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Abstract
In a parallel system with multiple CPUs, one of the key prob-

lems is to assign loop iterations to processors. This problem,
known as the loop scheduling problem, has been studied in the
past, and several schemes, both static and dynamic, have been pro-
posed. One of the attractive features of dynamic schemes, as com-
pared to their static counterparts, is their ability of exploiting the
latency variations across the execution times of the different loop
iterations. In all the dynamic loop scheduling techniques proposed
in literature so far, performance has been the primary metric of
interest. In a battery-operated embedded execution environment,
however, power consumption is another metric to consider dur-
ing iteration-to-processor assignment. In particular, in a banked
memory system, this assignment can have an important impact on
memory power consumption, which can be a significant portion
of the overall energy consumption, especially for data-intensive
embedded applications such as those from the domain of image
data processing. This paper presents a bank aware dynamic loop
scheduling scheme for array-intensive embedded media applica-
tions. The goal behind this new scheduling scheme is to minimize
the number of memory banks that need to be used for executing
the current working set (group of loop iterations) when all proces-
sors are considered together. That is, during the loop iteration-
to-processor assignment, our approach considers the bank access
patterns of loop iterations and carefully selects the set of itera-
tions to assign to an idle processor so that, if possible, the num-
ber of memory banks that are used at the current state is not in-
creased. Our experimental results show that the proposed schedul-
ing scheme leads to much better energy results when compared to
prior loop scheduling techniques and it is also competitive with the
scheduler that generates the best performance. To our knowledge,
this is the first dynamic loop scheduling scheme that is memory
bank aware.

1. Introduction
Loop scheduling is the process of assigning iterations of a par-

allel loop into processors and has been studied in the past for
various types of parallel architectures. Previously published loop
scheduling techniques can be roughly divided into static and dy-
namic techniques. The static scheduling techniques try to perform
the loop iteration-to-processor assignment at compile time before
the applications starts executing, whereas the dynamic techniques
postpone this assignment to runtime, in an attempt to take dynamic
variations across the execution times of the different loop itera-
tions into account and reach well balanced loads across the dif-
ferent processors by exploiting these variations. These dynamic
variations, as will be discussed shortly, can occur due to different
reasons such as conditional flow of control and cache behavior.

Dynamic loop scheduling has been studied in the past from the
perspectives of load balance and data locality, both of which are
oriented towards improving performance. As compared to static
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loop scheduling techniques, its main advantage is the ability of
capturing the variations across the workloads of different CPUs
and exploiting this information when performing iteration assign-
ment at runtime. However, in a battery-operated embedded exe-
cution environment, power consumption is another metric to con-
sider during this iteration assignment. In particular, in a banked
memory system, the loop iteration-to-processor mapping can have
substantial impact on memory system power consumption (since
it determines the set of banks that will be exercised at any given
period of time), which can be a significant portion of the overall
energy consumption for the data-intensive embedded applications.

The main contribution of this paper is a bank aware dynamic
loop scheduling scheme for array-intensive embedded media ap-
plications. The goal behind this new loop scheduling scheme is to
minimize the number of memory banks that need to be used for
executing the current working set (group of loop iterations) when
all processors are considered together. The unused memory banks
can then be held in a low power state, for longer periods of time,
to conserve energy. The proposed scheduling approach represents
both the current active/idle status of banks and the set of banks that
may be accessed by a given loop iteration using bitmaps and uses
these bitmaps at runtime in performing the iteration assignment.
The goal is to minimize the number of banks that are active at any
given period of time.

We implemented this memory bank-aware loop scheduling
scheme and performed experiments with several embedded appli-
cation codes. In our experimental evaluation, we compare it, in
terms of both energy consumption and performance, to a number
of previously proposed loop scheduling strategies, including both
static and dynamic techniques. Our experimental results show that
the proposed scheduling scheme not only reduces the energy con-
sumption significantly, but it also leads to much better energy sav-
ings when compared to these prior techniques and it is competitive
with the loop scheduler that generates the best performance. To
our knowledge, this is the first dynamic loop scheduling scheme
that is memory bank aware.

