
Exploration of power reduction and performance enhancement in LEON3 processor

with ESL reprogrammable eFPGA in processor pipeline and as a co-processor

Syed Zahid Ahmed

1,2
, Julien Eydoux

1
, Laurent Rougé

1
, Jean-Baptiste Cuelle

1
,

Gilles Sassatelli
2
, Lionel Torres

2

1 (Menta, France), 2 (University of Montpellier 2, UMR CNRS 5506, LIRMM, France)

1 (ahmed, eydoux, rouge, cuelle @menta.fr), 2 (ahmed, sassatelli, torres @lirmm.fr)

Abstract
We will explore how processing power of LEON3 processor

can be enhanced by connecting small commercially available

embedded FPGA (eFPGA) IP with the processor. We will analyze

integration of eFPGA with LEON3 in two ways, inside the

processor pipeline and as a co-processor. The enhanced

processing power helps to reduce dynamic power consumption by

Dynamic Frequency Scaling. More computational power at lower

frequency helps fabrication of chip in LP (Low Power) process

compared to GP (General Purpose) which helps to significantly

reduce Static Power which has become a very crucial issue at and

beyond 90nm technologies.

 Use of reconfigurable accelerator raises the question of its

programming complexity, HW/SW partitioning and silicon

overhead. We will present that silicon overhead of eFPGA is small

compared to the benefits which can be obtained with it. We will

present a profiling tool which we created for our experiments. To

analyze the issue of programming complexity we have explored

state of the art Catapult™ ESL tool of Mentor Graphics®.

1. Introduction
The explosion in the demand of portable devices which are

rich in multimedia and internet applications has brought

several new challenges to semiconductor industry in recent

years. In addition to the usual ever increasing processing

power demands industry now also has to face the challenge of

power consumption for increasing the battery life. As

technologies have moved beyond 90nm the static power has

become as much significant as the dynamic power. To reduce

the static power Fabs have come up with Low power (LP)

process technologies to reduce leakage of transistors. Starting

from 45nm intel® has even moved to high-k transistors with

metal gate (Hafnium) to reduce leakage. But reduction in

static power comes with the trade off in speed [1] which is of

fundamental importance to cope with ever increasing

processing power demands.

Microprocessors are at the heart of the semiconductor

designs. In this paper our target is to explore how we can

improve the processing power and reduce power consumption

using reconfigurable computing. The concept of using

accelerators is not new and is widely used in industry. We got

the inspiration from state of the art solutions of ARC® [2] and

Tensilica® [3] which are widely used in consumer electronics

products. They profile the application and create new

instructions by custom hardware for critical computational

intensive portions of the program and by doing so

significantly improve computational power and hence reduce

the power consumption.

Such solutions are very efficient for specific known

applications. But in case of current mobile applications

scenario for instance, the application processor is running

several applications like PC and is running OS for mobiles

like Symbian®, Windows CE®, Linux, Mac® etc. It is

difficult to know even for the vendors each and every kind of

acceleration hardware which they may need as now users also

create several applications for their devices (iPhone™ is a

very prominent example). To give advantage of acceleration

and energy reduction for portable devices it will be helpful to

have small reconfigurable accelerators in addition to standard

ones, which can be reconfigured for the specific needs.

This research is done in close research collaboration

between startup Menta® (www.efpga.com) and LIRMM

(research center of University of Montpellier 2 and CNRS). In

the research collaboration we are investigating new paradigms

in which commercially available embedded FPGA IP of

Menta® can help provide advantages of reconfigurable

computing to industry. The main targets are the key problems

of industry like product differentiation, future up gradation,

fast time to market, enhancement of computational power and

issue of power consumption which is most dominant

challenge of the time and this paper is dedicated to this issue.

We are exploring how to improve eFPGA architecture to

achieve further benefits for wide range of applications.

