
An Event-Guided Approach to
Reducing Voltage Noise in Processors

Meeta S. Gupta, Vijay Janapa Reddi, Glenn Holloway, Gu-Yeon Wei and David M. Brooks
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

{meeta,vj,holloway,wei,dbrooks}@eecs.harvard.edu

Abstract—Supply voltage fluctuations that result from induc-
tive noise are increasingly troublesome in modern micropro-
cessors. A voltage “emergency”, i.e., a swing beyond tolerable
operating margins, jeopardizes the safe and correct operation
of the processor. Techniques aimed at reducing power con-
sumption, e.g., by clock gating or by reducing nominal supply
voltage, exacerbate this noise problem, requiring ever-wider
operating margins. We propose an event-guided, adaptive method
for avoiding voltage emergencies, which exploits the fact that
most emergencies are correlated with unique microarchitectural
events, such as cache misses or the pipeline flushes that follow
branch mispredictions. Using checkpoint and rollback to handle
unavoidable emergencies, our method adapts dynamically by
learning to trigger avoidance mechanisms when emergency-prone
events recur. After tightening supply voltage margins to increase
clock frequency and accounting for all costs, the net result is a
performance improvement of 8% across a suite of fifteen SPEC
CPU2000 benchmarks.

I. INTRODUCTION

Power-constrained CMOS designs are making it increas-
ingly difficult for microprocessor designers to cope with power
supply noise. As current draw increases and operating voltage
decreases, inductive noise threatens the robustness and limits
the clock frequency of high-performance processors. Large
current swings over small time scales cause large voltage
swings in the power-delivery subsystem due to parasitic in-
ductance. A significant drop in supply voltage can cause
timing margin violations by slowing logic circuits. For reliable
and correct operation of the processor, voltage emergencies,
i.e., large voltage swings that violate noise margins, must be
avoided.

The traditional way to deal with inductive noise is to
over-design the processor to allow for worst-case fluctua-
tions. Unfortunately, the gap between nominal and worst-
case operating conditions in modern microprocessor designs
is growing. A recent paper on supply-noise analysis for a
POWER6 processor [11] shows the need for timing margins
that accommodate voltage fluctuations of more than 18% of
nominal voltage (200mV dips at a nominal voltage of 1.1V).
Conservative design of processors using large timing margins
ensures robustness, but it lowers the maximum achievable
operating frequency.

Another way to handle inductive noise is to design the
processor for typical-case operating conditions and add a
fail-safe mechanism that guarantees correctness despite noise
margin violations. This strategy can improve performance,
but only if the cost of using the fail-safe mechanism is
not too high. In practice, active emergency prevention (e.g.,
performance throttling techniques) is needed if aggressive
operating margins are sought to push performance.

A number of throttling mechanisms have been proposed to
dampen sudden current swings, including frequency throttling,
pipeline freezing, pipeline firing, issue ramping, and changing
the number of the available memory ports [8], [12], [15], [16].
However, such mechanisms require a tight feedback loop that
detects an imminent violation and then activates a throttling
mechanism to avoid the violation. The detectors are either
current sensors or voltage sensors that trigger when a soft
threshold is crossed, indicating a violation is likely to occur.
Unfortunately, the delay inherent in such feedback loops limits
effectiveness and necessitates margins sufficiently large to
allow time for the loop to respond [10].

Another approach is to eliminate the feedback loop asso-
ciated with previous proposals and instead monitor specific
microarchitectural events as indicators of processor activity
that can lead to voltage emergencies. We have previously
shown that there is a strong correlation between voltage
violations and microarchitectural events [9]. A variety of

24% (L2 Miss)

55% (Pipeline Flush)

4% (TLB Miss)

< 1% (L1 Miss)
3% (Long Lat)

14% (Uncharacterized)

Fig. 1: Distribution of the events that trigger emergencies for our
SPEC CPU2000 benchmarks.

events can lead to emergencies such as cache misses, pipeline
flushes due to branch misprediction, TLB misses, and long-
latency events. For example, a sudden increase in processor
activity after a long L2 cache miss can cause a sudden
drop in voltage. Figure 1 shows the result of applying the
categorization algorithm we previously used [9] to our suite of
benchmarks from SPEC CPU2000. Most voltage emergencies
in the benchmarks are associated either with L2 cache misses
or with pipeline flushes due to branch mispredictions.

