
Enabling Concurrent Clock and Power Gating
in an Industrial Design Flow

Leticia Bolzani Andrea Calimera Alberto Macii Enrico Macii Massimo Poncino
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, ITALY

Abstract— Clock-gating and power-gating have proven to be
very effective solutions for reducing dynamic and static power,
respectively. The two techniques may be coupled in such a way
that the clock-gating information can be used to drive the control
signal of the power-gating circuitry, thus providing additional
leakage minimization conditions w.r.t. those manually inserted by
the designer. This conceptual integration, however, poses several
challenges when moved to industrial design flows. Although
both clock and power-gating are supported by most commercial
synthesis tools, their combined implementation requires some
flexibility in the back-end tools that is not currently available.

This paper presents a layout-oriented synthesis flow which
integrates the two techniques and that relies on leading-edge,
commercial EDA tools. Starting from a gated-clock netlist, we
partition the circuit in a number of clusters that are implicitly
determined by the groups of cells that are clock-gated by the
same register. Using a row-based granularity, we achieve run-
time leakage reduction by inserting dedicated sleep transistors
for each cluster. The entire flow has been benchmarked on
a industrial design mapped onto a commercial, 65nm CMOS
technology library.

I. INTRODUCTION

Clock-gating [1] is, by far, the most widely adopted tech-
nique for reducing dynamic power in digital CMOS circuits.
The reasons for this are rooted, on the one hand, into the
capability of clock-gating of significantly reducing power con-
sumption with a limited penalty in area and, most important,
in timing. On the other hand, clock-gating is very suitable to
automatic application [2], [3], [4], thus all design frameworks
by the major EDA vendors do support clock-gating as their
primary power optimization feature.

It is well know that the advent of sub-100nm technologies
has made the power optimization problem more difficult to
address, as dynamic consumption is now paired by a non-
negligible amount of static consumption, mainly due to the
sub-threshold currents in the off state. Among the several so-
lution for reducing the sub-threshold leakage currents, power-
gating [5] is the one that, in the near past, has gained the
largest momentum. As for the case of clock-gating, also
power-gating can be effectively supported from the CAD
stand-point [6], [7], [8], and it is now featured by most
commercial design flows.

Clock-gating and power-gating hold a number of similar-
ities. In particular, both techniques require the introduction
into the original circuit of some control logic, which is
in charge of generating the signals that control the clock-
gating and the power-gating mechanisms. Ideally, the same

control signal could be used for managing clock-gating and
power-gating, thus suggesting the opportunity of combining
the application of the two techniques. In practice, however,
the two signals are usually characterized by different timing
behaviors; while clock-gating is applicable on a cycle-by-cycle
basis, power-gating is not. Combining clock-gating and power-
gating, although very desirable from the point of view of the
achievable energy savings, may thus be quite difficult; in some
cases, it may result even infeasible, as the overlapping of the
potential gating conditions may tend to become null.

In order to check the effective feasibility of the simultaneous
application of the two techniques, in [9] we presented an
analysis tool which is able to evaluate an RTL design in order
to determine whether clock-gating/power-gating integration is
convenient or not. Assuming a circuit featuring clock-gating,
the tool is able to verify whether the insertion of the sleep
transistors necessary to actuate the power-gating strategy may
lead to an overall reduction of the circuit power (dynamic +
leakage). The analysis is based on an inspection of the circuits
topology, as well as on the knowledge of the timing and the
energy information regarding the circuit.

The results of the application of the tool are very promising,
indicating that, in principle, clock-gating and power-gating
should be used simultaneously to achieve the best total power
minimization. Unfortunately, however, the combined appli-
cation of the two techniques presents major difficulties in
real-life design environments and for realistic circuits, due
the inadequacy and lack of integration of the commercially-
available synthesis and back-end tools.