As this research is industrial oriented we also analyzed

several similar approaches of the past in this area both from

academia and industry. It is widely known that although

scientifically they had strong potential, but almost all of them

commercially failed or found very limited acceptance in very

specific segment of industry. A prominent example is XiRisc

[4], several others e.g. GARPH [5], PipeRench [6] etc. can be

analyzed on internet. In our opinion all of those approaches

had a good scientific & theoretical potential but they all failed

mainly because of commercial reasons. These approaches

were quite restrictive for adoption in wider range. The

programming of these solutions required additional efforts

than standard languages (like ANSI C, VHDL, Verilog etc.)

978-3-9810801-5-5/DATE09 © 2009 EDAA

and needed use of specialized compilers to program the

reconfigurable portion. For instance XiRisc, the solution has a

good potential but from commercial point of view its

reconfigurable portion (PiCoGA) is unavailable and virtually

useless for industry which for instance is highly ARM® &

MIPS® dominant. We have considered all these issues of

great importance in our research and want to remove the

barriers and provide a programmable IP to the industry which

is general, easy to program and usable for everyone for wide

range of applications.

Therefore it is important to mention that, although we are

following the same theoretical path of previous approaches

but our target is much different and broader. The eFPGA IP is

not only for reconfigurable accelerator but it is one of the

prominent applications. We think that this will be a good

contribution to industry and help them solve several of their

biggest challenges like time to market, product differentiation

and power consumption etc. eFPGA IP will bring advantages

of FPGAs directly inside the SoC.

For the processor we chose LEON3 [7] because it is close

in standard and quality like basic commercial processors of

ARM® and MIPS®. We analyzed the integration of eFPGA

in two ways, inside the processor pipeline and as a co-

processor. Our results with LEON3 have showed that co-

processor implementation has a small impact on performance

compared to direct pipeline implementation. But the overall

benefits of co-processor approach (most prominently no

change in processor integrity) exceeds the small performance

loss compared to pipeline integration due to additional cycles

spent in co-processor interface.

Reconfigurable accelerators bring two major questions,

first how much will be the silicon overhead and second how

we will program them. We have considered both issues in our

work. We will present that the overhead of Area and Power of

eFPGAs is small compared to benefits which it brings. For

programming eFPGA we have made investigations of

automatically generating the VHDL or Verilog for eFPGA

from ANSI C/C++ source using Mentor Graphics®

Catapult™ (www.mentor.com). We have found that

programming at ESL level is much faster and easier compared

to manual HDL programming. Design space exploration with

ESL is much faster and with the advances in ESL the gap

between hand coded and ESL generated HDL is decreasing.

The rest of the paper is organized as follows. In section 2

we will describe our experimentation methodology. We will

briefly explain our eFPGA architecture, the modifications

which we made to LEON3 and a profiling tool which we have

created to analyze applications for HW/SW partitioning. In

section 3 we will present results of AES and DES

cryptographic algorithms to illustrate the concept and

compare the results for pipeline and co-processor

implementation of LEON3+eFPGA. In section 4 we will

analyze the trade offs in Area, Power & Speed by the use of

eFPGA with LEON3 on 65nm Low power (LP) process

technology. Finally in section 5 we will conclude our work

and explain future ideas and plans.

2. Introduction to the hardware and experiment

methodology
 In this section we will briefly discuss the building elements

of our hardware, the tools and experiments methodology. We

will use these concepts and hardware to demonstrate practical

examples in section 3 and in section 4 we will present their

actual silicon implementations on 65nm to analyze area,

power and speed statistics of our experiments.

2.1 The eFPGA
 At the heart of our experiments in this work is the eFPGA

which we have designed. The abstract view of the eFPGA is

shown in fig. 1. We have completely designed it as a soft IP.

It is completely written in VHDL so is technology

independent. As it is soft IP there are no SRAM cells, Pass

transistor or tri state buffer switches. The configuration

element is a Flip Flop and switching element is a Multiplexer.

The core is highly configurable. We can select all the

fundamental parameters of the eFPGA like LUT size, Cluster

size (number of LUT in a eCB), Routing channel size and

array size (number of eCBs) etc. This highlights the

advantage of its high flexibility. It is very easy to generate the

IP of the user requirements. The details of eFPGA

architecture are beyond the scope of this paper. We have

discussed more details about it in [1]. In this paper we only

use it as a reconfigurable accelerating element and generate

the IP of our requirements.

