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ABSTRACT
Partitioning a memory into multiple blocks that can be indepen-
dently accessed is a widely used technique to reduce its dynamic
power. For embedded systems, its benefits can be even pushed fur-
ther by properly matching the partition to the memory access pat-
terns. When leakage energy comes into play, however, idle memory
blocks must be put into a proper low-leakage sleep state to actually
save energy when not accessed. In this case, the matching becomes
an instance of power management problem, because moving to and
from this sleep state requires additional energy.
In this work, we propose an explorative solution to the problem of
leakage-aware partitioning of a memory into disjoint sub-blocks.
In particular, we target scratchpad memories, which are commonly
used in some embedded systems as a replacement of caches.
We show that the total energy (dynamic and static) cost function
yields a non-convex partitioning space, making smart exploration
the only viable option; we propose an effective randomized search
in the solution space which has very good match with the results of
exhaustive exploration, when this is feasible.
Experiments on a different sets of embedded applications has
shown that total energy savings larger than 60% on average can
be obtained, with a marginal overhead in execution time, thanks to
an effective implementation of the low-leakage sleep state.

1. INTRODUCTION
As a major contributor to a system’s overall power budget, memo-
ries have always been one of the main targets of power optimization
techniques. This interest has generated a wide range of solutions,
which historically have focused on the reduction of dynamic power
[1, 2]. With the scaling of technology to feature sizes below 100nm,
however, static power due to leakage currents has become increas-
ingly important. While leakage is a problem for any transistor, it
is even more critical for memories: their high density of integra-
tion translates into a high power density that increases temperature,
which in turn affects leakage current exponentially. For this rea-
sons, several leakage-aware memories structures, in particular for
caches, have been devised in the recent past ([11]–[16]).
The central idea behind most of these techniques is to put infre-
quently or unused portions of a memory (e.g., cache lines) into
a low-leakage state to reduce power. Since the transition from
and to the low-leakage state has some penalty, these techniques
become a variant of a power management problem, yielding a
tradeoff between power and performance. This “selective shut-
down” paradigm has been mostly applied to caches because they
are the most critical element in the power-performance tradeoff for
processor-based systems; its rationale, however, do apply to other
types of memories, such as scratch-pad memories (SPM).

SPM are widely used in embedded systems, in which the flexibility
of caches in terms of workload adaptability is often unneeded, and
power consumption and cost play a much more critical role. In
SPMs, it is thus the designer that decides the mapping of addresses
to locations of the scratchpad.
The selective shutdown paradigm for SPMs has been addressed in
[9] and [10], in which only dynamic power was considered. Ne-
glecting static power simplifies the problems in several ways. First,
the sleep mechanism is automatically achieved, at no penalty, by
not accessing blocks. Second, dynamic energy is an average quan-
tity that does allow to abstract away the temporal dimension. As a
consequence, the partitioning algorithms can search along “space”
dimension only (the memory addresses), thus reducing the size of
the search space [10].
In this work, we improve previous SPM partitioning approaches
by including static power in the cost function. This complicates
the partitioning problem since it removes the two above mentioned
simplifications. Our contribution is twofold; first, we characterize
the search space of the SPM partitioning problem in a static power
regime; second, we propose a SPM partitioning algorithm based on
an implicit enumeration of the partitioning solutions.
Our approach has two characteristic features that differentiate it
from existing memory leakage optimizations solutions. First, it is
purely architectural; no special memory internal design is required
(as in most existing approaches – [11]-[16]), and standard SRAM
arrays can be used. Moreover, the extra hardware used to imple-
ment the scheme implements a very simple decoding function that
allows it to be synthesized automatically, lending itself to being
used in a standard design flow. Second, our approach is trace-based,
i.e., a given scratchpad partition is computed based on an execution
trace (as in [9],[10]). The advantage of this approach is that our
technique can be used even in cases where application binaries can
not be modified. This also implies complete transparency to the
embedded SW developer, who will use a completely standard pro-
gramming tool-chain. Clearly, the mapping is application specific
and, as such, will be different for each different application.
Results show that it is possible to save up to 89% of the energy
(about 60% on average).

2. BACKGROUND AND MOTIVATION
Partitioning a scratchpad memory into multiple blocks is a com-
monly used technique to reduce its average dynamic power. The
idea relies on the fact that, for a memory block, (1) memory ac-
cesses are not uniformly distributed, (2) energy is consumed only
when accessing it, and (3) its cost is proportional to the size of the
block times the total number of access. Using these properties, it
is intuitive to split the address space (a single memory block) into
multiple, independently accessed memory blocks in such a way that
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most of the accesses will occur into the smaller blocks and only few
ones into the larger ones. Figure 1 ([4]) pictorially summarizes this
principle for a two-block partition. The SPM (left) consists of W
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Figure 1: Common-Case Optimization Applied to Memory.

words, which are split (right) into two different memory blocks of
sizes N1 and N2, with N1 < N2, and N1 + N2 = N (we assume
a partition into disjoint set of addresses). Tones of grey denote fre-
quency of access. The common case, that is, the most frequently
accessed addresses are placed into the smaller (darker) memory.
Assuming a simplified power model in which memory access cost
is proportional to the number of words, i.e., Cmem = n, and that
N is the total number of memory accesses, N1 (N2) of which will
fall into block Mem1 (Mem2). The average power consumption in
the original case is Pmem,1 = N·W

