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Abstract

The clock tree is the interconnect net on Systems-on-Chip
(SoCs) with the heaviest load and consumes up to 40% of
the overall power budget. Substantial savings of the over-
all power dissipations are possible by optimizing the clock
tree. Although these savings are already relevant at system-
level, only little effort has been made to consider the clock
tree at higher levels of abstraction. This paper shows how
the clock-tree can be integrated into system-level power es-
timation and optimization. A clock tree routing algorithm is
chosen, adapted to the system-level and then integrated into
an algorithmic-level power optimization tool. Experimen-
tal results demonstrate the importance of the clock tree for
system-level power optimization.

1 Introduction

The rising complexity of modern Systems-on-Chip
(SoCs) is a challenge for electronic design automation
(EDA). A possible solution to handle the complexity is to
raise the level of abstraction for the design and optimiza-
tion. At higher abstraction levels, better optimizations of
performance and power can be achieved by applying algo-
rithmic level transformations.

With shrinking technology sizes of 65nm and below, the
impact of interconnects is growing as their delay no longer
scales with the gate delay. That is, the impact of inter-
connects must be included in optimizations at higher levels
of abstraction. Interconnect-aware design techniques [13]
have been introduced to meet this challenge.

The clock tree is the set of interconnect nets on an SoC
with the heaviest load [9]. The routing of the clock tree is
performed in a way such that the clock signal is distributed
to all registers on dependent data paths in a synchronous
fashion. That means no clock skew or a skew within tol-
erable bounds that still guarantees correct operation of the
logical units is allowed.

The problem of clock tree routing has gained much inter-
est in research [2–5,11] as the clock tree not only greatly in-
fluences the system performance, but it also consumes up to
40% of the overall energy of SoCs and microprocessors [7].
The power dissipation of the clock tree is dominated by the
switched capacitances, which are influenced by the overall
length of the clock distribution network.

This has led to clock tree routing algorithms which re-
duce the overall length of the clock tree and this way the
delay on the net by allowing a properly chosen clock skew
[3, 11]. Considerable power savings can be obtained by us-
ing these so-called bounded skew clock tree routing algo-
rithms as its length can be reduced by up to 50% compared
to zero skew clock trees [10].

The high power dissipation of the clock tree and the high
potential for optimization imply that the design of the clock
tree should already be included into design and optimization
flows at system-level. If combined with further techniques,
like clock gating [17], substantial power savings become
possible [8]. A major problem for the application of state-
of-the-art clock tree routing algorithms for system-level de-
sign is that the routing algorithms require gate-level infor-
mation which is not yet available at system-level.

The contribution of this paper is to include the clock tree
into the cost function of system-level design. The focus of
our analysis is on power optimization. First, different clock
tree routing algorithms and their applicability to system-
level design are investigated. Second, it is shown how a
gate-level clock tree routing algorithm can be adapted to
the system-level. Third, the integration of such a modified
algorithm into an algorithmic-level power estimation and
optimization tool is presented. Finally, algorithmic level
transformations applied to a Fast Fourier Transform (FFT)
demonstrate the impact of the clock tree for the system-level
power optimization process.

The remainder of the paper is organized as follows: In
Section 2, different state-of-the-art clock tree synthesis al-
gorithms, their applicability to system-level design and the
integration into a system-level design tool are described.
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Experimental results which show the accuracy of the pre-
sented approach and potentials for power savings are pre-
sented in Section 3. The paper closes with the conclusions
and an outlook to future work.

2 System Level Clock Tree Synthesis

2.1 Problem Description

If a circuit is designed or optimized at system-level, an
algorithmic, sequential description is used as design entry
point. This algorithm will be mapped to a hardware which
is synchronized by a set of clocked registers during the
later synthesis. Various hardware mappings of the same al-
gorithm are possible which lead to different numbers and
topologies of registers. The optimum clock tree depends on
the number as well as on the distribution of registers. That
is, the problem of finding the optimum hardware mapping
therefore needs to take the clock tree topology into account.
This implies that state-of-the-art routing algorithms should
be considered for system-level design.