Our event-driven mechanism triggers corrective action when
it detects certain emergency-prone events (L2 cache misses
and branch flushes, as they are the events associated with
most of the emergencies). A naı̈ve implementation might be
to take preventive measures at every such event (for example,
to activate a throttling mechanism at every L2 miss). That

978-3-9810801-5-5/DATE09 © 2009 EDAA

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Number of Unique Addresses

C
u
m

u
la

ti
v
e

 C
o
n
tr

ib
u
ti
o
n
 t
o
 E

m
e
rg

e
n
c
ie

s
(%

)

164_gzip

168_wupwise

172_mgrid

173_applu

176_gcc

177_mesa

179_art

181_mcf

183_equake

186_crafty

197_parser

254_gap

256_bzip2

300_twolf

301_apsi

Fig. 2: The number of unique instructions causing emergencies and
their corresponding contribution to the total number of emergencies.

would be overly conservative, however, since most such events
don’t give rise to emergencies. Our analysis shows a false
alarm rate of 71% for such a naı̈ve mechanism. Instead, we
track specific instructions associated with events (L2 misses
or pipeline flushes) that have caused emergencies, and we
maintain contextual information for each event and emergency.
Reacting only to events associated with emergencies results in
much less overhead than the naı̈ve implementation.

Figure 2 shows a cumulative distribution graph plotting the
number of unique program addresses that trigger emergencies
and their contribution to the total number of emergencies dur-
ing execution. Each benchmark except for parser, gcc, twolf
and crafty has fewer than fifteen unique program addresses
that cause over 90% of run-time emergencies. Thus, the state
that an instruction-specific event-guided mechanism needs to
maintain can be stored in just a few bytes.

The main contributions of this paper are that:
1) We propose and evaluate a method that learns to avoid

recurring voltage emergencies by triggering preventive
action on the microarchitectural events that cause them.

2) We combine our voltage emergency avoidance method
with a reusable, non-intrusive fail-safe mechanism and
demonstrate net performance benefits while guarantee-
ing safe and correct operation.

3) We show that current-shunt regulation controlled at the
microarchitectural level can help to reduce inductive
noise with minimal increase in power.

In Section II we describe our proposed event-guided ap-
proach. Section III describes the experimental setup that we
designed to test our approach through simulation. Section IV
describes and evaluates our results. Section V discusses related
work on handling inductive noise in processors at the archi-
tectural level. Section VI concludes with a brief summary and
plans for future work.

II. AN EVENT-GUIDED APPROACH

Figure 3 shows the operational flow of our event-guided
method for detecting and suppressing voltage emergencies.
The parts of the diagram connected by solid arrows detect and
respond to actual voltage emergencies. The parts connected
by dashed arrows are responsible for learning to recognize
impending violations and using this training to suppress future

Fail-Safe Mechanism

Emergency Handler

Run

Monitor

Current/Voltage

Rollback

Triggering Layer

Adaptation Mechanism

Monitor

Processor Events

Fig. 3: Overview of the proposed event-guided architecture for
handling voltage emergencies.

occurrences of violations. Current and voltage are monitored
by a sensor, and an emergency handler determines when
the supply voltage exceeds operating margins. On detecting
a violation, the handler invokes the fail-safe mechanism to
recover from any deleterious effects of the emergency. The
handler also signals the triggering layer to learn from this
emergency, in order to recognize future emergencies. Later,
when the triggering layer detects an emergency-prone situa-
tion, it invokes the adaptation mechanism to take appropriate
preventive action. In the following paragraphs, we describe the
components of Figure 3 in more detail.

Emergency handler. When it detects a voltage swing that
violates the microprocessor’s voltage margins, the emergency
handler invokes the fail-safe mechanism to recover an un-
corrupted execution state. After recovery, the handler invokes
the triggering layer to train it to prevent voltage emergencies
proactively, collecting details (such as code location and event
type) about the emergency just encountered to guide its
analysis.