N
= W ; in the second case, the

total power consumption is Pmem,2 = N1·W1+N2·W2
N

. The second
scheme is more convenient as N1 gets larger with respect to N2.
As technology scales, however, some of the above properties do not
hold anymore. In fact, the importance of leakage power increases,
and energy is consumed even when a memory is not accessed (the
idle state). To reduce the energy consumed in the idle state, proper
schemes to put a memory block into a sleep state with negligible
energy consumption are required. These schemes, however, nor-
mally imply a timing overhead: transitioning into and especially
out of the sleep state consumes energy and time, and putting a
memory block into a sleep state should be done only if this cost
can be amortized.
Introducing of the time dimension makes the problem much more
complex than the case of Figure 1. As a matter of fact, for dy-
namic energy we are interested only in the total number of accesses
and not of their distribution over time. Conversely, deciding about
putting a memory block into sleep requires extraction of the idle-
ness of a memory block.
The example of Figure 2 shows how the relative importance of leak-
age power affects the quality of a partitioning architecture. The plot
refers to a trace of memory accesses issued by an embedded appli-
cation, and shows two curves. The solid one reports the energy
saving provided by three-bank partitioned architecture changes as
a function of the ratio γ of leakage and dynamic energy (γ = 0
= dynamic energy only, γ → ∞ = static energy only). The curve
is obtained by using the solution achieved by considering dynamic
energy only (γ = 0), and accounting for leakage energy as well
when computing the savings. In other words, all points on this
curve refer to the same partition.
We can notice how the efficiency of the partitioning degrades for in-
creasing values of γ, ending up in an increase of the total energy for
when leakage dominates. The dashed curve reports instead the sav-
ing that can be achieved when a leakage-aware partitioning (such
as the one presented in this work) is used.

3. PREVIOUS WORK
The problem of the energy-efficient partitioning an on-chip mem-
ory in multiple banks have been studied by several authors, as well
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Figure 2: Importance of Leakage-Aware Partitioning.

as at different levels of abstractions. In these section we will only
review hardware techniques that do not modify the access patterns.
Traditional techniques ([6, 7, 8]) are of explorative nature: all pos-
sible partitions are analyzed and matched against the access pat-
terns of the application and the best solution is recorded. More
sophisticated schemes exploit the properties of the memory access
energy cost and the resulting structure of the partitioning space ([9,
10, 11]) to come up with polynomial-time algorithms that are able
to derive the optimal partition for a given access pattern. All these
techniques only consider dynamic power, and the issue of the en-
ergy consumption of a non-accessed memory is not considered.
Leakage-aware partitioning of memory structures is addressed at
the circuit-level by many authors, in particular for cache-like struc-
tures. A well-known approach is the cache-decay architecture[12],
which turns off the cache lines during their “dead time” in which
they are not used before being evicted. Another popular architec-
ture is the drowsy cache[13], in which cache lines are put into
state-preserving low-power modes (drowsy modes) based on us-
age statistics that can be collected at run time and implemented in
hardware. Dynamic run-time resizing of a cache (based again on
usage statistics) through deactivation of a subset of lines, columns
or even entire ways is another viable approach [14, 16]. These tech-
niques, however, require the modification of the internal structure
of caches, which are normally very highly-optimized designs.
The only approach that deals with sub-banking at a higher level of
abstraction is the work of Kandemir et al. [15]: exploiting bank
locality (i.e., consecutive memory accesses use the same memory
bank as much as possible) it is possible to maximize the idleness
thus ensuring maximal amortization of the re-activation overhead.
Our work differs from [15] in three main aspects. First, our method
is purely architectural in the sense that it is completely transparent
to the processor and can be applied to any trace. Second, it is trace-
based and does not require any “analytical” description of the ap-
plication in terms of loop indices as in [15]. Third, it concurrently
accounts for dynamic and leakage power in the computation of the
best solution.

4. MEMORY ENERGY CHARACTERIZA-
TION

4.1 Memory Energy Model
Key to our method is the availability of a low-leakage sleep state for
a given memory block. Two aspects must be considered in defin-
ing such a sleep state. The first one concerns whether the sleep
state should preserve memory content or not. In principle, both
options are viable. In practice, since we target embedded systems,
for which the energy overhead of refilling of the entire SPM would
consume excessive power, we resort to a state-preserving mecha-
nism.