Purpose of this work is to establish a layout-oriented synthe-
sis flow which integrates clock-gating and power-gating. The
input of the flow is a placed gated-clock netlist, as generated
by any commercial low-power synthesis tool. The gated-clock
regions constitute the starting point of a clustering algorithm
which determines the groups of cells to which power-gating
is applied. Clearly, both functional (i.e., idle conditions) and
physical (i.e., position in the placement) information of the
cells are used to determine the most appropriate clusters to
be connected to the sleep transistors. The flow is validated on
an industrial design mapped onto a commercial, 65nm CMOS
standard cell library provided by STMicroelectronics.

Although the idea of combining clock-gating and power-
gating has been the subject of recent investigation [10], to the
best of our knowledge this is the first time that the problem

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



is addressed with industrial strength, thus offering a solution
which may easily find its way in commercial CAD flows and
for the implementation of industrial circuits featuring leading-
edge nano-CMOS technologies. In fact, the work in [10]
determines the clusters of cells to be power-gated and inserts
the power-gating circuitry cell-by-cell; P&R are then executed
using standard tools. Clearly, the main short-coming of this
approach is that, timing-driven placement may scatter the cells
of a given cluster all over the die area, thus originating a placed
netlist for which the application of power-gating to the selected
clusters is infeasible.

II. CLOCK-GATING AND POWER-GATING

A. Clock-Gating Basics

Clock-gating (CG) is based on the idea of disabling (i.e.,
gating) the clock signal to a specific register that feeds a
portion of combination logic that is not performing useful
computations during some clock cycles.

A generic gated-clock architecture is shown in Figure 1;
a signal, called activation function (Fa), is defined in order
to selectively stop (when Fa = 1) the clocking of the circuit
when the latter does not result in state or output transitions.
The activation signal is filtered by a latch that is transparent
when the global clock is low. The purpose of the latch is to
filter potential glitches of the activation signal that should not
propagate when the global clock is high.

The activation function is a combinational block that ex-
tracts idle conditions from the knowledge of primary and state
inputs of the circuit. These conditions might be derived from
a state-based description of the netlist of the circuit and can
be purely topological or include functional information.

R
eg

is
te

rs

L

Primary inputs

State inputs

Global clock

Gated clock

Fa

Combinational
Logic

Fig. 1. Conceptual CG Architecture.

The successful application of clock-gating entails the solu-
tion of three main issues:

• Timing closure: There is a possible performance decrease
due to the fact that the logic of the Fa may be on the
critical path of the circuit.

• Formal verification: Because of the idle cycles, it is not
trivial to perform the equivalence checking of the gated
and non-gated circuits.

• Testability: The CG circuitry is functionally redundant. In
fact, it is not needed for correct functionality, but at the
same time its failure can have disastrous effects. In the
presence of faults, some errors in the gating circuitry may
be masked by the controlled sub-system (or vice-versa),
with serious consequences on testability.

B. Power-Gating Basics

Power-Gating (PG) is a coarse-grained generalization of the
so-called MTCMOS technique, in which a header and/or footer
transistor is inserted on the pull-up and/or pull-down network
of a CMOS gate, respectively; the transistors are turned off
when the gate is in stand-by mode, thus reducing the leakage
current that flows in the supply-ground path (Figure 2).

GND

Cluster

Vdd

Virtual GND

Sleep

Virtual Vdd

Sleep

Fig. 2. Conceptual PG Architecture.

These transistors are usually called sleep transistors (ST)
because they are driven by the same sleep signal (yet with
opposite phase). In practice, one transistor suffices; thanks to
its lower on-resistance, the nMOS footer is typically used.

While a cell-level gating technique introduces a large area
and timing overhead, applying this idea to larger blocks of
logic has proven quite successful. In a power-gated design,
switch transistors control clusters of gates, instead of individ-
ual gates.

Although PG may appear a straight-forward technique, its
adoption is very challenging. In fact, its effective implemen-
tation requires solving three main problems:

• Clustering: The definition of the granularity of the blocks
to which gating is applied is an open issue and encom-
passes a trade-off between effectiveness and efficiency:
Fine-grain gating (e.g., MTCMOS) has maximum over-
head and largest optimization potential; on the other
extreme, coarse-grain gating has smaller overhead but
also has smaller optimization potential.

