
Cache Aware Compression for Processor Debug Support

Anant Vishnoi, Preeti Ranjan Panda, and M. Balakrishnan

Department of Computer Science and Engineering, Indian Institute of Technology Delhi

Hauz Khas, New Delhi 110016, India

Email:{anant,panda,mbala}@cse.iitd.ac.in

Abstract—During post-silicon processor debugging, we need
to frequently capture and dump out the internal state of the
processor. Since internal state constitutes all memory elements,
the bulk of which is composed of cache, the problem is essentially
that of transferring cache contents off-chip, to a logic analyzer.
In order to reduce the transfer time and save expensive logic
analyzer memory, we propose to compress the cache contents
on their way out. We present a hardware compression engine
for cache data using a Cache Aware Compression strategy that
exploits knowledge of the cache fields and their behavior to
achieve an effective compression. Experimental results indicate

that the technique results in 7-31% better compression than
one that treats the data as just one long bit stream. We also
describe and evaluate a parallel compression architecture that
uses multiple compression engines, resulting in a 54% reduction
in transfer time.

I. INTRODUCTION

The increasing complexity of modern processors is accom-

panied by a corresponding increase in the complexity of their

debug procedure. During post-silicon processor debugging we

need to capture the internal state of the processor for further

analysis. In a typical processor testing scenario millions of

test cases are run with the internal state being dumped off-

chip at regular intervals through a logic analyzer. When a

failure is detected the processor is re-run from the previously

dumped correct state and the internal state is now dumped

at smaller intervals [1]. The process continues until external

analysis isolates the problem. This requires a large amount

of expensive logic analyzer memory for saving the internal

state and costs a significant amount of valuable debug time in

transferring the internal state. Since internal state constitutes

all memory elements in the processor, the bulk of which is

composed of cache, the problem in transferring the state is

essentially that of transferring the cache contents off-chip.

We present a novel cache compression engine to compress

the cache contents with the intention of saving state transfer

time and logic analyzer memory, as shown in Figure 1.

The engine compresses the cache contents on the way to

the logic analyzer, where it is stored in compressed form.

The compressed state is later downloaded from the logic

analyzer and decompressed offline for further analysis. Our

Cache Aware Compression technique compresses the cache

contents by exploiting the knowledge of the cache architecture.

Due to locality of reference in code and data, we observe

correlation within the cache fields such as Tag, ECC, Control

bits, etc. Our proposed cache aware compression compresses

the different fields separately for higher compression. We

This work was partially sponsored by a research grant from Intel

selected a variant of LZW compression method for the cache

compression hardware. In order to reduce the latency overhead

caused by the compressor, we have designed LZW-SLU, an

efficient hardware implementation of LZW. Furthermore, since

most of the compression time is consumed by the bulky data

field of the cache, we have proposed a parallel compression

methodology to reduce the overall dump time.

L1

Analyzer

CPU

LogicCompression
Engine

L2

D−Cache

I−Cache

Fig. 1. Compression of Cache Data

II. RELATED WORK

Related research can be classified into three categories: (i)

Compression in processor debug/test, (ii) hardware implemen-

tation of data compression algorithms, and (iii) cache/memory

compression for better performance and power.

A large body of work already exists in the area of test com-

pression. Balakrishnan et al. [2] address the problem of faster

loading of test vectors. Their proposed improvement uses a

software compression mechanism to improve the loading time.

Anis et al. [3] proposed a signature based technique to enhance

the post silicon debug process. Cheng et al. [4] propose a

test data compression technique, CacheCompress, to compress

scan chain data. The above line of research is orthogonal to

our proposed idea.

Many hardware compression techniques have been reported

in the past targeting different domains. We first review the

main compression techniques implemented in hardware, then

compression techniques that target memory and cache. X-

Match [5] is a dictionary based compression algorithm using

a move-to-front strategy with Huffman coding. IBM’s MXT

(Memory Extension Technology) [6] uses Parallel Block-

Referential Compression with directory sharing, a parallel

derivative of the Lempel-Ziv algorithm [7]. Lin et al. [8] pro-

posed a parallel architecture for LZW compression. Content

Addressable Memory (CAM) based compressor implementa-

tions have been reported in [9], [10].

