9] James Pitkow. In search of reliable usage data on the www. In Selected
papers from the sixth international conference on World Wide Web, pages
1343–1355, Essex, UK, 1997. Elsevier Science Publishers Ltd.

[10] Jr. Robert Dixon Raymond Findley. Dual smart card access control
electronic data storage and retrieval system and methods. In US Patent,
number 5629508, 1999.

[11] B. Schneier and J. Kelsey. A peer-to-peer software metering system.
In in The Second USENIX Workshop on E-Commerce, pages 279–286,
1996.

[12] Dieter K. Schroder. Negative bias temperature instability: What do we
understand? Microelectron. Eng., 47(6):841–852, 2007.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