The remainder of this paper is structured as follows. The next
section gives background on loop scheduling and banked memo-
ries. It also discusses the relevant prior work on loop scheduling.
Section 3 presents the details of our proposed bank-aware loop
scheduling scheme. This scheme is evaluated along with several
previously proposed scheduling techniques in Section 4, and the
results are discussed from both energy and performance angles.
Section 5 concludes the paper and outlines the possible future re-
search directions.

2. Background on Loop Scheduling and
Banked Memories

As mentioned earlier, the prior work on loop scheduling con-
sidered both static and dynamic techniques. The static techniques
perform iteration assignment to CPUs at compile time, and there-
fore, are easy to implement, as compared to their dynamic coun-
terparts, which require some work to be performed at runtime,
thereby contributing (as overhead) to the execution time. The basic
static technique [14, 19] divides the iteration space of the parallel
loop (i.e., the set of all iterations in the loop) to be scheduled into
P equal (or almost equal) subsets where P is the number of pro-
cessors at hand, and each processor is assigned a subset. As men-
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Figure 1. Distribution of the execution latencies of iterations
for a typical parallel loop from one of our applications.

tioned in [9], static scheduling can also assign iterations in a local-
ity aware fashion by ensuring that the set of iterations assigned to
a processor exhibit data reuse among themselves. However, such a
purely static assignment of iterations can lead to load imbalances,
which can be due to the different reasons:

• Variations due to conditional control flow. For example, the
different branches of an IF or SWITCH statement can be taken by
the different loop iterations, and consequently, there can be large
variations across the execution times of the iterations that belong
to the same parallel loop.

• Variances due to loop index dependent bounds. When the
lower bound and/or upper bound of an inner (sequential) loop de-
pends on the index of the parallel outer loop, the different itera-
tions of this outer loop can experience different execution laten-
cies.

• Variances due to data locality (cache behavior). The different
loop iterations can produce different cache hit/miss counts, which
can in turn lead to significant variations among their execution
times.

It needs to be noted that most of these variations are not possi-
ble to capture at compile time, and thus, a purely static scheduling
technique can be very inefficient when these variations are really
significant. As a result, due to these factors, partitioning loop iter-
ation space across available processors evenly such that each pro-
cessor receives more or less the same number of iterations can lead
to large variances across the execution times of the CPUs. In ad-
dition, since the execution time of a parallel loop nest is typically
determined by the execution time of the processor that finishes its
group of iterations last, an unbalanced partitioning (in terms of ex-
ecution cycles) can be detrimental to performance. To give an idea
about the magnitude of this variance, Figure 1 shows the distri-
bution of the execution latencies of iterations for one of the loops
in baleen, one of our embedded applications (we will present the
details of our embedded applications and the simulation platform
used later). The y-axis in this figure captures the percentage of
occurrences for each latency group. The value 1 on the x-axis rep-
resents the most frequently occurring latency across all iterations,
and all other latencies are normalized with respect to that value.
So, each bar gives the percentage of occurrences for a latency in-
terval. It is easy to see that the largest variance across the executing
latencies of the different loop iterations is around 40%, indicating
the severity of the problem. We need to mention that this partic-
ular loop nest was not an extreme case; rather, it was exhibiting
a typical behavior. In fact, we observed during our experimental
evaluation that the largest variation across two different iterations
of the same parallel loop varied between 1% and 82%, averaging
on 37%.

In dynamic loop scheduling, a master CPU assigns works to
slave (worker) processors at runtime. One of the earliest dynamic
scheduling schemes is known as self scheduling [14], and ad-
dresses load imbalance by assigning a small load to slave pro-
cessors initially, and allowing the slaves to ask for more work
once they are done with their current assignments. Each work
assignment takes place within a critical section, a piece of code
for which entrance is granted to one CPU at a time. A variant of
self scheduling is tapering, also known as guided self scheduling

[15], where the loads assigned to processors are reduced gradu-
ally as the execution progresses, in an attempt to prevent potential
imbalances towards the end of the iteration space. The other vari-
ants of dynamic scheduling include factoring [6] and trapezoid self
scheduling [18]. Our initial experiments with these different per-
formance overhead of dynamic schedulers found that the perfor-
mance and energy behaviors of tapering, factoring, and trapezoid
self scheduling were very similar to each other (within 1% of one
another). Therefore, as far as dynamic schedulers are concerned,
in this paper, we present results with self scheduling and tapering
only.