Despite that, only little research has been performed to
include these approaches into analysis and optimization at
higher levels of abstraction. Instead, buffered tree struc-
tures [8] or H-trees [14] are used and the geometry infor-
mation is only considered based on statistical information,
thus neglecting the topology.

The reason for this is that detailed layout information is
required as input to the clock tree routing algorithms. The
following requirements must be met to apply a clock-tree
estimation at system-level:

1. Position of the clock sinks

The clocked registers are the clock sinks of a design.
They are the leaves of the clock tree and therefore the
input of the clock tree routing algorithm. The positions
of the registers is usually not determined at system-
level, so that an extension is required.

2. Technology dependent parameters

For a power estimation of the clock tree, technology
dependent parameters are required. For example, per-
unit resistance and capacitance and the fan-in capac-
itances of the registers are required to determine the
overall switched capacitance of the clock tree.

3. Speed issues

If the clock tree routing problem is applied to the
system-level, speed issues must be taken into account.
At system-level the clock-tree routing will probably
be integrated into an iterative process, so that the time
budget is much slower than at gate level synthesis.

4. Choice of a clock tree routing algorithm

A suitable low-power, state-of-the-art clock tree rout-
ing algorithm must be chosen. It must be possible to
modify the algorithm such that it can be utilized in
system-level design. It must either be abstracted from
the post-layout level or the unknown parts must be es-
timated.

5. Choice of a delay model

The question of measuring the skew on a given node
on the tree is closely connected to the delay model. In
our implementation, we have applied the Elmore delay
model because of its better accuracy compared to the
path-length delay model. For a detailed comparison of
the two models please refer to Cong et al. [3].

6. Integration

Finally, the algorithm must be integrated into the flow
of a system-level power estimation tool.

Therefore, different Clock Tree Synthesis (CTS) algo-
rithms and their applicability to the system-level are inves-
tigated in the next section and a suitable candidate is cho-
sen. After that it is shown in Section 2.3 how this algorithm
will be applied to system-level in order to meet the require-
ments above and to fit into the flow of a system-level power
estimation and optimization tool.

2.2 Comparison of Different CTS Algo-
rithms and their Application to the
System-Level

In this section, it is evaluated whether different well
known clock tree routing algorithms can be applied for
system-level power optimization.

2.2.1 Zero Skew CTS

In order to ensure a synchronous clock distribution among
the chip area, symmetric H-trees are used which guarantee
equal distances from the clock source to all registers on the
chip. This way, no clock skew is caused by unequal inter-
connect lengths. On the downside, the zero-skew constraint
of H-trees leads to a larger overall clock tree length and thus
to a larger delay and larger switched capacitances.

Liu and Svensson [14] already applied an H-tree rout-
ing algorithm for system-level power estimation. In their
approach, the capacitance of the clock tree was estimated
based on the chip dimensions and on statistical data. The
results can easily be incorporated in a system-level power
analysis, but the floorplanning information is ignored which
reduces accuracy.
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2.2.2 Bounded Skew CTS

If the constraint on the clock skew is relaxed within well
controlled borders, correctly working circuits with shorter
clock tree lengths compared to H-trees become possible.
This will in turn lead to smaller overall capacitances and
thus to lower power dissipation. For most applications, a
bounded clock skew is tolerable [11].

First attempts of bounded skew routing algorithms [10]
were based on the Deferred Merge Embedding (DME) al-
gorithms which were originally derived for zero skew con-
straints. DME identifies the possible loci for placing inter-
nal nodes of the topology tree (i.e. the branching points) in a
bottom up phase, before fixing the placement in a top down
phase. Edahiro [5] introduced on-the-fly topology tree con-
struction into DME. While the loci form segments for zero
skew, they form polygons ("merging regions") for bounded
skew.