• Sizing of the ST: The size of the ST affects the perfor-
mance of the gates connected to it. A small transistor
slows down the circuit in active mode due to its high
resistance, whereas a large one implies a large area
overhead and a significant energy cost during ON/OFF
transitions. Moreover, the ST size is also constrained by
the maximum current injected by the gated cluster.

• Physical design of the gating circuitry: The size of the
ST is far larger than that of any cell and its placement
is a non trivial task. Moreover, since it is connected to
all the cells in the cluster, it must be placed in such a
way that excessive routing overhead is avoided. Thus, ST
placement and clustering become strictly inter-dependent.
Furthermore, the presence of a virtual ground rail implies
the addition of an extra grid to the already existing
power/ground distribution grids.



C. Integrated Clock and Power-Gating

From the discussion above, CG and PG may look as
unrelated techniques. A more careful analysis, however, re-
veals that they are two different ways of exploiting the same
property of a design, namely, its idleness. While CG stops the
clock to a logic block during idle cycles, PG disconnects a
logic block from the ground line during idle periods. Their fun-
damental difference is how idleness is determined. CG extracts
(structurally or functionally) the cycle-by-cycle idle conditions
and suppresses the clock in those cycles; conversely, PG is
activated by an external signal. In principle, nothing prevents
us from using the CG conditions extracted from the circuit
and implemented by Fa also for controlling PG, so that both
dynamic and static power is saved during the idle intervals.

Figure 3 shows the conceptual integration of the two so-
lutions. The CG conditions (represented by the logic denoted
by Fa) are used as additional PG conditions (logically OR-
ed) to those externally provided as sleep signals. Notice that,
under this scheme, clustering is implicitly determined by CG:
A group of cells that is clock-gated by the same register
automatically defines a cluster.

R
eg

is
te

rs

L

Primary inputs

State inputs

Global 
clock Gated 

clock

ClusterCluster

GND

Virtual 
GND

Sleep

FaFa

Fig. 3. Conceptual Integration of CG and PG.

Unfortunately, the integration of the two techniques is far
from being simple, several issues must be considered in order
to make it feasible.

1) Clustering: The extraction of the idle conditions usually
originates different subsets of registers driven by different
activation functions and, therefore, multiple clusters. As long
as such clusters do not overlap, the scheme of Figure 3 is
applicable as is.

Reg1

Reg2

Fa1

Fa2

Cluster1
(idle)

Cluster2
(active)

Reg1Fa1

Fa2 Reg2

Cluster1

Cluster2

Reg1,2

Fa1∩Fa2

Cluster1,2

(a) (b)

Fig. 4. Overlapping Clusters.

In most cases, however, clusters do overlap and some gates
are shared among several clusters. This is not an issue for the
application of CG alone; in fact, register-gating freezes the
inputs of the cluster, but still allows normal operations of the
gates in that cluster (Figure 4-(a)). Conversely, if the cluster is

power-gated, all its gates are detached from the ground and,
therefore, are not usable by other clusters. The only way to
solve this problem while keeping the overhead acceptable is
to generate a new cluster for every cluster intersection, whose
activation function is the AND of the activation functions of
the overlapping clusters (Figure 4-(b)). Obviously, based on
the size of the overlapping region and of the gating conditions,
it may be convenient not to power-gate some clusters.

2) Timing Granularity: The timing granularity of CG and
PG may differ substantially; while the former can be applied
on a cycle-by-cycle basis (as there is no reactivation delay
involved), the latter can only be activated (i.e., the STs can be
turned off) only if the expected sleep interval is longer than
the ST reactivation time. Furthermore, ST reactivation has a
power cost; too frequent switching due to short idle periods
may offset the power savings resulting from the turn-off. This
implies that not all CG conditions can be used for PG and
some of them will be wasted, thus resulting in a reduction of
potential dynamic power savings.