Several memory compression techniques target the im-

provement of system performance through reduced memory

traffic [11], [12]. Because compression and decompression are

performed on-the-fly needing low latency, the compression

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



ratios achieved are relatively low. Lekatsas and Wolf [13]

used Semi Adaptive Markov Compression (SAMC) to store

compressed code. The techniques used in [14]–[17] attempt

to fit data into a smaller cache space using compression,

giving the illusion of a larger cache. The technique in [14]

compresses swapped-out virtual memory pages. The FPC

cache compression algorithm [15] attempts to find patterns

in cache line data and compresses it using a static coding

technique. Lee et al. [16] proposed a compressed memory

hierarchy model that selectively compresses L2 cache and

memory blocks. Lekatsas et al. [17] use SAMC to compress

the cache.

Most previous work on memory and cache compression

focused on performance and power improvement, which is

orthogonal to our targeted scenario. Since, in our case, decom-

pression is not performed online, we can use more aggressive

compression strategies. To the best of our knowledge, there

is no prior research on the specific problem scenario we have

outlined.

III. CACHE AWARE COMPRESSION

The knowledge that our input data has a cache structure

allows us to exploit data correlation within cache fields (Tag,

Control, Data, and ECC) to achieve better compression. We

extract the fields and compress them separately, as shown in

Figure 2.

TAG CTRL DATA ECC

OUTPUT UNIT

INPUT UNIT

Fig. 2. Utilization of Cache Architecture

A. Tag Field

Spatial locality of memory references often causes the Tag

fields (higher order address bits) of consecutive cache lines to

be identical or differ only in a few LSB bits. This leads to

significant compression opportunities when the tag sequence

is compressed separately. Note that such possibilities are less

explicit and may not be noticed by a compressor when the

cache content is treated as just an unstructured byte stream.

B. Control Field

Each cache line is associated with a set of control bits such

as Dirty, Reference, and Valid bits. We observed that these bits

change less frequently and depend on the program segment

(code, data) the cache line is representing. For example, if a

cache line represents the code segment then the dirty bits may

not change. Due to this correlation we separately compress

the control bit fields.

C. Data Field

In a unified cache, depending on the program, the data field

can be dominated by data or instructions or can be a mixture

of both. To utilize such information, we propose the following

two byte extraction methods.

1) Column-wise: It is well known that in applications

dominated by integer data, the upper bytes of the integer

variables change less frequently. Since most integers are of

small magnitude, the higher order bits are usually all 0’s

or all 1’s, depending on whether the integer is positive or

negative. The stream of such bytes leads to high compression.

If the corresponding higher order bytes are concatenated,

compression possibilities are enhanced. This is illustrated in

Figure 3. We divide 32-bit words of the cache line into bytes,

labeled 1,2,3,4, and form our byte streams for compression by

concatenating all the 1’s, 2’s, 3’s, and 4’s separately.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Line 0

Line 1

Line n

Word Word Word Word

Fig. 3. Column-wise byte extraction

2) Row-wise: When the cache contents are different from

integers, e.g., instructions, floating point, image data, etc,

column-wise byte streams do not help in compression. In

such cases, the input for the Data field compressor could be

composed as a row-wise byte stream, as shown in Figure 4.

1 42 3 4 1 2 3 4 1 2 3 4 1 2 3

1 42 3 4 1 2 3 4 1 2 3 4 1 2 3

1 42 3 4 1 2 3 4 1 2 3 4 1 2 3

Line 0

Line 1

Line n

Word Word Word Word

Fig. 4. Row-wise byte extraction

D. ECC Field

Error Correcting Code (ECC) bits are usually stored with

each cache line and need to be dumped along with the other

cache contents. We use a simple and effective compression

strategy for the ECC field, which is based on the recognition

that the ECC bits are redundant, unless there is actually an

error. Since the ECC computation function is known to the

compressor (and decompressor), we just re-compute the ECC

bits for the cache line data in the compression engine. If the

computed ECC matches the ECC stored in the cache, (which

is expected for the most cache lines), we send a ’0’. Since

the de-compressor knows the ECC computation function, it

can easily re-generate the ECC bits. If there is a mismatch,

we send a ’1’ followed by the actual ECC bits. The generated

bit stream is then compressed using a regular compression

algorithm.