Cong et al. [3] presented a comprehensive comparison
of different bounded skew routing tree (BST) algorithms.
They showed that while in principle interior points of merg-
ing regions should be considered (IME), restricting the solu-
tions space to the boundaries (BME) saves significant com-
putation time with negligible degradation of results.

2.2.3 Clock Scheduling

A clock skew can furthermore be exploited by deliberately
introducing a positive or negative skew in distinct paths on
an SoC. Clock skew is positive or negative, depending on
whether the clock signal of the final register of a sequential
data path leads or lags the clock signal of the initial regis-
ter [9]. That is, the total delay on that data path is either
enlarged or decreased by the clock skew. This way, the de-
lays in a circuit can be balanced individually which enables
higher clock frequencies [16].

A drawback of the first clock scheduling algorithms was
their higher power consumption due to an increased length
of the clock net. If the positioning of registers with equal
clock timing is optimized, the length of the clock net can be
reduced again, so that high speed and low power clock trees
can be achieved [6].

2.2.4 Discussion

As stated above, the clock tree routing algorithm shall be in-
tegrated into a system-level power estimation and optimiza-
tion flow. Zero skew routing algorithms do not fit into this
profile as they are no longer state-of-the-art, neither in liter-
ature, nor in current design tools. Furthermore, a bounded
clock skew is tolerable for most applications, so that the
larger clock tree lengths that are required to fulfill the zero
skew constraint are not acceptable in terms of power dissi-
pation.

Other routing algorithms, like the bounded skew clock
tree algorithm or clock scheduling approaches permit better
results in terms of both performance and power dissipation.
For this reason, pure zero skew algorithms will not be used
for our approach. Note that a zero skew condition can be
modeled as a special case of the bounded skew algorithm if
the skew bound is set to zero.

Clock scheduling algorithms offer the greatest potential
for optimizations of the clock tree, because single data paths
are treated individually. Despite this advantage, they are not
a suitable candidate for system-level clock tree synthesis,
because the delays of single data paths are still unknown at
system level.

This means that bounded skew algorithms are best suited
for a system-level clock tree estimation. First, the clock
tree length can be reduced compared to H-trees which leads
to better results in terms of power. Second, bounded skew
clock tree routing algorithms are utilized in state-of-the-art
design tools, like Cadence SoC Encounter. That is, they are
suitable candidates with practical relevance for system-level
clock tree synthesis.

2.3 Applying Clock Tree Synthesis at
System-Level

Our approach was implemented in the high level power
estimation tool ORINOCO [1], which maps each sequential
algorithm to a possible RT level power optimized hardware
solution to help designers find a power-aware architecture
for their system. In order to get a realistic estimation of the
power consumption, the design is floorplanned by placing
and reshaping the RT components ( registers, adders, mul-
tipliers etc. ). This floorplan has been verified to be a good
estimation of the final floorplan [15]. Our CTS algorithm
takes this floorplan as an input and generates flip flop loca-
tions (named as set of sinks S in the following description)
from the register locations by assuming an equal distribu-
tion of flip flops within the register boundaries.

2.3.1 CTS Algorithm

For a given set of sinks S, the goal of any bounded skew
clock tree synthesis algorithm is to calculate a clock tree
T (S), which embeds all sinks and meets the skew bound
condition for all possible paths from root to each sink.
Our algorithm is a slightly modified form of the greedy
BST/DME algorithm suggested by Cong et al. [3]. The
basic idea is to iteratively merge subtrees, physically rep-
resented by merging regions, to form a single tree of merg-
ing regions. The algorithm is described in an abstract form
in Algorithm 1 and Function 1 in pseudo-code. As an ini-
tialization of the algorithm, it takes all the sink locations
l(s) and for each sink, it defines a point-merging-region
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mr(s) representing a subtree, which consists of the sink
only [Algorithm1, lines3 − 5]. After that, nearest neigh-
bor pairs of all available merging regions are formed iter-
atively [Algorithm1, lines6 − 19] and in every iteration,
the first one-third of the closest pairs are merged together
[Function1] to form new merging regions. The new merg-
ing region represents a set of all points, where the root of
the two subtrees can be placed without violating the skew
bound condition. Each time a pair is merged, it reduces the
total count of merging regions by 1. Therefore, after some
iterations, only 1 merging region is left, where the root of
the whole tree T (S) can be placed.

