
Instruction Re-encoding Facilitating Dense Embedded Code

Talal Bonny and Jörg Henkel
University of Karlsruhe, CES - Chair for Embedded Systems, Karlsruhe, Germany

{bonny, henkel} @ informatik.uni-karlsruhe.de

Abstract
Reducing the code size of embedded applications is one

of the important constraint in embedded system design.
Code compression can provide substantial savings in terms
of size. In this paper, we introduce a novel and efficient
hardware-supported approach. Our approach investigates
the benefits of re-encoding the unused bits (we call them
re-encodable bits) in the instruction format for a specific
application to improve the compression ratio. Re-encoding
those bits may reduce the size of decoding table by more
than 37%. We achieve compression ratios as low as 44%
(including all overhead that incurs). We have conducted
evaluations using a representative set of applications and
have applied it to two major embedded processors, namely
MIPS and ARM.

1 Introduction

Embedded systems often use a relatively slow processor
and small memory size to minimize costs. According to
the World Semiconductor Trade Statistics Blue Book, there
are an estimated 5 billion embedded microprocessors in use
today [1]. The reason for the growing popularity of embed-
ded system-driven devices, such as PDAs (Personal Digital
Assistants) and web-enabled cell phones, is the sustainable
growth of their application, e.g. the world market for em-
bedded software will grow from about $1.6 billion in 2004
to $3.5 billion by 2009, at an Average Annual Growth Rate
(AAGR) of 16% [3]. Since the memory chip of the em-
bedded system must be small according to the demands of
the embedded market, different techniques are used to re-
duce the size of the embedded software by compressing it
offline and then de-compressing it online. The idea of using
code compression as a tool for chip size reduction in micro-
processors has mostly incited interest in the area of single
instruction issue (usually RISC) processors. In addition to
that, the code compression can be beneficial to energy as
well, because it reduces the energy consumed in reading
instructions from memory and communicating them to the
processor core [15, 22, 5, 18].
The code compression techniques can be used either when
the ISA (Instruction Set Architecture) is specified or not.
When the ISA is specified, the code compression technique
utilizes the information in opcodes or instruction format to
build the hardware decoder. In this case, the compression
ratio will be improved, since the number and the type of
operands in the instruction format can be reduced accord-
ing to the operation defined by the opcode. When the ISA
is not specified, the code compression technique follows the
traditional data compression methods, which depend only
on the statistics of instruction values or Byte patterns. The
decoder in this case is simpler than before because it does
not take the instruction format into account. The only dis-

advantage is that the compressed code is not so efficient as
the technique with a specific ISA.
When a code compression technique is used, compressed
instructions and a decoding table are generated. The size
of the decoding table may be around 40% of the memory
requirments for a compressed application whereas the other
60% are occupied by the encoded instructions [7].
In this paper, we use a novel code compression technique
(hardware-supported) for reducing the size of the decoding
table. Our technique is based on the instruction format and
the application itself to achieve high compression ratio.
The crux of our compression technique is to find the po-
sition of bits in the instruction format suitable for re-
encoding. We call those bits re-encodable bits 1. Re-
encoding those bits must have no affect on the function-
ality of instructions. we re-encode those bits to decrease
the number of toggles in each table column (as explained
in Section 3) and consequently to decrease the size of the
decoding table.
Reducing the size of the decoding table will improve the
final compression ratio CR according to the equation:

CR =

size(compressed instructions) + size(decoding table)

size(original instructions)
(1)

By analyzing a large set of benchmarks (MiBench), we
found that the average size of the re-encodable bits can
reach up to 26% compared to the original code size, as
shown in Fig. 8. Those bits may be discarded from the
instruction words or re-encoded depending on the compres-
sion algorithm used to achieve better compression ratio. We
compare the experimental results with the results achieved
in our previous work [8] and show that re-encoding the re-
encodable bits in instruction format may improve the final
compression ratio.
The rest of the paper is organized as follows. In Section
2, we present some previous works with comparison to our
work. In Section 3, we present our code compression tech-
nique. The hardware decoder is introduced in Section 4.
Experimental results and performance are presented in Sec-
tion 5, and we conclude this paper with Section 6.