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

eCB

S

I/OI/OI/O I/O

I/OI/OI/O I/O

I/
O

I/
O

I/
O

I/
O

I/O
I/O

I/O
I/O

Fig. 1 : Abstract view of eFPGA

2.2 LEON3 processor modifications
 The LEON3 [7] is a configurable processor written in

VHDL. The advantage of the availability of its source helps to

make modifications and explore new concepts. The LEON3

processor itself needs no introduction; we will only discuss

our modifications which we made in LEON3. Figure 2 shows

an abstract block diagram of our modifications. To explore

the concept of reconfigurable acceleration we integrated our

eFPGA soft IP in two ways with the processor.

 On the left hand side of figure 2 the integration of eFPGA

inside the processor pipeline is shown. We integrated it like

the Multiply/Divide unit. We created a new custom

instruction for eFPGA which allows executing data in

reconfigurable instruction which is created depending on

running application inside the eFPGA.

 On the right hand side of figure 2 eFPGA integration as a

coprocessor is shown. In LEON3 the co-processor interface is

only partially implemented. We created the entire interface

based on the SPARC V8 manual [8] based on which LEON

processor is designed. According to SPARC manual the co-

processor interface is similar to FPU (Floating Point Unit) but

is flexible and custom dependent, so we only created subset of

interface which was needed by us. This also avoids

unnecessary silicon overhead and requires very few clock

cycles to send and receive data. We only implemented 8

registers in the register bank and only used basic Load, Store

and CPOP instructions of SPARC V8 Manual.

 This setup provides us the flexibility to analyze the pros &

cons of eFPGA integration as pipeline vs co-processor from

both theoretical and commercial point of view. The

configuration portion of eFPGAs is not discussed in this paper

for simplicity reasons. There is a small configuration

hardware attached with the eFPGA which loads the

configuration bitstreams of eFPGA from the main memory

through the AMBA bus. The configuration hardware can be

controlled by the software so is very flexible and easy to use.

In
t. U

n
it

M
U

L
/D

IV

e
F

P
G

A

LEON3

eFPGA
Co-Processor

Fig. 2 : Integration of eFPGA in LEON3 processor as

pipeline and as a co-processor

2.3 The profiling tool and experiment flow
Our experimentation flow is shown in fig. 3. It starts from

the application written in C/C++. We profile the application

with our profiling tool which we have created with the help of

SimpleScalar modeling tool which analyzes the application on

a MIPS like model [9]. We created several tools to analyze

the outputs of SimpleScalar and display them in a user

friendly HTML GUI. With this whole tools set (SimpleScalar

+ our custom tools) we can analyze applications in detail and

extract information about each and every function, every

single line of the code, execution trees and much more. The

operation and results of our profiling tool will be further

illustrated in next section when we will analyze applications

with the complete flow of fig. 3.

With profiling we can make HW/SW partitioning

(currently done manually). At this step comes the importance

of programming complexity issue of reconfigurable

accelerator (eFPGA in our case). For this issue we created the

VHDL source for programming eFPGA both with hand coded

optimal VHDL and also using Catapult™ for obtaining

VHDL/Verilog directly from the ANSI C source [10]. We

will demonstrate these results in next section. The HDL for

eFPGA is given as a source to proprietary eFPGA CAD tool

Niagara™ of Menta® to perform synthesis (using Synopsys®

Design Compiler™), mapping and place & route to obtain the

programming file and simulation models of eFPGA.

Application (C/C++)

Profiling (HW/SW Partitioning)

eFPGA CAD Flow

Catapult™

LEON3eFPGA

C/C++

C/C++

VHDL/Verilog

eFPGA conf. file

Fig. 3 : Application flow for LEON3+eFPGA

implementation

3. Experiment Results
To illustrate the flow and explore the advantages in terms

of overall performance and power consumption we present

the results by the analysis of two cryptographic algorithms.