11111111

00001110

11110000

00000001

00011111

11111110

00001000

00000000

Data ECC

011

111

011

111

111

100

111

000

11111111

00001110

11110000

00000001

00011111

11111110

00001000

00001000

Data ECC

011

111

011

111

111

110

111

000

Expected Actual

(a) (b)

Error

Error

Fig. 5. ECC Example

DATA ECCDATATAG CTRL

OUTPUT UNIT

INPUT UNIT

1 N

Fig. 6. Parallel Compression of data field

Example: In Figure 5, we have shown two sets of data

with ECC bits. In the second set we have introduced errors in

one of the ECC and data fields. We need to dump the whole

ECC field, as shown below.

• 011,111,011,111,111,100,111,000

With our compression strategy we obtain the following output.

The correct bits are replaced by ’0’ and error bits are prefixed

with ’1’.

• 0,0,0,0,0,0,1110,0,1000

Our compression strategy results in a saving of 10 bits (41.7%)

in this example. The generated output stream is a promising

candidate for further compression, since we expect long strings

of ’0’s.

E. Parallel Compression

We observe that the compression time is dominated by the

bulky data field of the cache. To reduce the compression time

we explore architectures with parallel compression of the data

field with multiple compressors, as shown in Figure 6.

IV. HARDWARE DESIGN

Based on the functionality, the compression engine can be

divided into following three sections: Input Unit, Compressor

and Output Unit as shown in Figure 7.

O/P
BUFF
O/P

BUFF

TAG &
CTRL

DATA ECC

O/P
BUFF

O/P
BUFF

I/P 
BUFF

I/P 
BUFF

I/P 
BUFF

Input Unit

Compressor

Output Unit

Communicator

Pre−Processing

Fig. 7. Hardware Module

A. Input Unit

The Input Unit is responsible for communicating with the

cache to receive the cache lines and segregate the line contents

into different input buffers associated with the different com-

pression engines. If necessary, different fields could also be

merged and fed to the same compression engine. For example,

in the cache configurations we studied, there were only 3

control bits; we could merge these 3 bits with the LSB bits of

the Tag field (Figure 7). Not much difference was observed in

the compression and this led to reduced area by dropping one

compression engine.

B. Compressor

The Compressor is the heart of the compression engine. We

observed that dictionary based LZW compression algorithm

works well for cache data. The X-Match strategy is also

powerful; a comparison is presented in Section V. For practical

implementation of LZW, an appropriate dynamic dictionary

update policy has to be defined. Since the dictionary space

is limited, we would like to store only those entries that are

likely to be referenced in the near future. Since, as mentioned

earlier, we expect locality of reference in the input data, a

Least Recently Used (LRU) policy is appropriate. The input

string suffix is searched in the dictionary, and the index

corresponding to the longest match is output. The dictionary

entry structure of LZW is shown in Figure 8. The index field

stores the pointer of the prefix string location, and the data field

contains the string suffix. We have designed and evaluated two

LZW implementations: LZW-SLU and LZW-DC.

index data

Fig. 8. Dictionary Entry of LZW algorithm

LZW-SLU: We have designed a CAM-based circuit for

a time-efficient realization of the dictionary search function.

The CAM based LZW algorithm returns the address of the

dictionary where the input data is stored. An ideal LRU im-

plementation requires expensive counters associated with each

CAM entry, so appropriate approximations are necessary. Ideas

such as Pseudo-LRU (PLRU) have been used to implement

cache associativity [18]. We present a comparison of our

proposed technique with this in Section V.

We introduce an LRU approximation that uses two bits per

entry: one bit for capturing recency of reference (L) and one

bit representing updation, i.e., write operation (U). We call this

approximation LZW with Single bit LRU and Update (LZW-

SLU). When a dictionary entry is referenced the corresponding

L bit is set to ‘1’. Similarly, when a dictionary entry is updated

the U bit is set to ‘1’. To update the dictionary we search for

the dictionary entry having L and U bits equal to “00”. Since,

the dictionary is built from top to bottom, the probability of

the LRU entry lying closer to the top of the dictionary is high.

When there is no entry with L,U bits = “00” then the L bits

associated with all entries are copied to the corresponding U

bits, and L bits are reset.



Index data

dataLoc.