3) Physical Design: The implicit clustering resulting from
CG may not be compatible with the ST insertion strategy of
the PG. STs cannot be placed anywhere in the design, and
some preferential ST placement strategies are used. Whatever
the adopted strategy, it must be aware of the placement of the
cells that constitute the cluster.

Conversely, the clustering implied by CG may include cells
physically placed far away, thus making ST insertion less
effective, if not infeasible. To solve this problem, the designer
must force the placement in such a way that (i) the cells are
physically close, and (ii) they are placed in a way that it is
compatible with the placement of the ST. As an example, an
effective ST insertion strategy relies on the idea that clusters to
be gated contain entire rows of the layout (row-based PG [8]).
Under this strategy, which is the one adopted in this work,
clusters induced by CG should somehow be packed into the
smallest possible number of rows.

III. DESIGN FLOW

Figure 5 shows the synthesis flow proposed in this paper.
Starting from an RTL netlist, the flow consists of five steps:
• Step 1 (Synthesis): This step performs the synthesis of

the RTL design. The tool synthesizes the RTL netlist
according to a set of constraints and with CG insertion.
The outputs of this stage are (i) a clock-gated netlist, (ii)
a set of files necessary to the following steps (e.g., .DEF
files), (iii) a VCD file with the switching information
for every net of the design , and (iv) power and timing
reports.

• Step 2 (OpenAccess Database): This step consists of
the generation of an OpenAccess database of the syn-
thesized design using, as inputs, the clock-gated netlist
and the .DEF file previously obtained.

• Step 3 (Clustering): At this stage, the analysis tool of [9]
evaluates the feasibility of integrating CG and PG by
using the information available in the VCD file, as well
as the design’s OpenAccess database generated in Step



RTL Design

Final Design

SYNTHESIS
(Clock-gating)

Simulation
(.VCD generation)

OpenAccess Database

CLUSTERING

PLACEMENT
(Clustering based)

SLEEP TRANSISTOR
INSERTION

(.Verilog / .VHDL)

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

(Clock-gate Netlist)

(.VCD)

(Cluster List)

Fig. 5. Layout-oriented Synthesis Flow.

2. The analysis tool is able to identify the clock-tree, the
clock-gating registers with their activation functions, and
the group of cells associated to them.Moreover, it defines
the PG clusters that represent groups of cells associated to
the same clock-gating register and to a specific activation
function. PG clusters represent groups of cells that have
to be associated to a certain sleep transistor.
The clustering process amount thus to the association of
every cell to a group of cells that will be controlled by the
same sleep transistor. The tool classifies the PG clusters
in two different classes:

– CG-Register Cluster: This clusters consist of cells
that are present in only one fanout (i.e., the com-
binational logic between the register bank and the
design’s output ports or another register). These cells
are thus associated to a single clock-gating register.

– CG-Register Intersection Cluster: This type of clus-
ter is composed of cells that belong to more than one
fanout. These cells are associated to more than one
clock-gating register.

For each generated PG cluster, the tool estimates the total
area needed to place it. Figure 6 shows an example of PG
cluster generation. The schematic of a synthesized design
contains 2 clock-gating registers (CGR1 and CGR2), their
register banks and the group of cells that are part of their
fanout. The diagonal lines represent the fanout associated
to CGR1 and CGR2. The design is divided into three PG
clusters: Clusters 1 and 2 are classified as CG-Register
Clusters, while Cluster 1/2 is the intersection region
between the fanout of CGR1 and CGR2. The activation
function of Cluster 1/2 is the AND between the activation
functions of CGR1 and CGR2. Thus, Cluster 1/2 will be
shut-down only if Clusters 1 and 2 are turned-off.

CGR1

CGR2

Clk

Clk

E

E

Combinational Logic

Design

O
u

tp
u

ts

R
e

g
is

te
r 

B
a

n
k

R
e

g
is

te
r 

B
a

n
k

Cluster 1

Cluster 2

Cluster 1 / 2

Fig. 6. PG Clusters in a Design.