Each time a new merging region is formed, the capaci-
tance of the subtree represented by that merging region is
calculated and saved as a property of the merging region.
Further, this capacitance value is compared with a technol-
ogy dependent threshold and a buffer is inserted into the tree
when that threshold is reached, which ensures acceptable
transition times for the subtree it drives. On every buffer in-
sertion, dynamic and cell power values are incremented for
the values consumed by the new buffer.

When only one merging region is left after iteratively
merging the nearest pairs of the merging regions, the iter-
ation loop is terminated and the power is reported after in-
serting the root buffer.

2.3.2 Clock-Tree Power Model

On every buffer insertion, power values are incremented
according to the following model. The average clock tree
power Pclk is determined as the sum of the power of all
buffers. The buffer power is the sum of the static buffer
power, the cell power and the power that is required for
driving the capacitances at the output of the buffer:

Pclk =
∑

Buffers

(P0 · ki + Pcell +
1
2
·Con · fon · V 2

DD) (1)

Where P0 is the static power dissipated by a minimum
size buffer, ki is the the size of the i-th buffer, Pcell is the cell
power, Con is the capacitance that is driven by the buffer,
fon is the frequency of signal transitions and V 2

DD is the
operating voltage.

3 Experimental Results

In this section the presented clock power estimation ap-
proach will be validated. First, the accuracy evaluated by
comparison to layout level. Second, the relevance of the
proposed concept is demonstrated through a design exam-
ple.

Data: Register sizes and position in the floorplan,
skew bound B, technology parameters

Result: Dynamic and cell power consumed in the
clock tree embedding all sinks T (S)

Generate set of sinks S from register sizes and1

locations;
n = |S|;2

forall sinks s ∈ S do3

mr(s) = {l(s)} /* location of sink s */4

end5

while n > 1 do6

Construct nearest neighbor graph H;7

A = sorted edges of H in non-decreasing order of8

edges weight;
for i = 1 to min{max(1, n

3 ), n − 1} do9

Take edge Euv with smallest weight from A;10

Delete all edges incident to u or v from A;11

mr(w) = Merge(mr(u),mr(v));12

Cap(w) =13

Cap(u) + Cap(v) + c ∗ d(mr(u),mr(v));
/* d(a, b) being the distance between a and b */14

Insert buffer if required and increment power;15

n = (n − 1);16

/* one less subtree */17

end18

end19

Insert root buffer and report power;20

Algorithm 1: Bounded skew clock power estimator

Input: Merging regions mr(a),mr(b)
Output: Resulting merging region mr(w)
Make shortest distance region1

P = SDR(mr(a),mr(b)) =
{p|d(p,mr(a)) + d(p,mr(b)) == d(mr(a),mr(b))}
Calculate Q, the set of all points for which the skew2

condition is met:
Q = {q|skew(q) ≤ B}3

if P ∩ Q = ∅ then4

Insert detour routing, such that P ∩ Q �= ∅;5

end6

return ( mr(w) = P ∩ Q );7

Function1 : Merge(mr(a),mr(b) )

3.1 Evaluation of the CTS Algorithm

The evaluation was performed as follows: The
benchmark designs were simulated and estimated with
ORINOCO. The ORINOCO placement information was
subsequently read into Cadence SoC Encounter where a
CTS run was executed. The same constraint on the register
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placement was put on the system-level clock-tree algorithm
which was then executed as explained in Section 2. Finally,
the clock tree power was compared for both variants.