We took them as an example application because they are

practical and big enough to analyze with profiling for

HW/SW partitioning. They are mostly composed of bit level

operations so are suitable to analyze the benefits of bit level

random logic implementation capabilities of eFPGA. We will

present AES in detail with profiling illustrations to

demonstrate complete flow and for DES we will directly show

our achieved results.

3.1 AES
The results of profiling of AES are shown in Table 1 and

Table 2. Table 1 shows statistics of all the functions in the

application. For every function we can explore information

like how many times it is called, how many cycles it takes on

average, on total and finally how much it contributes in

percentage of execution to the total application. Table 2

describes the similar statistics for the four top most

computationally expensive lines. With the help of table 1 and

table 2 it is very easy to analyze the whole application and see

where are the computationally expensive critical areas in the

application. From table 2 it is observed that line 356 of the

application is consuming 23.68% of the computation time of

whole application. We analyzed this line and found that it is

in MixColumns function which according to table 1 is almost

half (54.6%) of the total execution of AES algorithm, so by

implementation of this function in eFPGA we can

approximately double the computational power.

Table 1 : Profiling of AES application

Function name Called

Avg.

Cycles

Total

Cycles

% of

execution

main 1 179838 179838 100.0%

AES 1 147224 147224 81.9%

MixColumns 9 10904 98140 54.6%

Product 576 53 30549 17.0%

KeyExpansion 1 30396 30396 16.9%

SubByte 10 1642 16422 9.1%

ShiftRows 10 1633 16333 9.1%

AddRoundKey 11 1453 15990 8.9%

SubWord 10 396 3960 2.2%

RotWord 10 146 1466 0.8%

Table 2 : Profiling of all C instructions in AES Code

Line CODE CYCLES %
Executed

times

Avg.

Cycles

356

C[i][j]=(Product

(T[k][j],Matrix[i][k]

))^ (C[i][j]); 42194 23.68% 576 73.25

442

SousKey[j][k][i]=S

ousKey[j][k1][i]^So

usKey[j][k][i-1]; 13352 7.49% 120 111.27

247

T[j][i]=sbox[(T[j][i]

/16)][(T[j][i]%16); 13007 7.30% 160 81.29

388

T[j][i]=(T[j][i])^

(K[j][i][Round]); 12190 6.84% 176 69.26

STEP-1 STEP-2

STEP-3

STEP-4

Fig. 4 : Implementation of complete MixColumns function

in hardware in gradual steps

The C code of MixColumns function is shown in fig. 4. It

can be seen that the most computational expensive line (356)

is at the heart of the function and is repeatedly executed in

several nested loops. We implemented this function in

hardware in four gradual steps to see the overall gain in terms

of area, power and speed. The four implementation steps are

shown in fig. 4 and the implementation results are shown in

table 3. These four steps are as follows.

In step 1 we implemented only Product function in

hardware. Table 3 shows the results of this implementation

for number of clock cycles if eFPGA in pipeline is used vs if

eFPGA as a co-processor is used along with the eFPGA

hardware resources needed (which are off course same for

both cases). The AES algorithm takes 40358 clock cycles for

purely software execution on LEON3 processor, by moving

Product function to eFPGA, number of required clock cycles

came down to 30430 for pipeline implementation and 30447

for co-processor and gave a speedup of almost 1.3X. The

eFPGA took only 41 LUT6 for hand coded VHDL and 44

LUT6 for Catapult™ generated VHDL (the eFPGA which we

used has LUT size of 6). In step 2 we implemented the “xor”

in addition to Product function, in step 3 we implemented the

inner most “for” loop and finally in step 4 we implemented

the complete function. Results for all these implementations

are shown in table 3 with the speedup which we achieved in

all these steps and the hardware resources of eFPGA for both

hand coded VHDL and Catapult™ generated VHDL.