• Step 4 (Placement): In this step, the placement of the
design is performed, following the placement constraints
resulting from the generation of the PG clusters. Figure 7
shows a possible layout of the design of Figure 6.

Cluster 1

Cluster 2

Cluster ½

Fig. 7. Layout Design View.

It is important to highlight that the PG clusters will
contain different numbers of cells, and thus have quite
different areas. If the area necessary for placing a given
PG cluster does not match the available area in a row of
the layout, the cluster is not power-gated since the over-
head (in terms of wire-length, congestion and dynamic
power) caused by having cells of the same cluster in
different rows, may become too high. Therefore, finding
the proper trade-off between the potential leakage energy
saving and the placement overheads is essential.

• Step 5 (Sleep Transistor Insertion): In the last step, the ST
size is defined based on the size of the PG cluster. The
sleep transistor is inserted in one (or more, if needed)
dedicated row , as described in [8]. It is important to
emphasize that the number of concurrent PG clusters
present in a given row determines the number of inserted
virtual grounds that must be inserted.



IV. EXPERIMENTAL RESULTS

We have validated the proposed design flow, on a unit
of a network-on-chip design, namely, a 6x6 switch. This
design analyzes the incoming data packets, determines the
source and the destination device of the packets, and forwards
them appropriately. It consists of around 8 Kgates, and it
was synthesized onto a 65nm CMOS technology library by
STMicroelectronics. We used Synopsys PhysicalCompiler to
perform the synthesis process, which was done exploiting both
area and timing optimization, and with the clock gating feature
enabled. Using Mentor Graphics ModelSim, we ran functional
simulations in order to obtain a complete and detailed tem-
poral description of all the internal signals; dedicated test-
benches were used to emulate workloads compliant with the
specifications. Using in-house parsers, the VCD file obtained
by simulation was used to compute both static probability
and the number of toggles for the internal nodes; these
values were annotated in Synopsys PrimeTime during power
estimation. Thanks to the physical information contained in
the technology library, we were able to evaluate the effect of
parasitic elements on the interconnects, thus obtaining more
accurate power and timing estimations.

Based on the topological structure of the circuit and the
temporal waveforms listed in the VCD file, the clustering
algorithm provides a complete list of logic clusters (18, in
this design). For each cluster we know the number and the
type of the standard cells contained in it, and the duration
of the idleness intervals of the clock-gated registers, which
also represent the stand-by periods of the sleep transistors.
Using this information, we performed a constrained placement.
More precisely, we created a bounded layout region for each
cluster. Using an automated scripting flow, the placement tool
tries to place the cells of each cluster in the reserved region
(i.e., intra-cluster placement), and performs a coarse-grained
placement of each cluster (i.e., inter-cluster placement). The
final result is a standard layout where the cells of a cluster are
placed in a dedicated area (i.e., a number of adjacent layout
rows), such that each row contains standard-cells belonging
to the same logic cluster. This is mandatory for guaranteeing
a minimal area overhead for ST insertions. However, since
standard placement tools are wire-length oriented, the final
layout may not respect our physical constraints. In fact it
may happen that a layout region dedicated to a given cluster
contains gates of different clusters. As we will show later, this
has deleterious effects for the integration of clock-gating and
power-gating.

Figure 8 reports the leakage savings we obtained by combin-
ing clock-gating and power-gating. The plot shows, for each of
the 18 clusters, a pair of bars. Dark bars denotes the amount of
leakage energy spent by the circuit in the idle state (and thus it
the energy that can be saved by applying power-gating). Light
bars show the reactivation energy, namely, the energy spent
for idle-to-active transitions. The percentage shown on top of
each bar pair represent the total leakage savings during the
stand-by period.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

Cluster

18.8%

22.5%

18.7%

22.3%

19.7%

22.2%

18.7%

22.3%

18.8%

22.4%

18.2%

22.4%

26.0%26.8%
24.6%25.1%26.4%25.3%

 

 

Eleakage
Ereactivation

Fig. 8. Per-Cluster Leakage saving.

