
A Set-Based Mapping Strategy for Flash-Memory

Reliability Enhancement

Yuan-Sheng Chu

Wireless Communication BU

MediaTek Inc.

Email: Chu.Stanley@gmail.com

Jen-Wei Hsieh

National Taiwan University of

Science and Technology, R.O.C.

Email: jenwei@mail.ntust.edu.tw

Yuan-Hao Chang and Tei-Wei Kuo

National Taiwan University, R.O.C.

Email: d93944006@csie.ntu.edu.tw

ktw@csie.ntu.edu.tw

Abstract—With wide applicability of flash memory in various
application domains, reliability has become a very critical issue.
This research is motivated by the needs to resolve the lifetime
problem of flash memory and a strong demand in turning
thrown-away flash-memory chips into downgraded products.
We proposes a set-based mapping strategy with an effective
implementation and low resource requirements, e.g., SRAM.
A configurable management design and wear-leveling issue are
considered. The behavior of the proposed method is also analyzed
with respect to popular implementations in the industry. We show
that the endurance of flash memory can be significantly improved
by a series of experiments over a realistic trace. Our experiments
show that the read performance is even largely improved.

I. INTRODUCTION

One of the most critical design issues in flash-memory

management is on the system performance. In the past decade,

a number of excellent research results and implementation

designs have been proposed for the management of flash-

memory storage systems [16]. Some researchers explored dif-

ferent system architectures, such as stripping [7], or considered

large-scale storage systems [16]. Efficient identification of hot

and cold data was also explored in flash-memory management

with scalability considerations on precision and memory-space

overheads [9]. In the industry, several vendors, such as Intel

and Microsoft, have started exploring the advantages in having

flash memory in their product designs, e.g., the flash-memory

cache for hard disks (known as the Robson solution) and the

fast booting in Windows Vista [1], [4]. Flash memory also

becomes a layer in the traditional memory hierarchy, such as

that with NAND flash memory in a demand paging mechanism

(with compiler assistance) [14], [15]. Among the approaches

that try to improve the performance of NAND flash memory

with a SRAM cache [10], [11], OneNAND by Samsung

presented a simple but effective hardware architecture to

replace NOR flash memory with NAND flash memory and

a SRAM cache [10]. A prediction-based prefetching based on

execution traces of application executions was also proposed

by researchers to improve the performance of NAND flash

memory with a SRAM cache (to reduce the performance gap

between NAND flash memory and NOR flash memory) [12].

Supported in part by research grants from Genesys Logic, Inc. and National
Science Council, Taiwan, R.O.C. under Grants NSC95-2221-E-002-094-MY3
and NSC97-2221-E-011-156.

As flash memory has started being widely used in various

application domains, reliability becomes a very critical issue.

It is mainly because of the yield rate of Multi-Level Cell

(MLC) flash-memory chips and the limited number in erase

counts per block, where each cell of MLC flash-memory chips

contains more than one bits of information. For example, no

block of many flash-memory chips can guarantee its data

correctness after 10,000 erasures over the block. Note that flash

memory is based on the out-place update strategy, in which

the updating of any data must be done at a free page, instead

of the original page. As a result, pages with obsolete data

must be recycled by erasing of their residing blocks, where

each block consists of a fixed number of pages in each flash-

memory chip. The lower yield rate of flash-memory chips is

also reflected with the fragility of cells. Chang et al. proposed

an effective and efficient wear-leveling scheme to enhance the

endurance/reliability of flash memory [8]. Although Chang�s

wear-leveling scheme can be an add-on module to any existing

management strategy, it doesn�t consider the feature of low-

yield-rate flash-memory chips. This research is motivated by

the needs to resolve the lifetime problem of flash memory and

a strong demand in turning thrown-away flash-memory chips

into downgraded products. We shall point out that the location

and distribution of defect blocks are usually unpredictable.