More recently, there have been several proposals for locality
aware loop scheduling schemes. The distinguishing characteristic
of these schemes is that they are specifically designed for optimiz-
ing the behavior of data cache by assigning iterations to processor
carefully. Such techniques either take advantage of the data reuse
across different iterations (as in [8]) or exploit the fact that the
same loop can be visited multiple times during the execution of
the program [13]. Since optimizing cache locality means exploit-
ing temporal and/or spatial reuse in the innermost loop iterations,
one can expect a locality aware loop scheduling scheme to reduce
bank energy consumption as well. This is the main reason why
we compare, during the experimental evaluation, our approach to
the locality aware loop scheduling schemes as well, in addition to
pure static and dynamic scheduling techniques. Xue et al. [20]
discuss a static scheduling scheme, specifically designed for soft-
ware managed on-chip memories. There also exist several efforts
that consider dynamic scheduling in the operating system (OS) [3]
or system levels [21]. Our approach is different from such ap-
proaches in that in our case the compiler dictates the scheduling
decisions, and we target embedded chip multiprocessors.

As far as the banked memory architecture is concerned, we are
focusing on an SRAM based on-chip memory system, divided into
multiple banks. In this system, each bank can be transitioned into
a low leakage mode independently of the others to save energy.
The specific policy we implemented in our simulations is based
on [4], where the banks are placed into the low leakage mode pe-
riodically (using the suggested threshold values by [4]), and are
activated when they are accessed (we assume the same reactiva-
tion penalties as in [4]). Consequently, working with a small set
of banks at a given period of time increases the chances for the
other (unused) banks to remain in the low leakage mode, thereby
increasing energy savings. This is why our dynamic approach tries
to schedule the loop iterations in such a fashion that the idle peri-
ods of the banks are lengthened as much as possible. Since we are
not proposing a new bank power reduction strategy, due to space
concerns, we do not discuss the related work on power saving in
banked SRAM/DRAM memories; instead, we refer the reader to
the papers [7, 10] and the references therein.

3. Bank Aware Loop Scheduling
As discussed in the previous section, in dynamic scheduling,

when a worker CPU finishes its current work (assignment), it asks
the master CPU to give it a new set of loop iterations. The im-
portant point to note is that the master has complete freedom in
selecting this set of iterations, due to the fact that we consider
parallelization of dependence-free loops only. In order to reduce
the number of active banks at any given moment, our bank aware
scheduler selects this set of iterations such that it reuses only the
active banks, if it is possible to do so. Clearly, this complete bank
reuse may not always be achievable, and when this is the case,
our approach selects the iterations to be assigned to the requesting
CPU such that the number of additional banks required is min-
imum. In mathematical terms, we represent the current on/off

status1 of the banked memory system using a bitmap ∇c of the

1When there is no confusion, we use the terms such as low power mode,

low leakage mode, and off mode interchangeably. It needs to be made clear

however that, in our implementation, when a bank is placed into the low

power mode, its contents are maintained, using an approach, similar to that

discussed in [4].



following form:

∇c = m1 • m2 • m3 · · · • ms,

where s is the number of banks in the memory system and mi

captures the status of bank i. Specifically, if mi is 1, bank i is
currently active, i.e., there is at least one processor in the system
that executes an iteration which accesses that bank. On the other
hand, mi = 0 indicates that the bank is currently unused.2 At a
particular step, when the scheduler is about to assign a workload
to a processor, it selects the set of iterations (that constitute the
workload to be assigned) such that only the currently active banks

are used if it is possible. Mathematically, let ζ(~I) be a function

that gives the set of banks that may be accessed by iteration ~I

(Note that ~I is a vector where each entry corresponds to a value
of a loop, starting from the outermost loop, corresponding to the
first entry). Note that this is a conservative estimate since it may
not always be possible to determine the exact set of banks to be
accessed by a particular loop iteration. As a consequence, in the

worst case, ζ(~I) can contain all the banks in the memory system.