Fail-safe mechanism. Emergencies can occur either be-
cause they are not anticipated by the triggering layer or
because event-guided adaptations prove ineffective. We use
a recovery mechanism similar to the reactive mechanisms
for processor error detection and correction that have been
proposed for handling soft errors [3], [18]. These mecha-
nisms are based on checkpoint and rollback. We evaluate
two checkpoint-rollback mechanisms, one that makes check-
points explicitly [14], [13], [1] and one that saves them
implicitly [10]. Each is fine-grained—the interval between
checkpoints is just tens of cycles. Explicit-checkpoint mecha-
nisms periodically save the architectural state of the processor,
i.e., the architectural registers and updated memory state.
Restoring the register state incurs substantial overhead, and
there are additional cache misses at the time of recovery. (We
assume a buffered memory update, and cache lines updated
between checkpoints are marked as volatile.) Moreover, a
robust explicit-checkpoint mechanism for noise margin viola-
tions requires the maintenance of two checkpoints (since any
checkpoint falling after a violation but before its subsequent
detection must be considered corrupt).

We previously used an implicit-checkpoint-rollback scheme
based on delayed commit and rollback that speculatively
buffers updates to the machine state for long enough to be
sure that no emergency occurred while they were being com-
puted [10]. Completed results wait in the reorder buffer (ROB)
or store queue (STQ) for an interval set by the sensor delay

of the emergency detector. After that interval, if there have
been no emergencies, results are committed to the retirement
register file or the L1 data cache.

Explicit checkpointing is a less intrusive addition to existing
processor designs, and it is more likely to be useful for
purposes other than voltage emergencies. But because of the
high frequency of noise margin violations, the performance
cost of an explicit-checkpoint mechanism could be much
greater than that of the implicit mechanism. Our event-guided
emergency suppression method brings the overhead of explicit
checkpointing into line with that of implicit checkpointing,
giving us the best of both approaches.

Triggering layer. The triggering mechanism tries to guide
the hardware through safe execution using adaptation mech-
anisms that prevent emergencies (Adaptation Mechanism in
Figure 3). The triggering layer waits for event notifications
from the emergency handler. When it receives one, it caches
the time and recent microarchitectural event history, and it
updates a frequency counter for the particular emergency. This
information determines when to locate and adapt the source
instruction that caused an emergency. Once an emergency has
been flagged as frequently occurring, the triggering layer uses
an event characterization algorithm [9] to determine the root
cause of the emergency. It targets subsequent occurrences of
the emergency for prevention, using microarchitectural events
as cues to activate an adaptation mechanism.

In order to provide pertinent information to the triggering
layer of the event-guided approach, the processor maintains
two circular structures similar to those found in existing
architectures like IPF and PowerPC. The first is a branch
trace buffer (BTB), which maintains information about the
most recent branch instructions, their predictions, and their
resolved targets. The second is a data event address register
(D-EAR), which tracks recent memory instruction addresses
and their corresponding effective addresses for all cache and
TLB misses. The triggering layer reads this information at
every voltage emergency and uses it as described in Section IV
to suppress future emergencies.

We augment each entry in our BTB and D-EAR structures
with a saturating counter that gives the age of the entry in
cycles. To determine whether an event described in one of the
structures is the likely cause of a subsequent emergency, we
need to know the time interval between the two. The age of
an entry also helps the hardware to discard entries that are too
old to be of use to the triggering mechanism.

The trigger mechanism can either be implemented purely in
hardware or as software-assisted hardware. A hardware-only
mechanism is practical because monitoring fewer than twenty
program points at once typically covers 90% of all emer-
gencies (as discussed in Section I). Information about which
instructions to track and the associated emergency-causing
events can be maintained in a small content-addressable
memory that recognizes when to trigger preventive action.
Alternatively, software can be used to add hints to instructions
(such as mispredicted branches or loads that have missed
in the data cache) that have been associated with noise
margin violations, so that the hardware can take preventive
measures whenever those instructions are again associated
with emergency-prone events. Software has potential benefits

that hardware-only mechanisms do not share, since a software
layer can perform intelligent code transformations to prevent
emergencies. But this and other specifics about the hardware
or software implementation are beyond the scope of this paper.

Adaptations. Adaptations are intended to avoid the sudden
current increases that lead to large voltage swings. We consider
four kinds of adaptations: frequency throttling, using a current-
shunt regulator, pseudo-instruction padding, and prefetching.
These techniques either stretch out current fluctuations in time
or smooth them out in amplitude. In Section IV, we evaluate
the effectiveness of several combinations of these techniques.