This paper proposes a set-based flash memory management

strategy to enhance the reliability of flash memory. It can also

serve as a downgrading technology in reusing thrown-away

flash-memory chips for commercial products. The objective

is to have an effective implementation and low resource

requirements, such as SRAM, without tracking all of the defect

blocks. The proposed design is presented in terms of a popular

implementation BL in the industry, while it is also applicable

to other popular implementations such as FTL, NFTL, and

BLi (to be explained later in Section II-B). We consider a

configurable management strategy and wear-leveling issue,

where wear leveling tries to have an even distribution of

erase counts over blocks of flash-memory chips to prolong

their lifetime. The behavior of the proposed method is then

analyzed with respect to FTL, NFTL, BL, and BLi. A series of

experiments is conducted over a realistic trace. We show that

the endurance of flash memory can be significantly improved,

e.g., 316% under BLi. Meanwhile, our experiments show

that the read performance of NFTL(/BL/BLi)-based storage

978-3-9810801-5-5/DATE09 © 2009 EDAA

systems can be even improved by 384%(/17%/689%).

The rest of this paper is organized as follows: Section II

introduces the system architecture and provides the research

motivation. In Section III, an efficient set-based mapping

mechanism is proposed. Section IV provides analysis of the

proposed method and summarizes the experimental results.

Section V is the conclusion.

II. SYSTEM ARCHITECTURE AND MOTIVATION

A. System Architecture

NAND flash memory, referred to as NAND for short,

is mainly used for storage systems. Each NAND chip is

partitioned into blocks, and each block is of a fixed number

of pages. A flash-memory chip is composed of several flash-

memory banks which can operate independently. Reads and

writes are done in pages, where a block is the smallest unit

for erase operations. Each page contains a user area and a

spare area. The user area is for data storage, and the spare

area stores ECC and other house-keeping information, such

as the corresponding logical block address (LBA). Because

flash memory is write-once, we do not overwrite data on each

update. Instead, data are written to free space, and the old

versions of data are invalidated (or considered as dead). Hence,

the mapping of a given LBA and the physical location on

the flash memory must be maintained (referred to as address

translation). Any existing data on flash memory could not be

overwritten unless its corresponding block is erased. After the

executions of a number of write operations, the number of

free pages would be low. The system must reclaim free pages

(referred to as garbage collection) for further writes.

Flash-memory storage systems are usually implemented

in layers, as shown in Figure 1: The Memory Technology

Device (MTD) driver provides lower-level functionalities of

a storage medium, such as read, write, and erase. Based on

these services, higher-level management algorithms, such as

wear-leveling, garbage collection, and physical/logical address

translation, are implemented in the Flash Translation Layer

(FTL) driver. The objective of the FTL driver is to provide

transparent services for user applications and file systems to

access flash memory as a block-oriented device.

B. Motivation

There are several well-known designs for the Flash Transla-

tion Layer: FTL, NFTL, BL, and BLi. FTL provides page-level

address translation, where an address translation table is used

to map each LBA to a block and one of its pages on the flash

memory [2], [3], [5]. Compared with FTL, NFTL has a less

SRAM demand by providing block-level address translation:

An LBA is divided into a virtual block address (VBA) and

a block offset. Each virtual block is associated with at most

two blocks on the flash memory, referred to as primary and

replacement blocks. When a write request of an LBA is issued,

the request will be done at the page of the corresponding block

offset if it is free. Otherwise, it is done at the first free page in

the replacement block. The blocks are dynamically allocated if

any of them does not exist for the corresponding virtual block.

...

Memory Technology Device Layer

File Systems (e.g., DOS FAT)

Shared Libraries

fwrite (file, data)

Flash Translation Layer

Control signal

Block read/write command

Flash read/write command

Flash Memory

Application 1 Application n

Fig. 1. A Typical System Architecture.

Read/write performance is traded with the SRAM space. Like

NFTL, BL also provides block-level address translation, where

each write request of an LBA results in the re-association of

a new block. The request is done to the corresponding block

offset of the new block (similar to that of the primary block).