2 Related Work

The previous works can be categorized into two cate-
gories depending on whether the compression technique is
ISA specified or it is orthogonal to any architecture. Sev-
eral related approaches belong to the ISA dependent cate-
gory. Thumb [2] and MIPS16 [14] are two processors which

1A re-encodable bits are bits in the instruction format that may be re-
encoded because they are not used for decoding the instruction but just to
maintain the word alignment in the memory

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



Figure 1: Our code compression technique steps

use this technique. Shorter instructions are achieved mainly
by restricting the number of bits that encode registers and
immediate values. This results in 30%-40% smaller pro-
grams (referring to 70% and 60% compression ratios, re-
spectively) running 15%-20% slower than programs using
a standard RISC instruction set. In [16], compiler-driven
Huffman-based compression with a compressed instruction
cache has been proposed for a VLIW architecture. An Ad-
dress Translation Table (ATT) is generated by the compiler,
containing the original and compressed addresses of each
basic block and its size. An average compression ratio of
65% is reported. the problem in this technique is that the
decoder can only decompress full compressed basic blocks
in addition to the hardware complexity. In [19], a new
dictionary-based compression technique is used which di-
vides the instructions into opcodes and operands to reduce
the redundancy and then extracts the sequences and store
them in a dictionary. The key idea is to explore the relations
between the current operand to be compressed with those
already compressed. On an average 46% compression ratio
was achieved for the ARM processor. The decoder in this
technique is complex which can reduce the performance.
There are also several approaches related to the ISA inde-
pendent category. The IBM CodePack [10] method divides
the 32-bit instruction into two 16-bit patterns and encodes
both with indices to the dictionaries storing the most fre-
quent patterns. Since high and low halfwords have very dif-
ferent distribution frequencies and values, they are encoded
independently. Typically, use of the CodePack compression
method results in a 60-65% compression ratio. This tech-
nique generated an index table whose overhead is 3% of
uncompressed instructions. The worst case for instruction
length in compressed code is 38 bits. In [17], the authors
extracted common sequences and placed them in a dictio-
nary. Average compression ratios of 61%, 66% and 74%
were reported for the PowerPC, ARM and i386 processors,
respectively. In [6], we introduced a new approach based
on Canonical Huffman Coding in the dictionary compres-
sion scheme. Average compression ratios of 52% and 55%
have been achieved for ARM and PowerPC, respectivly.
Our compression technique in this paper belongs to the ISA
dependent category. We achieve an average compression
ratio of 45% and 48% for MIPS and ARM, respectively.
For that, we can obtain not-yet-achieved compression ratios
using our approach in comparison to the previous works.

3 Our Code Compression Technique

In our code compression technique, we conduct eventu-
ally the following steps (See Fig. 1):
(1) We analyze instruction format of the original code to de-
tect the re-encodable bits for a specific application. These
bits may be re-encoded without effecting on the instruction
functionality. We use different techniques to find those bits

Figure 2: MIPS instruction groups

and to increase their number. The re-encodable bits are then
replaced with don’t care symbols ’X’. We call the code in
this case “modified code”.
(2) We compress the modified code using Huffman Coding
algorithm. The compressed instructions and decoding table
are generated.
(3) We reduce the size of decoding table by encoding the
don’t care symbols ’X’ in each instruction to be identical to
the preceding one.
These steps will be explained in details in the following Sec-
tions.