Throttling mechanism: Throttling mechanisms spread out
increases in current by slowing processor activity. Several
kinds of throttling have been proposed [8], [12], [15], [16].
We use simple frequency throttling: dividing the frequency
of the system in half whenever throttling is turned on. This
quickly reduces current draw, but it also reduces performance
by slowing down the machine. We use throttling both for
mispredicted branches and for loads flagged as missing in the
L2 cache.

Current-shunt mechanism: Alon and Horowitz [2] pro-
pose a push-pull regulator topology that uses an additional
higher-than-nominal supply voltage, comparator-based feed-
back, and a switched-source follower output stage to reduce
supply noise. We drive the output stage of this regulator with
our triggering mechanism (hardware-event-guided or software-
guided) and call it the current-shunt mechanism. This tech-
nique has an effect similar to throttling, but without the extra
performance penalty associated with throttling. We use the cur-
rent shunt either for a mispredicted branch or an L2 miss. This
mechanism suffers from additional power overhead since the
extra charge dumped into the power grid comes from a higher
supply voltage. To simplify the comparison of schemes, this
power overhead can be translated into performance loss. For
example, designers might compensate for this power overhead
by reducing global supply voltage and clock frequency. We
assume a 3% increase in power translates to a 1% decrease in
performance [6].

Pseudo-instructions: One possible way to deal with a
sudden increase in activity when an L2 cache miss returns is
to create a chain of instructions with data dependences that
require them to be issued serially, so that processor activity
increases gradually. We do so by adding redundant pseudo-
instructions, which we call pseudo-nops. However, these nop
instructions degrade performance by wasting CPU cycles.
Hence, we employ a selective nop strategy whereby pseudo-
nops are discarded unless the L2 miss occurs. Our analysis
shows that a single nop is able to achieve the same reduction
in emergencies as multiple pseudo-nops with less performance
degradation, so we use single pseudo-nop insertion in our
evaluation.

Prefetching: Another way to deal with large stalls is by
prefetching loads that cause large L2 cache miss penalties.
To study the potential of dynamic prefetching adaptations for
dealing with emergencies, we assume an ideal prefetch mech-
anism; the system inserts prefetch instructions for delinquent
loads, eliminating further cache misses for those loads. This
does not capture the complexities of a dynamic prefetching
engine, but it gives a measure of its potential to combat

Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window 128-ROB, 64-LSQ Branch Penalty 10 cycles
Functional 8 Int ALU, 4 FP ALU, Branch 64-KB bimodal

Units 2 Int Mul/Div, Predictor gshare/chooser
2 FP Mul/Div BTB 1K Entries

Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way
L2 I/D-Cache 2MB 4-way, Main Memory 300 cycle

16 cycle latency latency

TABLE I: Processor parameters for SimpleScalar.

emergencies. To be unbiased in our analysis, we omit the
performance benefits of prefetching when considering the
overall performance of the system.

III. EXPERIMENTAL SETUP

Our evaluation of event-guided voltage emergency suppres-
sion compares naı̈ve individual adaptations against different
sets of instruction-specific adaptations drawn from the list
described in the preceding section. For each adaptation or
adaptation set, the evaluation also compares a fine-grained
explicit-checkpoint mechanism against the implicit-checkpoint
scheme. Table II lists all of the combinations tested. Our
objective is to find the most successful combination for mini-
mizing the overhead associated with suppressing or correcting
for emergencies. We also want to show that under realistic
assumptions, there is a net performance advantage to using
our approach.

We use SimpleScalar/x86 to simulate a Pentium 4 with the
parameters shown in Table I. The modified 8-way superscalar
x86 SimpleScalar collects detailed cycle-accurate current pro-
files using Wattch [7]. We calculate voltage variations by
convolving the simulated current profiles with an impulse
response of the power delivery subsystem [16], [12]. We use a
power delivery subsystem model based on the characteristics
of the Pentium 4 package [4], which exhibits a mid-frequency
resonance at 100MHz with a peak impedance of 5mΩ. This
corresponds to a period of 30 clock cycles for a 3GHz
machine. Finally, we assume peak current swings of 16-50A.