Combining CG and PG is therefore convenient when the
energy necessary to reactivate the circuit is smaller than the
leakage energy consumed by the circuit in the idle state.
Figure 8 shows that this margin is sizable and does exist for
all the clusters. On average, a 22.3% leakage energy is saved.

It is worth emphasizing that we are considering the worst-
case saving, that is that we are evaluating the energy saved
during the shortest idle interval of a cluster. Each cluster
has in fact several idle intervals of different lengths. Clearly,
longer intervals imply increased leakage savings. Therefore,
the values of Figure 8 should be interpreted as lower bounds
of the leakage savings.

Another important issue related to the reactivation time is
the time required to turn-on the power-gated cluster. Exper-
imental results shown that, for every cluster, the reactivation
time is smaller than 50% of the clock-period. This assures the
correct functionality of the clusters, which can be reactivated
before the edge of the next active clock-period.

A. Physical Design Issues

As pointed out at the end of Section III, each layout row
should contain as many cells as possible that belong to the
same PG cluster. Ideally, no two cells of the same layout row
should belong to different clusters; this would allow to use a
single virtual-ground line to power-gate the entire row, with
minimal area and routing overheads. However, commercial
placement tools are not PG-aware, and it may happen that a
row contains cells belonging to different clusters. Since each
cluster needs its dedicated virtual-ground rail, we should route
multiple metal lines for each row, thus increasing the area
overhead.

Table I reports data about the distribution of PG-cluster cells
over the layout rows. Columns Avg, Min, and Max show the
average, minimum, and maximum number of cells belonging
to different PG-clusters in a layout row.

Row Standard shows the cluster distribution for a standard,
wirelength-driven placement. The average number of clusters
per row is 14.6, implying that we would have to route, on
average, around 14 metal lines, (8 in the best case, and 19 in
the worst case) below each row. Needless to say, this solution
has unacceptable area overhead.



Placement Style Avg Min Max

Standard 14.6 8 19
PG-Aware - Low Effort 11.9 5 16
PG-Aware - Mid Effort 2.2 1 6
PG-Aware - High Effort 1.3 1 2

TABLE I DISTRIBUTION OF CLUSTERS: STANDARD VS. POWER

GATING-AWARE PLACEMENT STYLES.

The other three rows of the table refer to our PG-aware
placement, which tends to place gates belonging to the same
cluster in the same row. How much this constraint is enforced
corresponds to different area/delay tradeoff points, which we
associate to a measure of placement effort. In particular, we
select three different effort levels (Low, Mid and High); low-
effort placement will likely achieve results that are only better
than the standard placement , whereas the high-effort one will
tend to achieve the ideal placement (rows having cells that
belong to one cluster).

The second row of the table shows that using a Low effort
we do not improve much over the standard placement; the
average number of clusters per row goes down to 11.9, which
is still too large for a realistic implementation. Using Mid and
High efforts, however, the number of clusters per row becomes
2.2 and 1.3, respectively, thus making the integration of CG
and PG feasible. Notice in particular that using the High effort,
most of the rows contain cells of the same cluster, and only a
few of them contain cells of two different clusters.

While a highly constrained placement may give benefits
in terms of ST and virtual-ground insertion, the same could
not be said for power (leakage and dynamic), timing, and
area. Figure 9 shows the above mentioned design metrics as a
function of the placement effort; values are normalized to the
standard placement.

0X

1X

2X

3X

4X

5X

6X

7X

8X

Leakage
Power

Dynamic
Power

Area Timing

N
o

rm
al

iz
ed

 V
al

u
e

Low Effort
Mid Effort
High Effort

Fig. 9. Design Metrics Tradeoff.