Table 3 : Different implementations of AES with

LEON3+eFPGA processing, pure soft (40358 cycles)

Pipeline

eFPGA

(Cycles)

Gain X

Times

Co-Processor

eFPGA

(Cycles)

Gain X

Times

STEP-1 30430 1.326 30447 1.325

STEP-2 30722 1.313 30735 1.313

STEP-3 23752 1.699 23767 1.698

STEP-4 16244 2.484 16265 2.481

 STEP-1 STEP-2 STEP-3 STEP-4

VHDL:

Hand

41-LUT6,

0FF

39-LUT6,

0FF

67-LUT6,

8FF

506-LUT6,

324FF

VHDL:

Catapult

44-LUT6,

0FF

72-LUT6,

33FF

130LUT6,

78FF

819-LUT6,

604FF

From table 3 it can be observed how the gain in

performance gradually increases by transferring more and

more computation to eFPGA. However it is very important to

note the relative increase in hardware resources. We can see

that step 3 is giving a very good speedup with very small

amount of eFPGA resources (only 67 LUT6 for hand coded

VHDL). It can be seen that the state of the art Catapult™ is

giving close results to hand coded VHDL. It is widely known

that with ESL the final RTL depends a lot on the way source

C/C++ is written. We have found the same issues, it can be

seen that in some cases the differences between hand coded

VHDL and ESL is larger than others (specially last 2 steps)

because of the style of implementation. However we have

found that programming through ESL is much faster and

easier to verify. In case of Catapult™ we have built-in support

for different levels of verification and integrated support of

ModelSim™ which made it very easy for us to write the code

and quickly verify compared to our hand coded VHDL. We

can check several implementation options for target HDL at a

higher level, like trade offs in area for decreasing latency and

increasing throughput, pipelining etc. That is relatively

difficult and time consuming to do at HDL level.

Another very interesting observation in table 3 is that the

speed up achieved with integrating eFPGA inside the

processor pipeline and using it as a co-processor is almost

same on overall application level analysis. Individually for

execution there is off course a difference because with co-

processor interface we have to spend some additional cycles

to load data into co-processor registers and there is some

further delay which is caused by co-processor controller state

machines. For our case the difference is much less also

because as mentioned in section 2.2 we created a very

compact and fast co-processor interface custom to our needs

which requires very few clock cycles for performing the data

transactions between processor and eFPGA.

 But overall we see a great advantage with co-processor

implementation from practical and commercial point of view.

Firstly with this interface type we do not need to modify the

integrity of the processor (which is very critical for

commercial products due to reasons of testing mainly). Most

of the commercial processors already have a co-processor

interface and can easily take advantage of connecting a

reconfigurable accelerator with that. Secondly with co-

processor interface it is more flexible and convenient to

program and control the accelerator and also allows the

possibility to execute things in parallel for large applications.

3.2 DES
 We conducted experiments on DES algorithm in similar

fashion like AES and found incredible gain of almost 10X by

implementing the critical function in eFPGA. This high value

of gain was achieved by only spending 95 LUT6 (hand coded

VHDL). The gain in DES is much higher than AES due to the

nature of the algorithm. This also highlights how

advantageous it can be to have small reconfigurable

accelerators in our design for applications which require use

of multiple kinds of algorithms.

4. Power Consumption, Area & speed trade offs
 In this section we will compare our results of section 3 of

LEON3+eFPGA processing for area and power trade offs.

Table 4 presents our synthesis results of LEON3 processor

core (no FPU) on 65nm LPLVT (Low Power Low Voltage

Threshold) process libraries of ST Microelectronics®

provided by CMP [11]. For Cache memory we used 32K

Instruction and 32K Data cache. We chose this value because

this value of cache is usually found in processors of ARM®

and MIPS®. For SRAM memory blocks for Cache memory

we used 65nm High Density low leakage memory blocks of

STMicroelectronics® provided by CMP [11]. From the

datasheet of memory blocks we found the Static power (at

25
o
C) and Dynamic power (at 100MHz, with normal activity

rate of 50%).