BLi is like BL, except that only parts of the address mapping

table stay in the SRAM to save the SRAM cost. The required

partial table is re-built by scanning the corresponding flash-

memory banks for each read/write request. BLi is popular in

many low-end flash-memory products [6].

The global sale of NAND has been increasing very rapidly

in the past years. As predicted by a forecast report [13], the

global sale of NAND will reach 26 billion dollars in 2010.

However, the designs of NAND storage systems do suffer from

reliability problems due to the yield rate of Multi-Level Cell

(MLC) flash-memory chips and the limited number in erase

counts per block. In the current practice, flash-memory chips

are usually thrown away if they have too many defect blocks.

This research is motivated by a strong demand in turning

thrown-away flash-memory chips into downgraded products.

Take a 2GB NAND as an example. If one fourth of the blocks

are defective, choices might be either thrown it away or turning

it into a 1.5GB or even 1GB product with a lower price and

different features. With the market size, downgraded products

will create a substantial amount of profit in the market. The

technical issue here is on the development of downgrading

technology with an effective implementation and low resource

requirements, such as SRAM. For example, it should not be an

option to track all of the defect blocks because of huge SRAM

usage. Note that SRAM cost is higher than NAND cost. We

shall also point out that the location and distribution of defect

blocks are usually unpredictable. With these observations, a

set-based mapping strategy is proposed in this paper with a

very limited SRAM requirement but with a good performance.

III. SFTL: AN EFFICIENT SET-BASED MAPPING

STRATEGY

A. Overview

Under the to-be-proposed reliability enhancement mecha-

nism, physical blocks of flash memory are partitioned into

Block #00

Block #01

Bank #0

Block #00

Block #01

Bank #1

Block #00

Block #01

Bank #2

Block #00

Block #01

Bank #3

Set #0

Block #02

Block #03

Block #04

Block #02

Block #03

Block #04

Block #02

Block #03

Block #04

Block #02

Block #03

Block #04

Block #05

Block #06

……

Block #05

Block #06

……

Block #05

Block #06

……

Block #05

Block #06

……

Flash Memory Chip

Set #5

Flash Memory Chip

Fig. 2. Example Physical Block Sets.

physical block sets, where each physical block set has Sp

blocks. The LBA space of flash memory is divided into blocks

such that LBA i is in the j-th block if j = �i/B�, where B
is the number of pages per physical block. Blocks in the LBA

space are also partitioned into logical block sets, where each

logical block set is of Sl blocks. Sl might not be equal to Sp.

The size ratio of a physical block set and a logical block set

(or the ratio between Sp and Sl) is determined based on the

needs in the reliability requirements and the downgrading level

of the final products. Given a flash memory device of multiple

banks, Figure 2 shows a possible configuration, where each

physical block set consists of four blocks scattered over the

four banks. When each logical block set is of two blocks, data

of the two blocks can be stored in any of the four blocks of

the corresponding physical block set.

The mapping procedure of logical blocks (and their logical

block set) into the corresponding physical blocks (and their

physical block set) is as shown in Figure 3: Given an LBA of

a read or write request, the corresponding logical set number

of the LBA is first derived by a given hash function, referred to

as the Set Hash Function (SHF). The logical set number of an

LBA denotes its logical block set and is an index to the Logical

Set Table (LST), so as to obtain its corresponding physical

set number. The physical set number of an LBA denotes its

corresponding physical block set. The corresponding entry of

the Physical Set Table (PST) serves as an index to the Un-

Index Table (UIT) (Please see Section III-B2). The UIT is

designed to save the SRAM space and to quickly find out

which logical block is stored in which physical block in a

physical block set. The SRAM requirement of the mapping

mechanism depends on the number of logical block set (i.e.,

the number of entries in the LST) and that of physical block

set (i.e., the number of bits per entry). The UIT is stored in

the ROM as a part of the firmware code to save the SRAM

space. The lookup service can be done in a constant time.