3.1 Analyzing the Instruction Format

The instruction set of any architecture is classified into
different groups according to their coding formats. One
group may contain instructions that have three register
fields. Another one may have instructions with two regis-
ter fields and immediate operand. Some instructions which
have only one register and one target address fields may be-
long to another group, etc.
The first step in our code compression is to analyze the in-
struction format for a specific processor architecture and for
a specific application. The purpose of that is to detect the
re-encodable bits in instruction format for that application
and then replace them with don’t care symbols ’X’.
We use three different techniques to detect and increase the
number of the re-encodable bits for a specific application:
1- Optimizing the opcode size: In this technique, we ex-
plore the opcode of each instruction group for a specific ap-
plication. Most of applications do not utilize all the avail-
able opcodes of instruction group. For that, we re-encode
the opcodes in this group to have less number of bits than
the original ones. The new opcodes cover only the opcodes
needed for that application. We replace the remaining un-
used bits of the opcodes with don’t care symbols ’X’.
The evaluations has been conducted for two processor ar-
chitectures MIPS and ARM on a large set of benchmarks
(MiBench).
MIPS instructions are classified into different groups ac-
cording to their coding formats [21]. The opcode can differ

Figure 3: Example for ARM instruction groups



Figure 4: Example for re-encoding the opcode in the “R-Type” group

from one group to other (see Fig. 2 ). For example, the op-
code of the instruction in “R-Type” group is “000000” and
the instruction is specified by the function field which needs
also 6 bits. This will reserve 12 bits in the instruction for-
mat to decode the instruction. Instead, we can re-encode the
opcode field with a new code (which is not used by the in-
structions in the other MIPS instruction groups) and replace
the 6-function-field bits with don’t care symbols ’X’. If the
application use only 32 different “R-Type” instructions (or
less), then only 5 bits can be used for re-encoding the op-
code field and one bit can be replaced with ’X’. Fig. 4 shows
an example for different instructions in the “R-Type” group
before and after re-encoding the opcode. The new opcode
is selected to be unique and not used by the other MIPS in-
struction groups.
In “J-Type” group, all instructions use the opcodes
“00001X” (see Fig. 2 ).
In “Coprocessor-Type” group, all instructions use the op-
codes “0100XX”. The floating point instructions use op-
code “010001”. The format field (5 bits) and the function
field (6 bits) in the instruction format are used to specify the
instructions in this group (see Fig. 2 ). Actually, we do not
need all these bits for specifying the instruction. For that,
we can use the function field to specify the opcode (which
can accept up to 64 different floating point instructions) and
replace the bits in the format field with don’t care symbols.
ARM instructions are also classified into different groups
according to their coding formats [9]. All instructions are
conditionally executed depending on the instructions con-
dition field (Fig. 3). This field (bits 31:28) determines
the circumstances under which an instruction is to be ex-
ecuted. ARM instructions contain primary opcode and sec-
ondary opcodes. For example, the instruction in “SWAP”
group has primary opcode “00010” (bits 27:23) and three
secondary opcodes “00” (bits 21:20), “0000” (bits 11:8)
and “1001” (bits 7:4). We investigated the opcodes in all
groups and found that the secondary opcode in “SWAP”
group “0000” (bits 11:8) may be replaced with symbols
“XXXX” without collisions. Another example is the in-
structions in “Halfword Data Transfer” group. Their sec-
ondary opcode “0000” (bits 11:8) may be also replaced with
symbols “XXXX” without collisions. The same scenario
can be applied to the “Branch Exchange” group. Its opcode
has ’24’ bits which can be shortened with a new one. The
new opcode must be unique for a specific application and
the remaining bits may be replaced with symbols ’X’.
2- Finding the unused register fields: In this technique,
we explore the unused register fields of each instruction in
a group and then replace them with don’t care symbols ’X’.
In MIPS architecture, for example, some instructions in “R-
Type” group utilize the ’rs’, ’rt’ and ’rd’ register fields and