Observe that a ζ(~I) can also be represented as a bitmap β(~I) as
follows:

β(~I) = n1 • n2 • n3 · · · • ns,

where ni is set to 1 if bank i belongs to the ζ(~I) set; otherwise,
it is set to 0. Now, we can also define a workload level bitmap
that captures the bitmaps of all the iterations in a given workload
collectively. That is,

τ (W ) = k1 • k2 • k3 · · · • ks,

such that ki is set to 1 if there is at least a ~I ∈ W such that ni of

β(~I) is 1; otherwise, ki is set to 0. In other words, let ~I1, ~I2, · · ·,
~Il be the set of iterations in the workload assigned to a processor

when it asks for more work, and β(~Ij) = nj,1•nj,2•nj,3 · · ·•nj,s,
where 1 ≤ l, Then, we have

ki = n1,i ∨ n2,i ∨ n3,i ∨ · · · ∨ nl,i,

where ∨ denotes the OR operator.
The main job of our bank aware dynamic scheduler is to build

a workload W at runtime and assign it to an idle processor which
asks for more work to do. Let us first make the following defini-
tion. Given bitmaps p and q, we write p ⊲ q, if the following two
conditions are satisfied together:

• The number of 1s in q is equal to or larger than that in p, and

• If p has 1 in ith position, q also has a 1 in its ith position.

For example, we have 11001000 ⊲ 11101001 and 0101 ⊲ 0101,
while 1010⊲0101 and 111000⊲101000 are not correct. Based on
this definition, the iterations to put in set W should be selected in
such a fashion that τ (W ) ⊲ ∇c should be satisfied if it is possible
to do so. Before giving the pseudo code for the algorithm that
selects W , the set of iterations to be assigned to a worker CPU that
requires work, we want to discuss a couple of important issues.

First, it can be costly to compute a W set at runtime such that
τ (W ) ⊲ ∇c even if such a set that satisfies this condition does
actually exist. Therefore, our approach does some extra work at
compile time to reduce this potential runtime overhead. Let us use
Z to denote the set of iterations to be executed for the current par-
allel loop (i.e., Z represents the iteration space of this loop). We
divide at compile time this set into 2s bins, where s is the number
of banks in the memory system. Each bin holds the set of itera-

tions that have the same β(~I) bitmap (in our implementation, each
bin is represented by the constraints that give the iterations which
belong to that bin). Clearly, some of these bins can be empty (i.e.,
there may not exist any iteration that accesses a particular set of

2Such a bank can be in high leakage or low leakage mode, depending

on how long it was unused.

For i = 1, 2s

Generate the contents of bin qi

Compute, C(qi), the size of qi

Select, if possible, two bins qj and qk such that µ(qj) ∨ µ(qk) = µ(qi)
and connect qj and qk to qi

EndFor

Figure 2. Compile time component of our approach.

Obtain ∇c

Determine the bin qi to check

If C(qi) ≥ K then

Return the first K iterations in qi to the requesting processor

Update the contents of bin qi

Else

Take M iterations from qi , where M < K
Update the contents of bin qi

Determine bins qj and qk that are connected to bin qi

If C(qj) + C(qk) ≥ K − M then

Return K − M iterations from these bins and update their contents

Else

Return the remaining iterations from any subset of bins and update contents

Figure 3. Runtime component of our approach.

banks). As the iterations are assigned to processors, we update the
contents of these bins accordingly, a process during which some
(originally full) bins can become empty. It is important to note
that each bin can be represented using a bitmap, similar to those
used for representing the on/off status of the banks (∇c) and the

bank access patterns of iterations (β(~I)). Let µ(q) represent the
bitmap of bin q. Suppose now that we are to assign a workload
W (which contains K iterations to be selected from the iterations
contained in Z) to a processor which asks for work. Using ∇c, we
first check the whether the bin q where µ(q) = ∇c has at least K
iterations. If this is the case, we give K iterations to the requesting
processor and we are done. If this is not the case (i.e., when bin q
can provide only M (< K) iterations, we next search to find a set
of bins q1, q2, · · ·, qr such that µ(q1) ∨ µ(q2)∨ · · · ∨ µ(qr) ⊲ ∇c