B. A Set-Based Mapping Mechanism

1) Logical/Physical Set Tables: The Logical Set Table

(LST) is to provide mapping between logical block sets and

physical block sets. A set configuration (SC) is referred to as

an Sl-Sp mapping if there are Sl and Sp blocks in a logical

block set and a physical block set, respectively. It is required

that Sp ≥ Sl. For example, a 4-6 mapping set configuration

LBA1 LBA2 LBA3 LBAn……

L

Set Hash Function (SHF)

Logical Set Table (LST)

S
R

A
M

L
o

g
ic

a
l S

p
a

c
e

Logical Set Table (LST)

Physical Set Table (PST)

M

P
h
y
s

Un-Index Table (UIT)

R
O

M

Flash Memory

s
ic

a
l S

p
a
c
e

Flash Memory

Fig. 3. Mapping of an LBA and Its Logical/Physical Block Set.

means that the four blocks of each logical block set are stored

in the six blocks of the corresponding physical block set. We

assume that the set configuration of a flash-memory device is

determined when the device is formatted, and it can not be

changed unless the device is reformatted. Sl and Sp can be

saved in the system block of a flash-memory device, which

is often the first block of the device. The determination of

a proper set configuration depends on different downgrading

levels and reliability requirements (Please see Section IV for

performance evaluation). In order to simplify the implemen-

tations, suppose that the i-th physical block is in the j-th

physical block set if j = �i/Sp�. The i-th block in the LBA

space is in the j-th logical block set if j = �i/Sl�.

Given an LBA, its logical block number is derived by the

division of the LBA and the multiplication of the number B
of pages per block and the large-page index Csec, i.e., LBN =
� LBA

CsecB
�. Csec is 1 for single-level-cell (SLC) small-page flash

memory, and it is 4 for some SLC large-page flash memory.

The block offset of an LBA is the corresponding block number

(LBN) in the set, i.e., LBN%Sl. The logical set number of

an LBA is derived by a given Set Hash Function (SHF). An

example SHF is LSN = LBN
Sl

, where Sl is the number of

blocks in a logical block set. The logical set number of an

LBA serves an index to the LST to obtain its corresponding

physical set number.

The Physical Set Table (PST) maintains an index number

for each physical block set, where the physical set numbers

of LBA�s are their indices to the table. With an index number,

the status of the blocks in each physical block set, e.g., free,

bad, or used, could be obtained by a look-up over the UIT.

Since the spare area of each valid page saves the corresponding

LBA, the LST and the PST can be re-built up by scanning the

entire flash memory during the booting time of a flash memory

device and stored in the SRAM afterward. Note that there is

no need to scan every page in a block because all pages in a

physical block must correspond to the same block in the LBA

space. The booting time can be further reduced by storing the

contents of both tables over the flash memory.

2) Physical Block Status: The Un-Index Table: The Un-

Index Table (UIT) is proposed to find out which logical block

is stored in which physical block of a physical block set in a

constant time. Each entry of the UIT consists of an array of

Sp unsigned integers, and each unsigned integer is between 0
and (Sl+2). Let UIT [i, j] be equal to k, where i and j denote

the index to the UIT entries and the jth array element of the

ith UIT entry, respectively. The UIT is designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ UIT [i, j] ≤ (Sl − 1), The jth physical block is a

valid data block and for the

logical block with the block

offfset UIT [i, j].
UIT [i, j] = Sl, The jth physical block is a

free block.

UIT [i, j] = (Sl + 1), The jth physical block is a

defect block.

The UIT stores all of the possible combinations for the

storing of a logical block set in a physical block set, and it

is static and fixed for each set configuration. Given an LBA,

the corresponding entry of the PST points to a UIT entry that

corresponds to the status of its logical block set. With the

UIT, which logical block is stored in which physical block of

a physical block set can be found in a constant time, i.e., the

scanning of the corresponding UIT entry. Whenever the status

of a physical block set changes, e.g., the finding of a new

defect physical block or the assignment of a logical block, the

corresponding entry of the PST updates to a proper UIT entry.