leave the ’sa’ field unused. Other instructions use two reg-
isters, one register or even do not use any register field, like
“Break”. All the unused register fields may be replaced
with ’X’. The same thing can be applied to the other MIPS
groups. Fig. 5 shows an example for some instructions with
unused register fields after replacing them with ’X’.
In ARM architecture, the instructions in “Data Processing”
group can reach more than 50% compared to instrcutions in
all groups for a specific application. “MOV” and “MVN”
instructions, which their frequencies can reach more than
50% compared to other instructions in this group, utilize the
’Rd’ register field (bits 15:12) and “Operand2” (bits 11:0),
leaving the ’Rn’ register field (bits 19:16) unused (Fig. 3).
This register field may be replaced with symbols ’X’. The
same scenario can be done in all groups.
3- Reducing the size of immediate or target offset fields:
This technique can detect high number of unused bits com-
pared to the other previous techniques. Normally, the imme-
diate or target offset values occupy the least significant bits
in their fields, leaving the most significant bits in the field
either unused or less frequently used. For that, we search
in these fields the most frequent sequence of bits through
all instructions starting from the most significant bits side
toward the least significant side and for a specific appli-
cation. The most frequent sequence of bits (we call them
pattern) may be replaced with symbols ’X’. Of course, we
leave some bits to distinguish between those instructions
who have the symbols ’X’ and the instructions who have
not. Algorithm 1 shows pseudo code for re-encoding the
immediate or target offset field.
In MIPS architecture, this technique can be applied to all
instructions in “I-Type” and “J-Type” groups. In addition to
that, in “J-Type” group we can replace the last two least sig-
nificant bits (bits 1:0) with symbols ’X’ because we know
that they are always ’0’ since the instructions are word-
aligned. When we decode these instructions, we have to
replace these bits again with zeros.
In ARM architecture, this technique can be applied to all
instructions in “Load/Store”, “Branch” and “Coprocessor
Data Transfer” groups and most of the instructions (which
need Immediate or target offset fields) in “Data Processing”
group (Fig. 3).

3.2 Huffman Coding Algorithm

The second step in our compression technique is to use
the Huffman Coding algorithm (Fig. 1). Huffman Coding
[4] is an entropy encoding algorithm based on the estimated
probability of occurrence for a block of code (which can be
one or sequence of instructions). The most frequently oc-
curring blocks are encoded with short codewords, whereas
the less frequently occurring ones are encoded with large



Algorithm 1 : Re-encoding immediate field

n: # of instructions which has immediate value
imm len: length of immediate value in bits
j: length of selected pattern in bits

1. for (each instruction i of n) {
2. j = 1
3. while (j < imm len){
4. Freq = frequency of j for all instructions
5. Gain = Freq x j
6. j = j + 1
7. }
8. Find the biggest Gain for pattern j in instruction i
9. }
10. Find the biggest Gain for pattern j in all instructions
11. Replace the pattern j with symbols ’X’

Figure 5: New instruction format with don’t care

codewords. We call these codewords “compressed instruc-
tions”. In this way, the average codeword length is mini-
mized. It is obvious however that, if all distinct blocks in a
code appear with the same (or nearly the same) frequency,
then no compression can be achieved. We selected Huff-
man Coding as a compression technique to encode the in-
struction object code. In Huffman Coding, the compressed
instructions are used as indices to the original unique in-
structions which are stored in a decoding table. The orig-
inal instructions are retrieved by decoding the compressed
instructions using the decoding table.
The factor of measuring the compression efficiency is called
“compression ratio” CR (Eq. 1). This factor is affected by
the size of the compressed instructions and the decoding
table. The size of the compressed instructions (in Byte)
depends on the frequency of these instructions, and con-
sequently is determined by the average number of bits as-
signed to the instructions for compression. The size of the
decoding table (in Byte) is determined by the number of
unique instructions extracted from the application, and by
the size of the original instruction word (i.e. 4 Bytes in
MIPS or ARM instruction word).
To reduce the size of the decoding table, we re-encode the
re-encodable bits in the instruction format (which we ex-
tracted and created in section 3.1) as a primary step to fur-
ther achieve reduction in the decoding table when we use
table compression technique.