We can see that leakage power is insensitive to the place-
ment effort, since the number and the size of the cells remains
unchanged during the placement process. The dynamic power
slightly increases due to an increase of the wire-length; in
fact, in order to meet our cluster-based constraints, the placer
relaxes the constraint on the wire-length, thus yielding circuits

with larger interconnect parasitics. Conversely, timing suffers
a sizable increase. With a low-effort placement, the worst-
critical path grows up to 2.3X with respect to the standard case.
Concerning the area overhead, a highly constrained placement
reduces the clusters’ dispersion across the layout rows, thus
reducing the average number of virtual-grounds for each row.
As reported in the graph, using a low-effort placement, the
layout area becomes 7x larger than the standard case, while
with a high-effort placement, the area becomes is 1.8x.

It is worth emphasizing that the plot just reports the
overhead of the various metrics, and it does not show the
missed opportunities of a standard placement; although the
latter yields the best figures for all the metrics, it does not
allow to apply power gating due to the excessive dispersion
of clusters over the rows.

V. CONCLUSIONS AND FUTURE WORK

The joint application of clock-gating and power-gating,
although appealing from the theoretical stand-point, is quite
problematic, mainly because of the lack of support by the
existing tools and flows. In this paper, we have presented a
physical synthesis methodology which enables this integration.
The proposed flow relies on commercial synthesis and back-
end tools, therefore it is usable in industry-strength EDA
environments; the experimental results we have collected on
some benchmarks demonstrate the practical effectiveness of
our methodology.

REFERENCES

[1] L. Benini, P. Siegel, G. De Micheli, “Automatic Synthesis of Gated
Clocks for Power Reduction in Sequential Circuits,” IEEE Design and
Test of Computers, Vol. 11, No. 4, pp. 32-40, 1994.

[2] L. Benini, G. De Micheli, “Transformation and Synthesis of FSMs for
Low Power Gated Clock Implementation,” IEEE Transactions on CAD,
Vol. 15, No. 6, pp. 630-643, 1996.

[3] L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi, “Sym-
bolic Synthesis of Clock-Gating Logic for Power Optimization of
Synchronous Controllers,” ACM Transactions on Design Automation,
Vol. 4, No. 4, pp. 351-375, 1999.

[4] P. Babighian, L. Benini, E. Macii, “A Scalable Algorithm for RTL Inser-
tion of Gated Clocks based on Observability Don’t Cares Computation,”
IEEE Transactions on CAD, Vol. 24, No. 1, pp. 29-42, 2005.

[5] M. Anis, S. Areibi, M. Elmasry, “Design and Optimization of Multi-
threshold CMOS Circuits,” IEEE Transactions on CAD, Vol. 22, No. 10,
pp. 1324-1342, 2003.

[6] C. Long, L. He, “Distributed Sleep Transistor Network for Power Reduc-
tion,” DAC-41: ACM/IEEE Design Automation Conference, pp. 181-186,
June 2003.

[7] P. Babighian, L. Benini, E. Macii, A. Remollino, “Post-Layout Leakage
Power Minimization Based on Distributed Sleep Transistor Insertion,”
ISLPED-04: ACM/IEEE International Symposium on Low Power Elec-
tronics and Design, pp. 138-143, August 2004.

[8] A. Sathanur, A. Pullini, L. Benini, A. Macii, E. Macii, M. Poncino,
“Timing-Driven Row-Based Power Gating,” ISLPED-07: ACM/IEEE In-
ternational Symposium on Low Power Electronics and Design, pp. 104-
109, August 2007.

[9] L. Bolzani, A. Calimera, A. Macii, E. Macii, M. Poncino, “Integrating
Clock Gating and Power Gating for Combined Dynamic and Leakage
Power Optimization in Digital CMOS Circuits”, DSD08: IEEE 11th
Euromicro Conference on Digital System Design, September 2008, pp.
298-303.

[10] K. Usami, N. Ohkubo, “A Design Approach for Fine-grained Run-Time
Power Gating using Locally Extracted Sleep Signals”, ICCD-06: IEEE
International Conference on Computer Design, pp. 155-161, October
2006.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