and can collectively provide K − M iterations for the requesting
processor, where M (< K) is the number of iterations provided
by µ(q). Informally, this means selecting a set of bins such that
collectively they provide K−M iterations and these K−M itera-
tions do not demand access to any of the unused banks. Since there
are many ways of selecting these banks and we cannot try all the
alternatives at runtime due to cost considerations, we mark at com-
pile time which alternative to try if we cannot find a bin q where
µ(q) = ∇c has at least K iterations. In our current implementa-
tion, we try only one alternative which consists of two banks, and
if that alternative cannot provide the required number of iterations,
we select the remaining iterations randomly. It is also important to
explain why we first try to find a bin q such that µ(q) = ∇c has at
least K iterations. This is due to the following observation. At the
time the slave processor in question asks for a workload, the set
of banks that are active is captured by ∇c. Since these banks are
active anyway, we may want to reuse all of them (while they are
active). This is because such a reuse will also likely to help cluster
the iterations that do not use some subsets of these banks, which
will in turn help increase power savings in the rest of the execution
of this parallel loop nest. Figure 2 shows the compile-time portion
of our approach based on the explanation above.

Second, our bank aware loop scheduling approach can be used
with any variant of self scheduling. This is because the different
variants of self scheduling such as tapering [15] and factoring [6]
differ only in the number of iterations they assign at runtime to
a requesting CPU. Based on our discussion of the previous para-
graph, this only affects the value of K (size of the workload W )
and the rest of our approach can be used as it is. In our experi-
mental evaluation however, we only implemented the bank aware
version of the baseline self scheduling.

Third, it is important to understand why a purely static (bank
aware) scheduling approach may not be as successful as our dy-
namic bank-aware scheduler. Notice that any purely static loop
scheduling scheme that is to be bank aware needs to make conser-
vation assumptions about the on/off status of the memory banks



µ(qi) Scenario I Scenario II

q1 1 0 0 0 8 7

q2 0 1 0 0 8 27

q3 1 0 1 0 20 2

q4 0 0 1 0 5 6

q5 0 1 1 0 5 4

Figure 4. Example application of our loop scheduling algo-
rithm. The last two columns give the number of iterations in
five bins; the other bins are assumed to be empty.

during each phase of the execution of the parallel loop. In other
words, it needs to estimate the bitmap ∇c conservatively (at com-
pile time). However, such a conservative estimation can be far
from reality due to at least two factors. First, dynamic cache be-
havior can affect the bank access pattern of a loop iteration com-
pletely. For example, for a given loop iteration, the compiler can
conservatively deduce that it can access four banks; however, at
runtime, all these four accesses can be captured and supplied by
the data cache, resulting in no memory access. The second po-
tential reason that can invalidate the compiler based estimation is
the dynamic code behavior. For example, a procedure/function
can have a lot of conditional branches. In order to make a con-
servative estimate, the compiler needs to consider the worst case
scenario. However, in a given execution, only a subset of all pos-
sible branches can be taken, which means a much smaller number
of bank accesses, compared to the conservative estimation made
at compile time. Nevertheless, in our experiments, we also mea-
sured how much energy we would lose, had we adopted a static
bank aware scheduling approach, instead of the dynamic approach
presented in this paper. The pseudo-code for the algorithm that
selects the workload W to be given to a requesting CPU is shown
in Figure 3. This algorithm is executed at run-time and constitutes
the dynamic portion of our approach (the static portion of our ap-
proach is given earlier in Figure 2).

We now give an example to illustrate how our approach works
in practice using two scenarios presented in Figure 4. In this ex-
ample, we assume that the memory system has four banks and
at compile time we grouped the iterations into five different bins
(q1, q2, · · · , q5). Let us assume that the current bank on/off status,
∇c, is 1010, the same as the bitmap of bin q3. We further assume
that the workload W we are to assign has 10 iterations. Note that
each scenario in Figure 4 corresponds to a particular number of
iterations at each bin. Under Scenario I, we first check q3 to see
whether it can supply the required number of iterations. Since this
bin has currently 20 iterations and we need only 10 (i.e., K=10),
we take the first 10 iterations from this bin, and reduce its con-
tents to 10, and we are done. Under Scenario II, we also first
check q3. But, this time, this bin can supply only 2 iterations (i.e.,
M=2). So, we need K − M=10-2=8 more iterations. Assum-
ing that q1 and q4 are identified as the backup bins for q3 (since
µ(q1) ∨ µ(q4) = µ(q3)), we next check q1 and q4. Since q1 can
give us 7 iterations, we need only 1 (=10-(2+7)) iteration from q4.
After that, the contents of q1 and q4 are updated accordingly.