3.3 Reducing the Size of Decoding Table

As explained in Section 3.2, the Huffman Coding al-
gorithm generates variable length compressed instructions
and decoding table which is used to retrieve the original in-
structions. The decoding table contains the original unique
instructions. The compressed instructions are used as in-
dices to the decoding table. As the compressed instructions
have variable length, they can not be used as indices to only
one decoding table. For that, we divide the decoding table
into different decoding tables as many as we have differ-
ent compressed instruction lengths. In this case, the com-

Figure 6: Steps for reducing the size of the decoding table

pressed instructions which have the same code length are
used as indices to the same decoding table.
The compressed instructions are stored non-contiguously in
each decoding table. This will take space in memory and
diminish the benefits which may be achieved using code
compression. To overcome this problem we use Canoni-
cal Huffman Coding. This coding technique is also prefix-
free-code like Huffman Coding algorithm. It re-encodes the
compressed instructions in such way that the instructions
with the same length are binary representations of consecu-
tive integers [20]. Reducing the size of any decoding table
may be achieved by reducing the size of its columns. For
that, we use our Look-Up Table compression method which
we used in [8]. In this method we compress each decod-
ing table column by storing the address where the transition
(0—>1 or 1—>0 ) in each column happens in the decod-
ing table instead of storing the complete column. If the size
needed to store these addresses is less than the size of the
complete column, the column can be compressed. Other-
wise, we leave the column without compressing. The crux
of our compression technique is to reduce the number of
transitions happening in each decoding table column. This
can be achieved by (1) selecting good sorting algorithm to
sort the decoding table entries. (2) encoding the don’t care
symbols in the instruction format to be identical to the pre-
ceding instruction in the decoding table.

Fig. 6 shows the three steps we use to reduce the size of
the decoding table. These steps need to be applied to each
decoding table. They are performed off-line (at the design
time). Hence, it is no matter for how long time these steps
will take.
In the first step, we separate the decoding table into
two tables: the fixed-instruction table and the changeable-
instruction table. The fixed-instruction table contains the
instructions which can not be changed, i.e. the instruc-
tions which do not have any don’t care symbol ’X’. The
changeable-instruction table contains the instructions which
has at least one ’X’ symbol.
In the second step, we sort the entries of the fixed-
instruction table to minimize the number of transitions in
each column. This will compress more table columns and
achieve better table compression. We sort the table entries
using the Lin-Kernighan sorting algorithm [12] (as we did
in [8]).
In the third step, we insert the instructions of the
changeable-instruction table in the sorted fixed-instruction
table in the position where each inserted instruction must be
identical in the most bits to the preceding one. The ’X’ field
of the inserted instruction must be encoded to be the same
as that field of its former instruction.
Another technique may be used to reduce the number of bit
transitions in a table columns. This can be done by swap-
ping the position of register fields in instruction format (if
this will not change the instruction functionality). For ex-
ample, in MIPS architecture, some instructions use the reg-



ister fields ’rs’, ’rt’ and ’rd’. Those instructions seem to
be identical if the positions of the register fields ’rs’ and
’rt’ are reversed. Hence, we can swap the position of these
two registers to make these instructions completely identi-
cal. This will have no effect on the instruction functional-
ity, but on the other hand, will decrease the number of the
unique instructions and consequently will reduce the size of
the compressed instructions as well. The following addition
instructions, for example, are identical in the functionality
but they have different opcode:

Add r5, r3, r4 , Add r5, r4, r3

Swapping the registers ’r3’ and ’r4’ in any of the previous
instruction will make them identical.
The previous steps reduce the number of bit transitions in
each column. Therefore, we can compress more number of
columns in the decoding table by storing in each column
only the address where the bit transition happens instead of
storing the complete column. This will reduce the size of
the decoding table.