Table 4 : Area and Power consumption of LEON3

Processor with Cache memory at 100MHz

65nm LP

Area

(mm2)

Static Power

 25oC (uW)

Dynamic Power

100MHz (mW)

Core 0.191 85.3 5.75
32K/32K

Cache 0.4 25.63 14.9

Total 0.591 110.93 20.65

Table 5 : Power statistics of 484 LUT-6 eFPGA at 25
o
C,

100MHz, different toggle rates and static probabilities

65nm LP process LVT SVT HVT

Static Power (mW) 1.27 0.105 0.011

DP(mW) @ (Tr-0.25,Stp-0.25) 23 22 25

DP(mW) @ (Tr-0.50,Stp-0.5) 47.6 46.6 53.8

DP(mW) @ (Tr-1.0,Stp-0.50) 95.36 93.36 107.8

Table 6 : Area and Power consumption of eFPGA

Speedup

Gain X

Area

(mm2)

Stat. Power

 25oC (uW)

Dyn. Power

100MHz(mW)

STEP-1 1.3 0.128 0.00861 1.804

STEP-2 1.3 0.122 0.0082 1.716

STEP-3 1.7 0.209 0.014 2.948

STEP-4 2.48 1.578 0.106 22.264

DES 10 0.296 0.0199 4.18

 Table 6 shows the area overhead of eFPGA (for hand

coded VHDL) and its power consumption figures for the four

steps of our AES implementation in table 3 and DES based on

results of table5. Static power for SVT (Standard Voltage

Threshold) and Dynamic power is estimated at normal toggle

rate and static probability (Tr-0.25, Stp-0.25).

If we analyze as an example DES, we achieved almost 10X

speed up by spending only 95 LUT6. From table 6 we see that

we achieved it by just spending 0.296mm
2
 of additional

silicon due to eFPGA which only consumes approx. 4.18mW

of total power. So the LEON3 processor which we found has

maximum frequency of almost 185MHz at 65nm LP, with

eFPGA it can be possible to get 10 times more DMIPS for

DES in same frequency. If we apply Dynamic frequency

scaling while executing DES we can decrease the dynamic

power of LEON3 almost 10 times by only spending around

4mW of additional power overhead of eFPGA.

 A very important point to consider here is that eFPGA at

the moment has no power management and is completely soft

core written in VHDL and is under continuous research to

greatly enhance the architecture. Even at soft implementation

level (which we are using for fast exploration and technology

independence) and pessimistic power comparison, we can

observe the promising advantages that can be achieved by

adding a small eFPGA IP to the designs. Also we can observe

in table 5 & 6 that our eFPGA has a very low static power.

5. Conclusions & Future works
We explored the advantages of having small embedded

FPGAs (eFPGAs) as a reconfigurable accelerator in LEON3

processor as an example to improve performance and

reduction in power consumption. We presented a very brief

overview of some of the prominent similar approaches from

academics and industry done in the past in the introduction

section. We provided our viewpoint to these approaches, their

potentials and possible reasons of not finding wide acceptance

in the industry on the bases of our industrial experiences and

study. We proposed our differentiation from those approaches

which led to the motivation of this work.

 Use of reconfigurable accelerators raises major questions

like silicon overheads and programming complexity. We

considered both of these issues in our work. We presented

with our experiments that overhead of eFPGA is small

because we only use it for accelerating small portions of code

which can give us overall benefits in terms of performance

enhancement and power consumption compared to silicon

overhead. We used state of the art Catapult® to explore the

use of ESL for programming the eFPGA directly in ANSI

C/C++ compared to hand coded HDL and discovered the

advantages of ESL which allow us to develop and verify our

task much faster than HDL. We found that ESL tools are

improving fast and their results are getting closer to hand

coded HDL.

To keep the practical scenarios completely in consideration

we analyzed the use of eFPGA as an accelerator in LEON3 in

two ways, inside the processor pipeline and as a co-processor.

We found that in overall co-processor interface provides

greater benefits because of its flexibility and removing the

need of any change in processor design and the compiler.