In our experiments, we assume an aggressive operating
margin of 4%, even though with our power delivery package,
we see voltage dips as large as 13%. Bowman et al. [5]
show that removing a 10% operating voltage guardband leads
to a 15% improvement in clock frequency. Using this 1.5
ratio as the scaling factor from operating voltage margin to
clock frequency gives an upper bound of 17.5% on the clock
frequency increase made possible by reducing a 13% voltage
margin down to 4%. Defining performance as frequency/CPI,
where CPI is the average number of cycles per instruction,
this frequency increase translates to a potential 17.5% perfor-
mance increase, provided CPI remains constant. Of course,
emergency avoidance incurs performance overhead, which we
measure in our simulations. We evaluate an adaptation’s net
impact on performance by using this measured overhead to
reduce the top potential performance enabled by tightening to
a 4% voltage margin.

We use 20 cycles as the delay required by a voltage sensor
to detect a voltage emergency. We also use 20 cycles as the
duration of each throttling activation, and 21 cycles as the
checkpointing interval in the explicit-checkpoint mechanism.

Nature of Adaptation

Naı̈ve Throttling Current shunt

Instruction-specific
Throttling + Pseudo-nop Current shunt + Pseudo-nop

Throttling + Prefetch Current shunt + Prefetch

TABLE II: Combinations of adaptation mechanisms studied in our
simulations.

Making checkpoints at shorter intervals than the delay time
of the voltage sensor would be wasteful. For the current-
shunt adaptation, we find that inserting charge equivalent to
10 amperes for 10 cycles is most effective. Total processor
current draw is typically 35A.

Baseline fail-safe mechanisms. A checkpoint-rollback
mechanism suffers from the penalty of redoing some compu-
tation whenever a noise margin violation occurs. The restart
penalty is a function of the sensor delay in the system, i.e.,
the time required to detect a margin violation. An explicit-
checkpoint scheme incurs additional overhead associated with
restoring the registers (assumed to be 8 cycles, for 32 regis-
ters with 4 write ports) and memory state (because volatile
lines are flushed, additional misses can occur after rollback).
An implicit-checkpoint scheme does not incur a penalty for
restoring state, but it suffers from the penalty associated with
delaying commits in the ROB/STQ. This penalty is also a
function of the sensor delay. With a sensor delay of 20 cycles,
the overhead incurred by the fine-grained explicit-checkpoint
mechanism is 35%, as compared to only 8% for the implicit-
checkpoint scheme (Figure 4(a)).

Event-guided fail-safe execution. Section II provided a
detailed description of the various kinds of adaptation in
isolation. In this section, we evaluate the effectiveness of
individual naı̈ve event-driven adaptations, and we also show
the benefits of combining instruction-specific adaptations. The
configurations that we analyze are shown in Table II. Each
is paired with both fail-safe strategies, i.e., a fine-grained
explicit-checkpoint-rollback mechanism and also one using
implicit checkpoints.

For load instructions, we apply combined adaptations in
sequence. For example, for the combination of instruction-
specific throttling and pseudo-nops, we use throttling first for
a load instruction, but if the throttling at any recurrence of
the cache-miss event for that load is unable to avoid a voltage
emergency, then we insert a pseudo-nop. Similarly, we try
throttling alone before adding prefetching in the instruction-
specific-throttle-and-prefetch combination. We maintain the
same order for current-shunt adaptations.

IV. RESULTS AND ANALYSIS

First, some general observations. In the SPEC CPU2000
benchmarks, instruction-specific throttling is able to eliminate
nearly 100% of voltage emergencies associated with pipeline
flushes that follow branch mispredictions. But throttling alone
is less effective in reducing emergencies after loads that
miss in the L2 cache. On the other hand, prefetching alone
eliminates nearly all of these L2-miss-related emergencies.

Figure 4 illustrates the performance improvements of our
event-guided framework averaged over our CPU2000 bench-
mark suite. Note in Figure 4(a) that each adaptation scheme

0

5

10

15

20

25

30

35

%
 P

e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d
s

(a) Breakdown of Different Costs

Delayed Commit

Restart Cost

Nop Cost

Throttle Cost

Power Cost

Baseline Throttle Shunt Throttle
+nop

Throttle
+prefetch

Shunt
+prefetch

Shunt
+nop

Naive Instruction−Specific

−15

−12

−9

−6

−3

0

3

6

9

12

%
 P

e
rf

o
rm

a
n
c
e
 I
m

p
ro

v
e
m

e
n
t

(b) Overall Improvement in Performance

Implicit checkpoint

Explicit checkpoint

Baseline Throttle
+prefetch

Shunt
+nop

Shunt
+prefetch

Throttle
+nop

ShuntThrottle

Naive Instruction−Specific

Fig. 4: Comparison of different approaches to handling noise margin violations. Each bar represents an average over our suite of SPEC
CPU2000 benchmarks. The left bar for each scheme represents the implicit-checkpoint mechanism; the right bar, the explicit-checkpoint
mechanism. Graph (a) shows the distribution of performance overhead associated with each adaptation. Graph (b) shows overall improvements
in performance (frequency/CPI), with 17.5% as the upper bound.