L U

output

input

update

address

LRU CAM

"00"

Dictionary CAM

4096

Fig. 9. LZW-SLU Architecture

LZW-SLU performs two simultaneous searches: (i) input

string in the dictionary, and (ii) dictionary address to be

updated if the string search fails. We have implemented LZW-

SLU with CAM-based structures, shown in Figure 9. The

first, a Dictionary-CAM, maintains the dictionary of the LZW

algorithm. The second, an LRU-CAM, stores the L and U

bits. If there are multiple matches in the LRU CAM, the

first matching address is returned using the CAM’s priority

encoding mechanism. A simple modification of the generic

CAM cell was necessary to achieve the simultaneous copying

of the L to the U bits.

Dic

Control
Unit

data swap lines

512

locationoutput

input location

Cache

Main
Dic. 4096

ctrl. signals

ctrl. signals

search data

Fig. 10. LZW-DC Architecture Block Diagram

LZW-DC: To exploit locality in the input data, we propose

a variant of LZW called LZW with Dictionary Caching (LZW-

DC). LZW-DC stores recently referenced and LZW initializa-

tion data in the Cache Dictionary (CD) and the remaining data

in Main Dictionary (MD). The cache dictionary being smaller

than main dictionary, requires fewer bits to address it. Since

LZW’s compressed output is an address sequence, the output

can be smaller if we hit in CD most of the time. The hardware

structure is shown in Figure 10. CD and MD have 512 and

4096 entries, requiring 9 and 12 bits to address them. By using

one additional bit (ID) to identify the dictionary, we require

10 and 13 bits addresses respectively. If the hit ratio in CD

exceeds 33%, then the average number of bits in the ouput

address sequence is less than 12.

The input string to LZW-DC is searched in both dictionaries

simultaneously. If the search succeeds in CD, then there is no

action. If the search fails in CD but succeeds in MD, we swap

the MD entry with the LRU entry from CD, in anticipation

of temporal locality for this entry, which would then hit in

CD. In case of search failure we output the index of the last

string suffix found in the dictionaries, prefixed by identifier

ID. Following this, CD is updated with the string suffix, and

the LRU entry of CD replaces the LRU entry of MD. The

LZW-DC hardware implementation is based on LZW-SLU.

Both dictionaries use the SLU approximation of LRU policy.

C. Output Unit

The Output unit buffers the output of the compressor and

communicates with the logic analyzer. Whenever data is ready

for dumping, it initiates the protocol to transfer compressed

data to the logical analyzer. When the output buffer is empty,

we prefix some identification bits to the compressed stream.

These bits are required to identify the fields during con-

struction of the cache from compressed stream. We omit the

detailed working and FSM for Input and Output units due to

lack of space.

V. EXPERIMENTS

Our evaluation framework for dumping the cache state is

built around the Simplescalar processor simulator [19] and

Dinero cache simulator [20]. Appropriate modifications were

made to facilitate the stopping of simulation at arbitrary times

(representing the break points during debugging) and dump

the cache tags, data, control, and ECC bits.

We generated experimental data by running applications

from Mediabench and CPU-SPEC 2000 benchmarks on our

framework. To create more realistic scenarios where one

application runs after another, we also invoked the benchmarks

sequentially as subroutines of the main program. All our

experiments were carried out on the following L2 unified cache

configuration: 512 KB, 4-way, 16-byte line, 3 control bits,

7 ECC bits. All compression results reported in this paper

are the average compression ratios of all cache dumps taken

periodically at intervals of 10 million instructions. We use

the definition of compression ratio as the percentage of bytes

saved, i.e., (1−o/i)×100%, where o is the number of output

bytes and i is the number of input bytes.

A. Compression Results

Table I shows the compression ratios of all the cache com-

ponents when they are compressed separately. The Tag and

Ctrl. fields (Columns 3 and 4) show good compression, which

validates our claim about the correlation within them in dif-

ferent cache lines. Columns 5 and 6 show compression ratios

of the data field of the cache using row-wise and column-wise

byte extraction respectively. The significant variation in com-

pression ratio can be attributed to the different characteristics

of applications and their data. The data field of Bzip2 does not

compress much, as it being a compression algorithm, the cache

contains both uncompressed and compressed data; the latter

cannot be effectively compressed further. The Bzip2 example,

which depends on input data, and Milc/Hmmer, which are

applications using mostly integer data, give better compression

with column-wise byte extraction. The ECC column shows the

compression of the ECC field assuming error rate of 0.01%.