Most of the commercial processors already have a co-

processor interface and they can easily take advantage of

connecting an eFPGA IP to their design without any

modification to their main architecture which is in many cases

very expensive and unfeasible mainly because of the

fabrication and verification issues. Such issues also have been

a reason of commercial failures of many reconfigurable

solutions in the past.

We presented the complete idea with the help of a practical

example of AES algorithm. We analyzed the application for

HW/SW partitioning with the profiling tool which we have

created for our research. We investigated the speed up

advantages by transferring the computation to eFPGA in

gradual steps along with the hardware resources needed for

that. We analyzed our results in terms of overall gains in

terms of area, power and speed up.

Looking towards the future we see great advantages that

can be achieved using eFPGAs in SoCs which gives us

inspiration about the challenges for our future research. The

advantages of eFPGAs will only be meaningful if they

provide high logic density with very low power consumption.

This will allow us to put relatively more logic in eFPGA

which is essential to give more overall benefit if there is a

longer communication delay between processor and eFPGA

in case of buses (like AMBA). We have analyzed the eFPGA

as an accelerator in two ways in this work. We will investigate

it now connected with a bus, like AMBA to provide flexibility

for wide range of applications like also I/Os etc. The

balancing figure between overall gain and loss is very

challenging. We saw in table 3 that the logic resources can

dramatically change depending on what we want to

implement. AES was one example; the results can be different

for different applications. Sometimes they can be much better

and sometimes may be less like we saw in case of DES there

was enormous speedup with very low logic resources. So a

high logic density of eFPGA will improve the chances of

overall gain for wider range of applications.

For increasing the logic density we need to make

innovations both at architectural level and also

implementation level like ARM® (www.arm.com) which uses

special custom cells to improve performance. Some nice

guidelines are also obtained from academic research for

importance of hard macro blocks [12] and use of custom cells

to improve logic density of eFPGAs compared to pure soft

core [13]. We will explore the use of custom cells for eFPGA

for transforming it from purely soft core to more custom and

targeted to special technology to achieve optimal results

which are closer to industrial requirements and also

investigate how to make it technology independent with

custom cells also for further flexibility. We will explore the

addition of hard macro blocks like Memories, DSP blocks,

shift registers and even small processors. Having coarse

grained eFPGA will increase the benefits compared to fine

grained, the range of applications in which eFPGA can give

advantages will significantly increase. By having more coarse

grained eFPGA will help reduce the configuration resources

and hence configuration time, the cost and most importantly

the gap between ASIC & FPGA.

6. References

[1] Syed Zahid Ahmed, Michael Fernandez, Gilles Sassatelli, Lionel

Torres, “eFPGA architecture explorations: CAD & Silicon analysis of

beyond 90nm technologies to investigate new dimensions of future

innovations”, ReCoSoC’08, July 9-11, Barcelona, pp. 17-24

[2] www.arc.com

[3] www.tensilica.com

[4] F. Campi et al, “A Reconfigurable Processor for Embedded

Applications”, ISSCC 2003

[5] J. Hauser et al, “Garp: a MIPS processor with a reconfigurable

coprocessor”, FCCM97

[6] S.C. Goldstein et al, “A reconfigurable Architecture and Compiler”,

IEEE Computer, 2000

[7] LEON3, Gaisler research www.gaisler.com

[8] Sparc V8 manual : www. sparc.com/standards/V8.pdf

[9] SimpleScaler : www.simplescalar.com

[10] www.mentor.com/products/esl/

[11] CMP (Circuits Multi-Projects) http://cmp.imag.fr

[12] I. Kuon and J. Rose, "Measuring the Gap between FPGAs and ASICs"

IEEE Transactions on CAD of Integrated Circuits and Systems, Vol.

26, NO. 2, FEBRUARY 2007, pp. 203 - 215

[13] V. Aken'Ova, G. Lemieux, R. Saleh, “An Improved Soft eFPGA Design

and Implementation Strategy”, Custom Integrated Circuits Conference,

San Jose, California, pp. 179-182, September 2005.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