4. Evaluation
Using SIMICS [16], we simulated a chip multiprocessor archi-

tecture and evaluated the following loop scheduling schemes:
• static: This represents the well-known compiler based loop

scheduling scheme. In this approach, the iterations of the loop
to be executed in parallel are divided across the available parallel
processors as evenly as possible. As noted earlier in the text, the
main problem with this approach is that it cannot take into account
the dynamic variances across the workloads of the different pro-
cessors. In other words, distributing loop iterations evenly does
not necessarily lead to evenly distributed workloads.

• dynamic: This is a well-known dynamic loop scheduling
scheme (also known as self scheduling [19]). A master processor
controls the loop distribution at runtime.

• tapering: This is a slight variant of the dynamic scheme,
and we followed the specific implementation discussed in [15].
Our initial experiments that compared this scheduling scheme with

Parameter Value

Number of Processors 8

IPC 2

L1 Cache (Per Processor) 8KB; 2-way; 32 byte line size

Shared On-Chip Memory 4MB; 8 banks of 512KB

L1 Access Latency 2 Cycles

On-Chip Memory Access Latency 8 Cycles

Bus Contention Cost 5 Cycles

Table 1. Default values of our simulation parameters.

Benchmark Explanation Dataset # of Energy

Name Size Cycles Consump

Baleen Segments an image into subimages 2.85MB 344.52M 171.48mJ

Demosaic Interpolates a complete image 3.51MB 576.12M 247.18mJ

from partial raw data

Imar ver2 Transforms different sets of data 2.51MB 305.83M 148.17mJ

into one coordinate system

Zonography A variant of linear tomography 3.94MB 883.9M 481.92mJ

kernel

Poly 1.1 A complex form of tomography 3.98MB 927.06M 515.64mJ

(poly tomography)

Cbd Car barrier detection algorithm 1.73MB 290.46M 129.13mJ

Table 2. Benchmark codes used in our experiments. The
numbers under the last two columns are for the static loop
scheduling scheme. The energy numbers are calculated for
70 nm.

trapezoid self-scheduling [18] and factoring [6] showed that all
these three schemes exhibit similar behavior for our benchmark
codes; therefore, we do not report separate results with the trape-
zoid self-scheduling or factoring.

• locality aware-dynamic: This is a dynamic locality aware
scheduling scheme, explained in [8]. In this scheme, whenever a
processor asks for a workload, it is given a set of loop iterations
that exhibit high degree of data reuse among them. The goal of
such an assignment is to improve the data cache locality. The rea-
son that we make experiments with such a scheme as well is to
demonstrate that a dynamic scheduling scheme that targets only
cache locality may not be sufficient for maximizing bank energy
savings.

• locality aware-static: This scheduling scheme is similar to
the previous one, except that the assignment of loop iterations to
processors are done statically (at compile time). Simply put, the
iterations space of the parallel loop is divided at compile time into
P subsets (P being the number of processors) such that the itera-
tions in each subset reuse a lot of data elements among themselves.
It generates similar results to the locality-aware static scheduling
described in [13].

• bank aware: This is the scheduling scheme discussed in
this paper (Section 3).

The code modifications required by these schemes are auto-
mated using the SUIF infrastructure [5]. As mentioned earlier, we
used the SIMICS [16] platform to perform our experimental eval-
uation. SIMICS is a functional simulator and runs unmodified op-
erating systems, drivers, firmware, and application software on the
simulated machines. As far as the software is concerned, there is
no difference from a real machine. We used this platform to sim-
ulate an embedded chip multiprocessor system with private (on-
chip) L1 and shared (on-chip) SRAM memory, which is banked.
The default number of banks is 8 and each bank is 512KB (mean-
ing that the total on-chip memory space is 4MB). The architecture
has separate L1 instruction and data caches for each and every
processor. The default simulation parameters used in most of our
experiments are given in Table 1.

Table 2 present the important characteristics of the bench-
marks used for evaluating our bank aware dynamic loop schedul-
ing scheme. The third column of this table gives amount of data
manipulated by each benchmark, and the fourth column shows the
execution cycles taken by a pure static scheduling scheme (as ex-
plained above). The last column of the table gives the energy
consumption in the memory system, again under the static loop



Figure 5. Execution cycles normalized
with respect to the static scheduling
scheme.