4 Hardware Decoder

The hardware decoder decodes the compressed instruc-
tions in two stages. In the first one, the length of the com-
pressed code is computed (Fig. 7). This can be done by
using number of comparators as much as there are differ-
ent compressed code length, i.e. one comparator for each
length. The incoming 32-bit from the memory is stored in
a 32-bit register and shifted to a shift register whose length
is equal to the longest table index ’L’. These ’L’ bits code is
compared with the minimum index of each decoding table
simultaneously and the corresponding comparator refers to
the actual code length. The task of the 32-bit register is to
keep the shift register filled each time its content is reduced.
The second stage in the decoding is to retrieve the original
instruction from the specified decoding table. This can be
done by finding out the number of bit transitions in each
compressed column for the incoming compressed code. If
the number of bit transitions is even, the bit in the corre-
sponding column is ’0’. Otherwise, it is ’1’.
When the instruction is decoded, it needs a slight modifi-
cation to match the original instruction format. For exam-
ple, in “R-Type” group of MIPS architecture, the “000000”
is assigned to the opcode field and the correct instruction
function is assigned to the function field.
The decoder has been described in VHDL, synthesized us-
ing Xilinx ISE8.1 for VirtexII and implemented on a scal-
able FPGA platform ”Platinum” from Pro-Design [13]. An
average access time of 4 ns was achieved and around 1200
slices were used.

5 Experimental Results

In this Section, we present the experimental results of
our code compression technique. We conducted the results
for two embedded processor architectures, MIPS (4KC) and
ARM (SA-110). For both architectures the MiBench [11]
benchmark suite is considered as a representative (in terms
of application domains and size) set of applications. We
have compiled the benchmarks using cross-platform com-
piler for MIPS and ARM target architectures, and kept the
default flags as they provided by the MiBench package.
The experimental results are presented in Figures 8 - 11. In
each diagram, the bar labeled ”Average” shows the average
across all benchmarks in that diagram.

Figure 7: Hardware Decoder

From the experimental results we can observe and conclude
the following:
1- Our compression technique analyzes the instructions to
find out the re-encodable bits and to increase the number
of these bits. Fig. 8 shows how large the number of these
bits can be for different applications compiled for MIPS and
ARM processors. The size of the re-encodable bits in the
instructions can reach up to 26% and 22% of the size of the
whole instructions, for MIPS and ARM processors, respec-
tively. This ratio differs depending on the instruction format
and the number of instructions in the application.
2- Encoding the re-encodable bits in instruction format to
be identical to the preceding instruction reduces the size of
decoding table (as declared in section 3.3). To show the ef-
ficiency of this technique, we compare the size of decoding
table before and after encoding the re-encodable bits in the
instruction format. The results are presented in Fig. 9. This
figure shows that encoding those bits may reduce the size
of decoding table on an average by 37% and 35% for MIPS
and ARM processors, respectively.
3- The compressed code contains compressed instructions
and compressed decoding tables. Hence, encoding the re-
encodable bits reduces the size of compressed code because
the size of decoding table is reduced. Consequently, the
compression ratio is improved when the re-encodable bits
are re-encoded (Fig. 10). The compression ratios achieved
differ between 44% and 47% for MIPS processor (on an av-
erage 45%) and between 45% and 50% for ARM processor
(on an average 48%), depending on the size of the appli-
cation and the instruction format of the processor. For the
large applications, our compression technique gives better
results. This has been expected since large number of in-
structions imply more don’t care fields and this gives more
reduction in the compressed instruction size. In addition
to that, the large number of instructions result in large de-
coding tables and this gives more chances to re-order their
entries and to achieve better table compression.
4- Finally, code compression does not entirely come for
free. On the plus side, it does reduce the code size and
therefore, minimizes memory requirements even when fac-
toring in the hardware for decompression and decoding ta-
bles: a large net gain remains. However, a performance
loss is the price to pay for (see Fig. 11). This figure shows
the time taken by the original and the compressed code (in
Million of cycles) for MIPS and ARM processors. In our
case performance loss is due to the time needed to fill the
shift register (see Fig. 7) with the incoming compressed in-
structions, every time a branch instruction occurs. The 4 ns
latency of the decoding hardware we reported earlier could



be further reduced if the decoding hardware would be built
into the CPU itself as part of the instruction decode phase.
This is a point for future work.