We have above 96% compression for ECC field for every

benchmark, because, as expected, there are long runs of 0’s



resulting from our ECC compression strategy. The last three

columns of Table I show the total compression ratio for the

benchmarks. The 8th and 9th columns show the compression

ratio when the data field is compressed row-wise and column-

wise respectively. The last column shows the compression ratio

when the cache content is compressed by considering it as a

stream of bytes i.e, by ignoring the cache’s internal structure

completely. This case can be considered the baseline case

for the comparisons. We obtained compression improvements

of 7% to 31% with our methodology. The last row of the

table shows the average compression of the various fields of

the cache and the average total compression ratio. Row-wise

processing of the Data field gives better results on an average,

but it should be possible, as a future enhancement, to program

the dumping mechanism with a hint indicating the type of data

likely to be present in the cache.

Benchmark Comp.Tag Ctrl Data Data ECC Total Total Byte

Algo. (R-W) (C-W) (R-W) (C-W) Stream

CHESS DC 58.60 97.21 79.43 75.11 96.98 78.15 74.62 62.38

SLU 57.14 96.96 80.60 76.19 96.69 78.92 75.32 62.50

LBM DC 90.85 97.19 88.22 84.11 96.96 89.22 85.86 73.04

SLU 91.87 96.93 90.73 90.71 96.67 91.38 91.36 76.85

MCF DC 77.52 97.22 53.61 49.14 96.96 59.39 55.74 40.01

SLU 79.38 96.97 55.57 49.51 96.67 61.20 56.26 40.14

MILC DC 74.22 97.22 38.34 41.99 96.96 46.54 49.51 22.95

SLU 80.28 96.97 35.45 42.20 96.67 44.91 50.41 18.34

HMMER DC 87.38 94.67 52.39 54.79 96.57 59.53 61.49 42.34

SLU 88.55 94.57 51.61 54.79 96.27 59.04 61.63 42.09

BZIP2 DC 85.73 97.04 18.52 21.26 96.94 31.77 34.00 12.93

SLU 87.47 96.80 14.81 15.60 96.65 28.95 29.59 8.10

ENC DC 88.26 95.96 49.63 37.60 96.96 57.42 47.61 38.73

MPEG SLU 89.25 95.75 50.09 35.92 96.67 57.91 46.35 38.18

LAME DC 83.16 94.99 41.48 39.10 96.93 50.14 48.20 34.35

ENC SLU 83.61 94.81 37.56 37.11 96.93 46.99 46.62 30.94

MPEG DC 85.80 96.34 41.97 32.95 96.94 50.88 43.53 32.33

LAME ENC SLU 86.41 96.08 39.81 30.78 96.65 49.19 41.82 29.96

Average DC 81.28 96.43 51.51 48.45 96.91 58.11 55.62 39.89

SLU 82.66 96.20 50.69 48.09 96.65 57.61 55.49 38.55

TABLE I
COMPRESSION RATIO(%) OF CACHE FIELDS

Figure 11 shows a comparison of the compression perfor-

mance of compression algorithms. In the interest of brevity

we have reported only the average compression ratio of

different configurations, where the data field is compressed

in parallel with the number of parallel compression units

varying in powers of 2, from 2 to 128. We have compared our

LZW implementation and modification with the best known

hardware compression algorithm X-Match and the popular

Pseudo LRU [18], approximation of LRU policy for LZW

algorithm. We notice that, except for Bzip2, X-Match gives

worse compression results than other implementations of the

LZW algorithms. Our LRU approximation implementation of

the LZW algorithm, LZW-SLU, gives, on an average, 9.2%

more than X-Match, and 1.2% more than PLRU. We also

observe that LZW-DC gives slightly better (0.5%) compression

than LZW-SLU.

Figure 12 shows the average compression ratio of all the

benchmarks for LZW-SLU (row-wise). The best compression

is observed for 4 parallel compression units. Beyond that, the

overhead of the identification bits leads to worse compression.

Similar trends are noticed for other compression algorithms.