reduces the total restart cost relative to the fail-safe-only base-
line, because the elimination of emergencies reduces the num-
ber of rollbacks needed. As expected, naı̈ve event-based adap-
tations have higher overhead than instruction-specific ones
because the penalties for using them (reduced clock frequency
in the case of throttling or increased power consumption in
the case of current shunt) apply to all mispredicting branch
instructions and delinquent loads, not just to the problematic
ones.

The current shunt and prefetching combination (last pair in
Figure 4) achieves the best result overall. With the implicit-
checkpoint mechanism, this combination reduces total over-
head from 8% (for the baseline) down to 6%, which increases
the performance gain from 8.7% (for the baseline) to 11%.
With the fine-grained explicit-checkpoint mechanism, the com-
bination of current shunt and prefetching yields a significant
increase in performance (a net performance improvement
of 8% for the combined adaptations as compared to 13%
degradation for the baseline), primarily because of reduced
total restart costs. The overall cost is reduced from 35% for
the baseline to around 9%, equivalent to the baseline penalty
of the implicit-checkpoint-rollback mechanism. Because our
event-guided approach reduces the need to roll back and restart
execution, it allows fine-grained explicit checkpointing to be
used with relatively little penalty.

Figure 5 presents a closer view of this most successful com-
bined adaptation (current shunt plus prefetching scheme). The
adaptation is effective in eliminating emergencies attributed to
L2 miss events and flush events for most of the benchmarks. In
mgrid, however, applying prefetching to the loads that cause
L2 misses increases the emergencies (almost doubling them).
A detailed analysis shows that removing the stall periods
associated with L2 misses increases the fluctuation of current,
which causes more voltage swings. Further investigation re-
veals that the emergencies have a strong correlation with a set
of events instead of a single event, leading to misclassification
by the event characterization algorithm. It is in such cases that

a software-assisted solution could help recognize that the usual
handling of events is not working and turn the adaptation off
to prevent further aggravation of the problem.

Another anomaly is apsi, which does not show a significant
reduction in emergencies. The main reason is that few of its
emergencies are attributed to branches and L2 miss events,
and we focused on handling those events.

V. RELATED WORK

Much of the recent research on the inductive noise prob-
lem has addressed only the hardware level. Very little work
has been done on software-assisted approaches for handling
voltage emergencies. Grochowski et al. [8] describe a voltage
simulation capability based on cycle-by-cycle activity levels of
each functional block, and they use the simulation result in a
feedback mechanism to handle dI/dt emergencies. Joseph et
al. [12] present a control-theoretic technique to handle voltage
emergencies. Powell and Vijaykumar handle high-frequency
inductive noise using a pipeline muffling mechanism [15]
and resonance tuning [16]. Most of these works use sensor-
triggered mechanisms. Our method uses sensors only to detect
unavoidable emergencies, not to trigger adaptations.

As Figure 4 shows, throttling is a poor adaptation mech-
anism for the event-guided scheme described in this paper.
In a separate study, we have shown that collecting activity
history as a sequence of control flow events plus microar-
chitectural events enables throttling to suppress emergencies
effectively [17]. However, such a mechanism requires sizable
resources (e.g., an 8KB structure) by comparison with tracking
a few relevant program addresses.