Figure 6. Energy consumptions normal-
ized with respect to the static scheduling
scheme.

Figure 7. Average energy-delay products
normalized with respect to the static
scheduling scheme.

scheduling scheme. The performance and energy numbers pre-
sented in the rest of this section are given as values, normalized
with respect to the last two columns of this table.

Figure 5 presents the execution cycle results. One can eas-
ily see that the dynamic scheduling scheme (second bar) gener-
ates savings (over the static scheme) in three applications, namely
demosaic, poly 1.1, and cbd. These are exactly the benchmarks
with large workload variations across processors when the static
workload assignment is employed. In the other three benchmarks,
however, the dynamic scheme generates poor results. Overall, as
compared to the static scheme, the dynamic scheme ends up with
3.7% performance degradation when averaged over all six bench-
mark codes. The behavior exhibited by the tapering scheme (third
bar) is similar to that of the dynamic scheme, with an average per-
formance degradation of about 2% over the static scheme. In com-
parison, locality aware-static scheme (fourth bar) performs better,
bringing reasonable improvements in two benchmarks (baleen and
zonography). The locality aware-dynamic scheme (fifth bar) is
much more successful since it is able to both take advantage of
data reuse and exploit load imbalances. The locality aware static
and dynamic schemes bring average performance improvements
of 1.2% and 9.2%, respectively, over the static loop scheduling
scheme. Lastly, our bank-aware loop scheduling scheme (last bar)
achieves 6.5% improvement over the static scheme. Although it is
not as good as the locality aware-dynamic scheme (as the latter is
pure performance oriented), it is not too far from it either. This is
because of the fact that, most of the time, minimizing the number
of accesses to a small set of banks (which is the main goal of our
approach) also leads to good data cache behavior, as it tends to
improve data reuse within a given time period.

The normalized energy consumption results are presented in
Figure 6. The energy consumptions for on-chip memory com-
ponents (L1 cache and on-chip memory) are calculated with the
help of the CACTI toolset [2]. The energy consumption of the re-
maining components on the other hand are obtained using activity
based energy models similar to those used in Wattch [1]. Maybe
the most important observation one can make from the results in
Figure 6 (which include energy consumption of both memory and
non-memory components) is that the bank aware scheme performs
much better than the remaining schemes, bringing an average en-
ergy saving of 16.4% over the static loop scheduling scheme. In
fact, it reduces energy in all six benchmark codes. In compari-
son, the remaining scheduling schemes do not repeat the savings
they achieve in execution cycles. For example, the dynamic, taper-
ing, locality aware-static, and locality aware-dynamic scheduling
schemes increase the energy consumption of the static scheduling
scheme by 11.6%, 11.1%, 1,1%, and 3.4%, respectively, on aver-
age.

Since any loop scheduling scheme affects both execution cy-
cle count and energy consumption, it is also important to quantify
the energy-delay product values. Figure 7 gives the energy-delay
products when averaged over all six application codes. Each bar in
this figure is normalized with respect to the average energy-delay
product of the static loop scheduling scheme. Since the bank aware
scheduling approach improves both performance and energy con-

sumption, it exhibits the best energy-delay product. We also see
that, as well as energy-delay product is concerned, the locality
aware-dynamic scheme is the only scheme (other than our bank
aware approach) that brings some reasonable improvement.

Figure 8 presents the average performance and energy values
with the different processor counts (4, 8, 12, and 16). Remem-
ber that our default processor count was 8. We see that, as we
increase the number of processors, the differences among the dif-
ferent scheduling schemes get magnified (this is true for both per-
formance and energy). The main reason for this is the fact that an
increase in the processor count usually leads to spread the bank
accesses more in the memory space (i.e., more irregularity in the
bank accesses). Considering the possibility that future chip mul-
tiprocessors will accommodate large number of CPUs, we believe
that these results are encouraging. Figure 9 gives the energy results
with different number of banks, keeping the total memory space at
4MB. All other parameters are set to their default values shown in
Table 1. We see that the behavior of the locality aware scheduling
schemes improve with smaller number of banks. This is because
as the number of banks gets smaller, optimizing for cache locality
generates similar results to those obtained by optimizing bank lo-
cality. However, when the number of banks is increased, these two
locality concepts start to behave differently, and as a consequence,
our bank aware scheduling scheme generates much better results
than the others.