 0

 20

 40

 60

 80

 100

 120

C
H
ESS

M
C
F

M
ILC

LBM
H
M

M
ER

BZIP2

M
PEG

_LAM
E_EN

C

LAM
E_EN

C

EN
C
_M

PEG

LZW-DC (ROW-WISE)
LZW-DC (COL-WISE)

LZW-SLU (ROW-WISE)
LZW-SLU (COL-WISE)

LZW-PLRU (ROW-WISE)
LZW-PLRU (COL-WISE)

X-Match (ROW-WISE)
X-Match (COL-WISE)

Fig. 11. Average Compression ratio

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128

 C
o

m
p

re
s
s
io

n
 R

a
ti
o

 Number of Compressors

LZW-SLU(Row-wise) 

Fig. 12. Average Compression ratio for parallel compression

B. Implementation Details

We have designed our hardware implementation to be

roughly compatible with Intel Pentium 4 class of processors –

with 2 GHz clock, 32 bit bus, 533FSB, implemented on 180nm

technology. Our implementation consists of VHDL models

synthesized into a 180nm ASIC library with Synopsys Design

Compiler. CACTI [21] was used to estimate the area and delay

of memory components.

Table II shows a comparison between the area, critical path

delay, CPU cycle, and the processing speed of compression

algorithms. The comparison shows X-Match to be superior in

area and delay. However, as seen in Figure 11, its compression

ratio is worse. The computation of total dump time is a

function of different parameters. This is discussed in Section

V-C. We have used a 32 byte input buffer and 256 byte output

buffer, The larger output buffer is necessary to reduce the

overhead of the identification bits. At the same time, the buffer

sizes cannot be too large because the unused space at the end

of the output streams leads to overheads. The input and output

units have only 0.5% impact on the area of the compression

engine.

C. Transfer Time

Transfer time is an important metric for comparison of the

hardware compression strategies. The scenario is shown in

Figure 13. The time taken to transfer the cache contents with

no compression is:



Compression Area Critical # CPU Byte CPU cycles/

Algorithm (mm2) Path(ns) Cycle Processed Byte

LZW-DC 2.066 12.11 25 0.32 78.13

LZW-SLU 1.701 5.11 11 1 11

P-LRU 1.825 5.62 12 1 12

X-Match .460 15.09 31 4 7.75

TABLE II
AREA, CRITICAL PATH AND PROCESSING SPEED

T
dump

Engine
Logic
Analyzer

t 2 3t t

Compression 

1

Cache

Fig. 13. Dump Time Tdump,t1, t2, t3

Tdump = num bytes / bus speed

For a cache with 512 KB, 4-way, 16 byte line, we have:

Tdump = 6.12 × 105 CPU Cycles.

The compression engine compresses the data and commu-

nicates with the cache and the logic analyzer simultaneously.

Therefore, when the compression engine is placed between the

cache and the logic analyzer, the transfer time is determined

by the slower of the two interfaces, i.e., the maximum of the

following durations:

• t1 Time to transfer data from Cache to Compression

Engine; this is constant at 0.5 x105 CPU cycles

• t2 Time to Compress Data

t2 =
num bytes (Data Field) × num cycles

num comp engines × process speed

• t3 Time to transfer compressed data

t3 = num output bytes / bus speed

Table III shows the effect on transfer time, of increasing

numbers of parallel compression units using LZW-SLU and

X-Match. Column 1 lists the compression algorithm. Column

2 shows the number of parallel compression engines. A

monotonic increase is observed for both algorithms, in column

3, which shows the data rate at which compression engine

compresses the data in parallel. Column 4 shows the rate at

which the Bus can send data to the logic analyzer; this is

constant. Column 5 shows the CPU cycles consumed by the

Bus to transfer the compressed data. The compression ratio

decreases with increase in number of compression engines due

to overheads. The 6th column, showing t2 values, depends

on column 4 and the data to be compressed. Compression

time decreases with the number of compression units. The

7th column shows the transfer time, which is the maximum

of t1, t2 and t3, in number of CPU cycles. We observe

that the transfer time decreases with increasing number of

parallel units (upto 32 for LZW-SLU and upto 16 for X-Match,

amounting to about 54% of Tdump), but starts increasing

beyond that due to increase in overheads. X-Match leads to

lower transfer times until 16 units; for 32 and beyond, LZW-

SLU performs better.