Figure 4 provides an example to show the relationship

between a UIT, a PST, and a physical block set under a 4-

6 mapping. Suppose the block offset of an LBA is 1, and the

corresponding physical set number is n. With the correspond-

ing index value in the PST, i.e., k, the corresponding UIT entry

is obtained as 241454, where the jth number corresponds to

the jth array element of the kth UIT entry. Since the 3rd

element is 1, the LBA is stored in the 3rd physical block of

the corresponding physical block set.

Un-Index Table
(UIT)

241454

Physical Set Table
(PST)

kn

0
. . .

. . .

k

0

. . .

. . .

kn

. . .

. . .

. . .

. . .

Physical Block Set n

Valid Block Free Block Defect Block

Fig. 4. An Example UIT and Its PST under a 4-6 Mapping.

C. Access Strategy and Mapping Process

For the simplicity of presentation, the handling of read and

write requests are presented in terms of BL. Note that popular

Flash Translation Layer implementations, such as NFTL, can

also be integrated with SFTL in a similar way.

The basic mechanism is as follows: When a request of an

LBA is received, the corresponding UIT entry, physical block

address, and the page number in the block are first derived. If

the request is a read, and the corresponding block and page

exist, then the data is retrieved and returned; otherwise, an

error value is returned. When the request is a write, there are

two cases to consider: (1) If the corresponding physical block

of the request does not exist, then a new physical block must

be allocated. The contents of the write is then written to the

corresponding page in the allocated block, and the UIT entry is

updated accordingly. (2) Otherwise, the write should be done

to a new physical block according to the BL definitions. The

original physical set number is saved first, since the writing

might result in the remapping of the corresponding logical

block set to another physical block set. A new physical block

is allocated based on the BL definitions. The contents of

the original physical block is copied to the newly allocated

physical block, except that the contents of the write request

is written to the proper page of the later block. The UIT

entry of the corresponding physical block set is revised. If

the corresponding physical block set of the request remains

the same, then the original physical block should be erased

because the contents is invalid now, and its corresponding UIT

array entry is set accordingly. Note that if the corresponding

physical block set of the request changes, then there is no

needs to erase the original block because the changing of the

physical block set is resulted from the (reliability) failure of the

original physical block set. After the processing of the write

request, the corresponding LST and PST entries are revised.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

SFTL against the well-known implementations, i.e., NFTL,

BL, and BLi (Please refer to Section II-B), in terms of main-

memory requirement, endurance, and access performance.

Note that since FTL is unsuitable to nowadays flash-memory

products and it requires enormous main-memory consumption,

we do not take FTL into account in the experiments.

A. Experiment Setup

In order to have a fair comparison, the data-updating strat-

egy adopted by SFTL was the same as BL and BLi. Under

such a strategy, garbage collection was not required because

the block with an old version of data would be erased right

after the new version of data was successfully written to a free

block. Since the data-updating strategy cannot be applied in

NFTL due to its management scheme, NFTL in the experiment

adopted a greedy garbage-collection policy: The erasing of a

block with each valid page resulted in one unit of recycling

cost, and that with each invalid page generated one unit of

benefit. Block candidates for recycling were picked up by a

cyclic scanning process over flash memory if their weighted

sum of cost and benefit was above zero (included). When the

replacement block was full, a primary block and its associated

replacement block had to be recycled by NFTL.

Note that newly released MLC flash-memory chips disallow

multiple-writing within the same page (either data area or

spare area) before it is erased, which makes NFTL unapplica-

ble on such chips. Although NFTL can be adopted to MLC

flash memory with some modifications, the write constraints

imposed by MLC flash memory make NFTL inefficient in

reads and writes. Comparatively, the proposed SFTL is de-

signed for both SLC and MLC flash-memory chips. In the ex-

periments, only SLC flash-memory chips were considered for

the fair comparison between the proposed SFTL and NFTL.