Figure 8: Ratio of “re-encodable bits” size

Figure 9: Size of decoding table for MIPS and ARM

Figure 10: Compression ratios for MIPS and ARM

Figure 11: Time taken by the original and the compressed
code for MIPS and ARM processors (in Million of cycles)

6 Conclusion
We have presented a new ISA dependent approach for

embedded system code compression. Unused fields of the
instruction format are extracted and then encoded to reduce
the size of the decoding table. Our approach can be ap-
plied to any processor architecture if the ISA is known.
We achieve an average compression ratio of 45% and 48%
for MIPS and ARM processors, respectively, with a little
impact on performance. Hence, our scheme is the basis
for not-yet-achieved compression ratios in hardware-based
schemes.

References

[1] http://www.wsts.org.
[2] Thumb squeezes ARM code size. Microprocessor Report,

1995.
[3] Report RG-229R Future of Embedded Systems Technology

from Business Communications Company. 2005.
[4] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice-

Hall, Englewood Cliffs, 1990.
[5] Y. Benini, A. Macii, E. Macii, and M. Poncino. Selective

Instruction Compression for Memory Energy Reduction in
Embedded Systems. ISLPED-99, pp. 206-211, 1999.

[6] T. Bonny and J. Henkel. Using Lin-Kernighan Algorithm
for Look-Up Table Compression to Improve Code Den-
sity. Proc. of the 16h Great Lakes Symposium on VLSI-
(GLSVLSI’06), pp. 259-265, 2006.

[7] T. Bonny and J. Henkel. Instruction Splitting for Effi-
cient Code Compression. Design Automation Conference
(DAC’07), pp. 646-651, 2007.

[8] T. Bonny and J. Henkel. Efficient Code Density Through
Look-up Table Compression. Proc. of IEEE/ACM Design
Automation and Test in Europe Conference (DATE’07), pp.
809-814, 2007.

[9] S. Furber. ARM System-on-Chip Architecture (2nd Edi-
tion). Addison Wesley Trade Computer Publ., 2000.

[10] M. Game and A. Booker. Code Pack code Compression for
PowerPC Processors. PowerPC Embedded Processor Solu-
tions, IBM, 2000.

[11] M. Guthaus and J. R. et al. MiBench: a free, commercially
representative embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization, pp. 3-14, 2002.

[12] K. Helsgaun. An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic. European Journal
of Operational Research, pages Vol. 126, Issue 1, pp. 106–
130, 2000.

[13] http://www.prodesigncad.com.
[14] K. Kissell. MIPS16: high-density MIPS for the embedded

market. Silicon Graphics MIPS Group, 1997.
[15] A. M. L. Benini and A. Nannarelli. Cached-code compres-

sion for energy minimization in embedded processors. Inter-
national Symposium on Low Power Electronics and Design,
pp. 322-327, 2001.

[16] S. Larin and T. Conte. Compiler-Driven Cached Code Com-
pression Schemes for Embedded ILP Processors. Proc. of
the Annual International Symposium on Microarchitecture,
pp. 82-92, 1999.

[17] C. Lefurgy, P.Bird, I.Chen, and T.Mudge. Improving Code
Density Using Compression Techniques. Micro-30, pp. 194-
203, 1997.

[18] H. Lekatsas, J. Henkel, and W. Wolf. Code Compression for
Low Power Embedded Systems Design. Design Automation
Conference DAC-00, pp. 294-299, 2000.

[19] C. Lin and C. Chung. Code Compression Techniques Us-
ing Operand Field Remapping. IEE Proc. in Computer and
Digital Tech., Vol. 149, pp. 25-31, 2002.

[20] Y. Nekritch. Decoding of Canonical Huffman Codes with
Look-Up Tables. Proceedings of the Conference on Data
Compression, pp. 566,, 2000.

[21] D. Sweetman. See MIPS Run. Morgan Kaufmann, ISBN
1558604103, 1999.

[22] Y. Yoshida, B.-Y. Song, H. Okuhata, T. Onoye, and I. Shi-
rakawa. An Object Code Compression Approach to Embed-
ded Processors. ISLPED-97, pp. 265-268, 1997.


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