The ORINOCO floorplan was forced onto Encounter and
onto the system-level algorithm to compare the clock trees
without the influence of floorplanning. An example for an
ORINOCO RT-level floorplan can be seen in Fig. 1. The
light boxes indicate the size and the positions of the regis-
ters of the design. The equivalent in Encounter is shown in
Fig. 2. The assumption of uniform distribution of the flip-
flops seems justified. Note that while Encounter also per-
forms bounded skew CTS, it does not always fully exploit
the skew bound. That is, the maximum skew that actually
occurs in the clock tree from SoC Encounter must be used
as skew bound for the system-level clock tree algorithm to
obtain comparable results.

Figure 1. Floorplan extracted from ORINOCO.
The registers are marked as light boxes.

Figure 2. Clock tree extracted from Cadence
SoC Encounter

The clock tree generated in our approach for this exam-
ple is shown in Figure 3 (flip-flops visible as dots). It can be
seen that a very similar clock tree structure is obtained. The
overall clock tree length deviates from the results of SoC
Encounter by only 10%.

The accuracy of the proposed algorithm was analyzed for

the following benchmark programs: A JPEG compression
algorithm, a wavelet transform and a radix-2 Fast Fourier
Transform (FFT). The FFT is evaluated in two variants: The
first one uses a shift register as delay element, while the
second one uses a ring buffer instead.

The results were obtained for a 90 nm technology and a
supply voltage of VDD = 1V . For the clock tree model,
a constant transition time of 25 ps was assumed. The skew
bound B for SoC Encounter was set to 100 ps, but the actual
maximum skew was always lower and is given in Table 1
below. That is, the skew bound for the system-level clock
tree algorithm was also set to the value from the table.

Figure 3. Clock tree determined by the pro-
posed, Cong-based system-level algorithm

Design Clock B Power Power Diff.
MHz ps Enc. prop. alg. %

JPEG 200 28 165 µW 187.5 µW + 6.7
Wavelet 200 12 75.5 µW 73.66 µW -2.4
FFT 102.4 48 1.5 mW 1.18 mW - 21.3
Shiftregister
FFT 102.4 24 311.4 µW 322 µW + 3.4
Ringbuffer

Table 1. The table shows the clock tree power
from Cadence SoC Encounter and from the
proposed system-level algorithm for different
benchmark designs.

The results show a good accuracy of the proposed
system-level algorithm with a deviation from the SoC En-
counter results between 2.4 % and 21.3 %.

3.2 Impact of the Clock-Tree on System-
Level Optimizations

In this section, the impact of the clock tree for system-
level low-power optimizations is shown for a radix-2 mod-
ule of a 128-point mixed radix Fast Fourier Transform
(FFT) processor [12]. One of the major consumers of en-
ergy will be the registers required to store values across
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clock boundaries. ORINOCO provides the information
about which registers have to be updated with new values
given the schedule of the design. In particular, the registers
for the delay feedback are consuming most of the design en-
ergy. Two different implementations of the delay feedback
registers are compared in this analysis. The first version
uses a shift register, while the second version of the FFT
uses a ring buffer for the delay element.

Each variant leads to different numbers of registers in the
design which is reflected in the power results (Table 1). The
results obtained with SoC Encounter show that the clock
tree power of the FFT with the shift register as delay el-
ement is almost five times higher than that of the variant
with a ring buffer. This makes FFT with ring buffer an ob-
vious choice for the low-power design. This demonstrates
the high impact of the clock tree for the power aware system
architecture.

4 Conclusion and Outlook

This paper proposes including the clock tree into the
cost function of system-level low-power design. A power-
optimal, state-of-the-art clock tree routing algorithm was
chosen and then adapted to fit into the flow of an
algorithmic-level power estimation and optimization tool.
Comparisons with results obtained from Cadence SoC En-
counter show only small average deviations of less than 10
%. To show the importance of the clock tree at system-level,
two different implementations of a delay element in an FFT
were compared. It was shown that a change of the delay el-
ement of the FFT architecture might increase the clock tree
power by a factor of five. Future work will furthermore in-
clude clock gating in the analysis. This way, an even higher
potential for system-level power optimization will be acces-
sible.
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