The flash memory adopted in the simulation was a GB-level

SLC large-block flash memory (64 pages per block and 2KB

per page). The experiment trace was collected over a desktop

PC with a 40GB hard disk (formatted as NTFS) for one

month. The workload in accessing the hard disk corresponded

to the daily usage of most people, such as web surfing, email

sending/receiving, movie downloading/playing, game playing,

and document editing. The trace accessed 4,194,304 LBA�s,

and about 71.21% of them were write requests. The averaged

number of write (/read) operations per second was 1.44 (/0.35).

B. Experiment Result

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 R

A
M

 R
e
q
u
ir
e
m

e
n
t
(U

n
it
:
K

B
)

The Downgrading Level (%)

SFTL, SP=7
SFTL, SP=6
SFTL, SP=5
SFTL, SP=4

(a) RAM Space for SFTL

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 U

IT
 S

iz
e
 (

U
n
it
:
K

B
)

The Downgrading Level (%)

SFTL, SP=6
SFTL, SP=5
SFTL, SP=4

(b) ROM Space for SFTL

Fig. 6. Space Requirement of SFTL (4GB SLC Large-Block Flash Memory).

1) Main-Memory Requirement: Figure 6(a) shows the

main-memory requirements of SFTL under various set config-

urations and downgrading levels for a 4GB SLC large-block

flash memory. The downgrading level indicates the percentage

of flash-memory space reserved for defect-block tolerance, and

it can be derived from each set configuration. For example,

a 4-6 mapping implies a downgrading level 33%. As the

downgrading level increased, the available logical space for

users decreased.

Under SFTL, the main memory space is required by both

the LST and the PST for the maintenance of the set-based

mapping information. As shown in Figure 6(a), the size of the

main memory requirement decreases when the downgrading

level increases. It was because the number of LST entries

decreased with the size of the managed logical space. For the

same downgrading level, a larger Sp requires a less amount of

the main memory, due to a fewer number of logical/physical

block sets. Note that when MLC flash memory is adopted, the

required main-memory space could be much reduced.

Under SFTL, UIT stores all of the possible combinations

for the storing of a logical block set in a physical block set.

Both the value of Sp and the number of possible statuses

for a physical block can affect the UIT size. Figure 6(b)

illustrates the ROM space required by the UIT under various

set configurations and downgrading levels for a 4GB SLC

large-block flash memory. A larger Sp resulted in a larger

UIT size, since the size of an UIT entry increased when the

value of Sp increased.

The main-memory requirements of SFTL (with Sp fixed

to 6) and well-known implementations, i.e., NFTL, BL, and

BLi, under various downgrading levels for a 4GB SLC large-

block flash memory are illustrated in Figure 5(a). The main-

memory requirements of both NFTL and BL were more than

twice as SFTL did in the most cases. Although BLi only

required 1.88KB main memory, its lifetime was unacceptable.

The lifetime comparisons will be discussed in Section IV-B2.

2) Flash-Memory Lifetime and Defect-Block Tolerance:

This section evaluates the endurance of a flash-memory prod-

uct under various implementations. Because the internal RAM

size of a flash-memory storage device is usually fixed and

limited in most cases of a commercial flash-memory product

category, NFTL or BL were modified accordingly to accom-

modate to the limited resources. In the experiments, NFTL

and BL were implemented with loading-on-demand mapping

tables (into RAM). The complete mapping table is initialized

by scanning all of flash-memory blocks and then stored in

the flash memory. Since the RAM space was limited, only

some portion of the mapping table could reside in the RAM.

For each read/write request, the portion of the mapping table

which covered the accessing LBA was loaded into the RAM

in an on-demand fashion. The to-be-replaced portion of the

mapping table had to be written back to the flash memory if

it had been updated.