We next study an alternate bank aware scheduling scheme,
which is a static version of the dynamic scheme discussed in
this paper. The only difference between this scheme and our dy-
namic scheme is how the ∇c bitmap is obtained. In our dynamic
scheme, it is obtained at run-time, while in this alternate bank
aware scheme, it is computed at compile time. As discussed earlier
in Section 3, the compile time computation of ∇c can be overly
pessimistic. The energy results captured by the first two bars (for
each benchmark) in Figure 10 corroborate this expectation. We
see that the average energy improvements by the dynamic and
static scheduling schemes are 16.4% and 10.4%, respectively (the
results for the dynamic scheduling scheme are reproduced from
Figure 6). These results underline the importance of dynamically
obtaining the ∇c bitmap. To better understand the difference be-
tween the statically computed and dynamically obtained bitmaps,
we also recorded during the experiments, the causes for mispre-
diction (of the ∇c bitmap) with the static scheme. The results are
presented in Figure 11. As discussed earlier, cache behavior and
dynamic control flow are two important reasons for the conserva-
tive estimation of the bitmap, also corroborated by the results in
this graph. The third portion of each bar in this graph represents
the mispredictions whose cause we could not identify.

Recall that in our current implementation we make two at-
tempts to select the set of iterations that satisfy the requirement
that no new banks are activated by the newly-assigned workload.
In the first attempt, we try find a bin q where µ(q) = ∇c has at
least K iterations. If this fails, in the second attempt, we try to
find a set of bins q1 and q2 such that µ(q1) ∨ µ(q2) ⊲ ∇c and can
collectively provide the K − M iterations, where M is the num-
ber of iterations provided by bin q. If this try also fails, then we



Figure 8. Average energy consumption
and execution cycle results with the dif-
ferent processor counts.

Figure 9. Average energy and execu-
tion cycle results with the different bank
counts. In each experiment, the total
memory capacity is the same.

Figure 10. Energy comparison of differ-
ent schemes.

Figure 11. Breakdown of causes for mispredictions of the ∇c
bitmap when the static bank aware scheme is used.

select the remaining iterations required randomly. However, it is
clear that, further improvements to this implementation are pos-
sible by increasing the number of attempts. In the general case,
when the first attempt fails, we can search for a set of bins q1, q2,
· · ·, qr such that µ(q1)∨ µ(q2)∨ · · · ∨ µ(qr) ⊲ ∇c and these bins
can collectively provide the required number of iterations. Note
that in general there are many ways of selecting these bins. The
last two bars for each benchmark in Figure 10 represent the en-
ergy consumption values with two enhanced implementations of
our bank aware dynamic loop scheduling scheme. The bar marked
using ”+1” tries one more alternative over our second attempt in
the default implementation, whereas the bar marked using ”+n”
tries all possible alternatives. We see that the average energy sav-
ings brought by the ”+1” scheme and ”+n” scheme are 19.1% and
21.9%, respectively. Considering these values with our default
value (16.4%), we can conclude that our default implementation is
not far from them, as far as energy consumption is concerned. In
addition, although not presented here in detail, the ”+n” scheme
increased the execution cycles by nearly 6% over our default im-
plementation, making the latter even more promising option, when
energy consumption and execution cycles are considered together.

5. Conclusions and Future Work
The main contribution of this paper is a memory bank-aware

dynamic loop scheduling scheme. Our approach selects the set
of iterations to assign to a requesting processor such that the cur-
rently active banks are reused if possible (without activating a new
bank). We tested this approach and collected both performance
and energy numbers using a SIMICS based simulation platform.
In our evaluation, we also compared it to a number of previously
published loop scheduling schemes, including the pure static and
dynamic schemes, variants of dynamic scheme, as well as two
locality oriented loop scheduling approaches. Our experimental
results with six embedded applications clearly show that the pro-
posed scheduling scheme not only reduces the energy consump-
tion significantly, but it also leads to much better energy savings
when compared to these prior techniques and it is competitive with

the loop scheduler that generates the best performance. We are
currently in the process of applying this scheduling scheme to clus-
ter based chip multiprocessor systems.
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