VI. CONCLUSION

We have developed and evaluated a method for reduc-
ing supply voltage fluctuations that result from inductive
noise in microprocessors. Using the fact that most voltage
emergencies are correlated with unique events like cache
misses and pipeline flushes, our method learns to trigger

gzip wupwise mgrid applu gcc mesa art mcf equake crafty parser gap bzip twolf apsi
0

20

40

60

80

100

(a) Breakdown of emergency causes

%
 D

is
tr

ib
u
ti
o
n
 o

f
e
m

e
rg

e
n
c
ie

s

l2 miss flush tlb miss l1 miss long lat other

gzip wupwise mgrid applu gcc mesa art mcf equake crafty parser gap bzip twolf apsi
0

5

10

15

17

(b) Power overhead

%
 I
n
c
re

a
s
e
 i
n
 P

o
w

e
r

180%

Fig. 5: Overall effect of applying the current-shunt adaptation for branches and loads, followed by prefetching of loads when the current
shunt for loads does not eliminate the emergency. The left bar for each benchmark in graph (a) represents the baseline emergency distribution
and the right bar represents the distribution of emergencies after applying the adaptation mechanisms. Its height reflects the relative number
of emergencies not avoided. Graph (b) shows the increase in power due to the additional charge provided by the current shunt.

preventive adaptations when the recurrence of such an event
at a particular code location forecasts a new emergency.
We tested several kinds of preventive adaptations, alone and
in combination, including a novel application of current-
shunt regulation that smoothed fluctuations effectively without
consuming much power. We also evaluated two fail-safe
mechanisms that guarantee correct operation in the face of
unavoidable voltage emergencies. We showed that because
our event-guided method reduces emergencies so effectively,
a fine-grained explicit-checkpoint and rollback mechanism
becomes nearly as low in overhead as an implicit-checkpoint
scheme that would be less reusable and more intrusive to add
to microprocessor designs. After tightening supply voltage
margins to 4% to increase clock frequency and accounting
for all costs associated with emergency reduction and fail-
safe protection, the net result is an average performance
improvement of about 7% across our suite of fifteen SPEC
CPU2000 benchmarks.

In future work, we intend to improve our techniques for
dynamically identifying the causes of voltage emergencies.
We plan to add a firmware or software component to our
framework that will both extend its memory for emergency
signatures and prevent the hardware from pursuing unproduc-
tive adaptations. We will also study the use of run-time code
transformations that avoid emergencies.

ACKNOWLEDGMENTS

We are grateful to our colleagues in industry and academia
for the many discussions that have contributed to this work.
We also thank the anonymous reviewers for their comments
and suggestions. This work is supported by gifts from Intel
Corporation, and National Science Foundation grants CCF-
0429782 and CSR-0720566. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
NSF.

REFERENCES

[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and
recovery: Towards scalable large instruction window processors. In
MICRO-36, 2003.

[2] E. Alon and M. Horowitz. Integrated regulation for energy-efficient
digital circuits. In CICC, 2007.

[3] H. Ando et al. A 1.3 GHz fifth generation SPARC64 microprocessor.
IEEE JSSC, 38, 2003.

[4] K. Aygun et al. Power delivery for high-performance microprocessors.
Intel Technology Journal, 9, Nov. 2005.

[5] K. A. Bowman et al. Energy-efficient and metastability-immune timing-
error detection and instruction replay-based recovery circuits for dy-
namic variation tolerance. In ISSCC, 2008.

[6] D. Brooks et al. Power-aware microarchitecture: Design and modeling
challenges for next-generation microprocessors. In IEEE-MICRO, 2000.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In ISCA-27, 2000.

[8] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural simulation
and control of di/dt-induced power supply voltage variation. In HPCA-8,
2002.

[9] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks.
Towards a software approach to mitigate voltage emergencies. In
ISLPED, 2007.

[10] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks.
DeCoR: A delayed commit and rollback mechanism for handling
inductive noise in processors. In HPCA-14, 2008.

[11] N. James et al. Comparison of split-versus connected-core supplies in
the POWER6 microprocessor. In ISSCC, 2007.

[12] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate
voltage emergencies in high performance processors. In HPCA-9, 2003.

[13] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Checkpointed
early load retirement. In HPCA-11, 2005.

[14] J. F. Martı́nez et al. Cherry: Checkpointed early resource recycling in
out-of-order microprocessors. In MICRO-35, 2002.

[15] M. D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency in-
ductive noise. In ISLPED, 2003.

[16] M. D. Powell and T. N. Vijaykumar. Exploiting resonant behavior to
reduce inductive noise. In ISCA-28, 2004.

[17] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and
D. Brooks. Voltage emergency prediction: Using signatures to reduce
operating margins. In HPCA-15, 2009. (to appear).

[18] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error detection
in microprocessors. IEEE Trans. Dependable Secur. Comput., 3(3):188–
201, 2006.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