Figure 5(b) shows the lifetime of a flash-memory prod-

uct for various implementations under various initial defect

ratios.1 In the experiments, we assume that a flash-memory

block would be worn-out after 10,000 erasures, and a flash-

memory product would malfunction when the number of

defected blocks exceeded that of the reserved blocks. The

experimental results shows that the endurance of a flash-

memory product under NFTL outperformed others. It was

because the replacement-block scheme effectively reduced the

block erasures, and NFTL thus extended the lifetime. How-

ever, NFTL might not be applicable to many newly released

MLC flash-memory chips, since these chips disallow multiple-

writing within the same page. Thus, NFTL cannot mark a page

as invalidated unless the page was erased. The experiments

also showed that the proposed SFTL could survive over 28.7

years when the flash-memory initially had no defect block

and functioned for about 20 years when the initial ratio

of defect blocks reaches 30%. Although the main-memory

requirement of BLi was the minimum, it only survived for

4.8 years. We must emphasize that the life cycles of most

computer peripheral devices were only about 3 to 5 years (and

rarely exceeded 20 years). In other words, 20-year or 220-year

lifetime does not make a big difference for many flash-memory

products.

3) Access Performance Evaluation: This section is to eval-

uate the access performance of flash-memory products (under

various implementations) in terms of the average read/write

response time. As mentioned in Section IV-B2, on-demand

1In order to estimate the lifetime of a flash-memory product, we repeated a
one-month trace as an input until all the reserved blocks in the flash-memory
product were worn-out.

 0

 30

 60

 90

 120

 0 10 20 30 40 50

T
h
e
 R

A
M

 R
e
q
u
ir
e
m

e
n
t
(U

n
it
:
K

B
)

The Downgrading Level (%)

6-6 5-6 4-6 3-6

BL
BLi

NFTL
SFTL

(a) RAM Space

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30

T
h
e
 L

if
e
 T

im
e
 (

U
n
it
:
Y

e
a
r)

The Initial Ratio of Defect Blocks (%)

BL
BLi

NFTL
SFTL

(b) Lifetime

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 10 20 30

T
h
e
 A

v
e
ra

g
e
 R

e
a
d
 R

e
s
p
o
n
s
e
 T

im
e
 (

U
n
it
:
m

s
/r

e
q
u
e
s
t)

The Initial Ratio of Defect Blocks (%)

BL
BLi

NFTL
SFTL

(c) Read Response Time

 0

 10

 20

 30

 40

 50

 60

0 10 20 30

T
h
e
 A

v
e
ra

g
e
 W

ri
te

 R
e
s
p
o
n
s
e
 T

im
e
 (

U
n
it
:
m

s
/r

e
q
u
e
s
t)

The Initial Ratio of Defect Blocks (%)

BL
BLi

NFTL
SFTL

(d) Write Response Time

Fig. 5. Comparison with Well-Known Implementations.

mapping-table loading was implemented in NFTL and BL to

make the evaluation more realistic.

Figure 5(c) compares the average read response times

of flash-memory products with various initial defect-block

ratios under BL, BLi, NFTL, and SFTL, respectively. The

experiment results show that SFTL achieved the best read

performance. It was because the design of UIT effectively

reduced the time in locating the target physical block. Both

SFTL and BL outperformed NFTL and BLi in terms of the

average read response time. Although the replacement-block

scheme of NFTL improves flash-memory product lifetime, it

hurts the read performance due to its sequential searching for

the target page in a replacement block. BLi suffered from

the worst read performance, due to frequent mapping-table-

rebuilding. Figure 5(d) compares the average write response

times of flash-memory products with various initial defect-

block ratios under BL, BLi, NFTL, and SFTL, respectively.

NFTL achieved the best write performance, while SFTL

outperformed both BL and BLi. The main write overhead

of SFTL came from the valid-data-copying whenever a data-

updating request was issued.

Note that BL and BLi are widely adopted in the industry

for their small RAM requirements. SFTL, which also requires

only a small RAM, could be a good alternative for BL or BLi

since it could improve up to 17% read performance and 16.5%

write performance of BL and up to 688.7% read performance

and 27.4% write performance of BLi. It was also observed

that the initial defect-block ratio did not affect the average

read/write response time. With different initial defect-block

ratios, only the flash-memory lifetime was influenced.