Algo. # of Rate t2 Rate t3 t3 t2 Transfer

Comp. bytes/ bytes/ ×10
5

×10
5

Time

Engine cycle cycle cycles cycles ×10
5 cycles

LZW- 2 0.20 1 2.61 28.81 28.81

SLU 4 0.40 1 2.56 14.42 14.42

8 0.80 1 2.53 7.21 7.21

16 1.60 1 2.64 3.60 3.60

32 3.20 1 2.76 1.80 2.76

64 6.40 1 2.94 0.90 2.94

128 12.80 1 3.15 0.45 3.15

X- 2 0.27 1 3.15 20.31 20.31

Match 4 0.54 1 3.06 10.16 10.16

8 1.08 1 3.11 5.08 5.08

16 2.16 1 3.12 2.25 3.12

32 4.32 1 3.19 1.31 3.19

64 8.64 1 3.22 0.63 3.22

128 17.28 1 3.32 0.32 3.32

TABLE III
COMPARISON FOR PARALLEL ENGINES

VI. CONCLUSION

Transferring internal state of a processor off-chip is a key

function during post-silicon debug and testing. Since on-chip

cache accounts for bulk of the processor state, we attempt to

reduce memory space and time required for the state transfer

by introducing a hardware compression engine that is aware

of the cache architecture. Knowledge and exploitation of the

cache fields enables an efficient compression that is 7-31%

better than a compression that is unaware of the structure. We

presented and evaluated designs for LRU approximations in

the hardware implementation of dictionary-based compression,

including a parallel compression architecture that uses multiple

compression engines.

REFERENCES
[1] B. Vermeulen, M. Z. Urfianto, and S. K. Goel, “Automatic generation

of breakpoint hardware for silicon debug,” in DAC 2004.
[2] K. J. Balakrishnan, N. A. Touba, and S. Patil, “Compressing functional

tests for microprocessors,” in ATS, 2005.
[3] E. Anis and N. Nicolici, “Low cost debug architecture using lossy

compression for silicon debug,” in DATE, 2007.
[4] H. Fang et al., “CacheCompress: a novel approach for test data com-

pression with cache for IP embedded cores,” in ICCAD 2007.
[5] M. Kjelso et al., “Design and Performance of a Main Memory Hardware

Data Compressor,” in 22nd EUROMICRO, 1996.
[6] R. B. Tremaine et al., “IBM Memory Expansion Technology (MXT),”

IBM Journal of Res. and Dev., vol. 45, no. 2, 2001.
[7] J. Ziv and A. Lempel, “A universal algorithm for sequential data

compression,” IEEE Trans. on Information Theory, May 1977.
[8] M.-B. Lin, “A hardware architecture for the LZW compression and

decompression algorithms based on parallel dictionaries,” J. VLSI Signal
Process. Syst., 2000.

[9] C. Su, C.-F. Yen, and J.-C. Yo, “Hardware efficient updating technique
for LZW CODEC design,” ISCAS, 1997.

[10] K.-J. Lin and C.-W. Wu, “A low-power CAM design for LZ data
compression,” IEEE Trans. Computers, 2000.

[11] L. Benini et al., “An adaptive data compression scheme for memory
traffic minimization in processor-based systems,” ISCAS02.

[12] Y. Zhang and R. Gupta, “Data compression transformations for dy-
namically allocated data structures,” in Proceedings of the International
Conference on Compiler Construction (CC), 2002.

[13] H. Lekatsas and W. Wolf, “Code compression for embedded systems,”
in DAC, 1998.

[14] L. Yang et al., “CRAMES: compressed RAM for embedded systems,”
in CODES+ISSS, 2005.

[15] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in ISCA, 2004.

[16] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and evaluation of a
selective compressed memory system,” in ICCD, 1999.

[17] H. Lekatsas, J. Henkel, and W. Wolf, “A decompression architecture for
low power embedded systems,” in ICCD, 2000.

[18] H. Ghasemzadeh, S. S. Mazrouee, and M. R. Kakoee, “Modified pseudo
LRU replacement algorithm,” in ECBS, 2006.

[19] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,”
Technical Report cs-tr-97-1342, June 1997.

[20] J. Edler and M. Hill, “Dinero IV Trace-Driven Uniprocessor Cache
Simulator.” http://www.cs.wisc.edu/ markhill/DineroIV/.

[21] P. Shivakumar and N. Jouppi, “CACTI 3.0: An integrated cache timing,
power and area model,” WRL Research Rep., August 2001.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