V. CONCLUSION

This paper proposes a set-based mapping strategy, SFTL,

to serve as a downgrading technology in reusing thrown-away

flash-memory chips. The goal is to have an effective imple-

mentation with low main-memory requirements and without

the tracking of defect blocks. The proposed strategy should

also consider a configurable management design and the wear-

leveling issue. In this paper, the behavior of the proposed

method was analyzed and compared with respect to popular

implementations in the industry, such as NFTL, BL, and BLi.

The experiment results showed that SFTL has the best read

performance and performs better than both BL and BLi in

write performance. In addition to these good performance in

read/write response times, SFTL requires only a small amount

of main memory, and that makes SFTL a good alternative

to the flash-memory industry. We must point out that the

endurance of a flash-memory product managed by SFTL could

last about 20 years, and it is sufficient to many applications.

Furthermore, although NFTL achieved the best write perfor-

mance in the experiments, its inherent management scheme

cannot be applied to most newly released MLC flash-memory

chips. The proposed mapping strategy can be integrated with

many different flash-translation-layer implementations. For

future research, we would try to find ways to further improve

the write performance of SFTL. We would also integrate the

proposed set strategy with other existing mechanisms (or their

variants) to look for the possibility of better solutions.

REFERENCES

[1] Flash Cache Memory Puts Robson in the Middle. Intel.
[2] Flash File System. US Patent 540,448. Intel.
[3] FTL Logger Exchanging Data with FTL Systems. Technical report, Intel

Corporation.
[4] Software Concerns of Implementing a Resident Flash Disk. Intel.
[5] Understanding the Flash Translation Layer (FTL) Specification,

http://developer.intel.com/. Technical report, Intel Corporation, Dec
1998.

[6] Cruzer Contour 4GB USB Flash Drive. SanDisk, May 2007.
[7] L.-P. Chang and T.-W. Kuo. An Adaptive Striping Architecture for Flash

Memory Storage Systems of Embedded Systems. In IEEE Real-Time

and Embedded Technology and Applications Symposium, 2002.
[8] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo. Endurance enhancement of

flash-memory storage systems: An efficient static wear leveling design.
the 44th ACM/IEEE Design Automation Conference (DAC), San Diego,
California, USA, June 2007.

[9] J.-W. Hsieh, L.-P. Chang, and T.-W. Kuo. Efficient On-Line Identifi-
cation of Hot Data for Flash-Memory Management. In Proceedings of

the 2005 ACM symposium on Applied computing, pages 838–842, Mar
2005.

[10] Y. Joo, Y. Choi, C. Park, S. W. Chung, E.-Y. Chung, and
N. Chang. Demand Paging for OneNANDTM Flash eXecute-In-Place.
CODES+ISSS, October 2006.

[11] J.-H. Lee, G.-H. Park, and S.-D. Kim. A new NAND-type flash memory
package with smart buffer system for spatial and temporal localities.
JOURNAL OF SYSTEMS ARCHITECTURE, 51:111–123, 2004.

[12] J.-H. Lin, Y.-H. Chang, J.-W. Hsieh, T.-W. Kuo, and C.-C. Yang. A nor
emulation strategy over nand flash memory. RTCSA, July 2007.

[13] H. Liu. The global semiconductor market: Navigating through the
semiconductor cycle. Technical report, iSuppli, 2006.

[14] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min. Compiler-assisted
demand paging for embedded systems with flash memory. EMSOFT,
September 2004.

[15] C. Park, J. Seo, D. Seo, S. Kim, and B. Kim. Cost-efficient memory
architecture design of nand flash memory embedded systems. ICCD,
2003.

[16] C.-H. Wu and T.-W. Kuo. An Adaptive Two-Level Management for
the Flash Translation Layer in Embedded Systems. In IEEE/ACM

2006 International Conference on Computer-Aided Design (ICCAD),
November 2006.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