The second issue is related to the actual implementation of the sleep
state. Our constraint of not changing the internal memory structure
(cells and/or architecture) implies that modifications must be “ex-
ternal” to the memory. In order to set a standard memory block in a
low energy state, two solutions are possible. The first one is to in-
crease the threshold voltage (Vth) of the transistors by varying their
substrate voltage (Vbs). This option requires access to bulk contacts
of the components, which is not always possible (as in the case of
the memories used in this work). The second way, which is always
feasible, is to vary the supply voltage (Vdd) of the SRAMs. This
also reduces leakage because of the drain induced barrier lowering
(DIBL) effect, and, moreover, because it affects the drain-source
voltage.1 Due to its general applicability, we implement a sleep
state as a low-Vdd state.
To give a quantitative idea of how leakage can be saved by modulat-
ing Vdd, Figure 3 shows the dependency of SRAM leakage power
on memory size and on power supply. Data are obtained from ex-
periments on a 65nm technology from STMicroelectronics, as dis-
cussed later. The projections on the two planes (fixed Vdd and fixed
size) show a linear and exponential trend, respectively.
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Figure 3: Leakage Power as Function of Size and Vdd.

The state preserving constraint is achieved by imposing that Vdd

be larger than Vth. Notice however that memory cannot be reli-
ably read or written in this low-Vdd operating condition. There-
fore, reading and writing will require going back to the normal,
active state. Memory will thus evolve between a Sleep and an Ac-
tive state; The Sleep state is characterized by a low voltage supply
(VddL ), and, hence, a low leakage energy consumption. Transitions
between the two states have an energy and a time cost that, in gen-
eral, will depend (i) on the size W of the memory block considered,
and (ii) on the voltage level VddL of the Sleep state (Figure 4).
Such an overhead must be taken into account when computing an
effective partition, because the cost of the transition to Sleep must
be compensated by the benefit provided by the exploited idleness.
Energy is actually spent only during the Sleep-to-Active transition,
which in fact causes the loading of internal capacitances from a
VddL to Vdd. The opposite transition, on the contrary, just dis-
charges the corresponding capacitances, and does not draw current
from the power supply. Thus, EAS = 0.
Timing overheads can be derived based on the same reasoning: the
only transition we are interested in is the one from Sleep to Active,
1Vth can be expressed as:

Vth = Vth0 −DIBL(Vds)

where DIBL(Vds) is proportional to Vds.
In the sub-threshold region, the drain current is:

Ids = I0 · (1− e
−Vds

vt ) · e−
Vgs−Vth

nvt

Sleep Active

TAS (VddL,W)

EAS (VddL,W)
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Figure 4: Memory Power States and Transition Costs.

since the other one can be overlapped with accesses to other mem-
ory blocks (because a block switched to Sleep will not be accessed
in the immediate future).
Since upon a regular access a memory is charged from 0 to Vdd

in a fraction of its cycle time, and since we assume that a memory
block can be accessed in a single cycle, we can safely estimate the
time overhead as one cycle. This consideration is in accordance
with simulated data on caches reported in [13], in which restoring
Vdd from a 300mV drowsy state was reported to take less than one
cycle.
This point is interesting because it differentiate this instance of
power management from traditional ones, for which the timing
overhead is normally sizable. The most important consequence
is that we can derive a breakeven value, defined as the minimum
time interval for which a memory must remain in the Sleep state to
overcome the transition cost
Based on the above considerations, total energy consumption of a
memory block can be defined as:

E = Nacc ·Ed +(T −TS) ·PleakA
+ TS ·PleakS

+ Nsw ·EAS (1)

where Nacc is the number of accesses to the block, Ed is the dy-
namic energy spent for each access, T is the total execution time,
TS is the sum of the cycles in which the memory is kept in sleep
state, PleakA and PleakS are the static power spent in Active and in
Sleep state respectively, and Nsw is the number of times the block
switches from Sleep to Active state.
Based on this energy model, the breakeven value B can be obtained
by imposing E(TS =B, Nsw =1) = E(TS =0, Nsw =0), thus
resulting in the formula:

B =
ESA

PleakA
− PleakS

which depends on VddL and W . Typical values are relatively small
and are in the order of the hundred of cycles.

4.2 Characterization
The characterization of the quantities described in the previous sec-
tion were carried out on a family of 32-bits memories, developed by
STMicroelectronics for a 65nm technology. Foundry data-sheets
provide information about the behavior (static and dynamic energy
consumption, and access/cycle times) for the normal functioning
(Active state).
Static power consumption in the Sleep state PleakS was derived by
scaling the data related to the Active state (provided by the data-
sheet), based on the architecture of the SRAM and using the MOS
analytical formula; more precisely, we first calculate the ratio be-
tween the leakage of a transistor that operates at Vdd and the leak-
age of the same transistor that operates at VddL . Then, by inspect-
ing the SRAM architecture, we can determine which transistors
are leaking. This allows to compute a scale factor to apply to the
foundry data.
Energy transition overheads have been estimated by evaluating the
capacitance seen from the supply node. A rough quantitative eval-
uation of the Sleep to Active time can be done by using the energy



cost of a regular memory access (which charges and the discharges
the bitlines) to first estimate the sum of bitline capacitances. From
this value, we can calculate the energy needed to charge the capaci-
tance from VddL to Vdd. To increase the accuracy of this procedure,
these data were integrated by accurate simulation data from some
SPICE simulations of small SRAM arrays, properly tuned to match
the energy figures reported in foundry data-sheets.
In this work, we chose 0.5 V for VddL , (Vdd is 1.2 V). Since Vth

is 0.42V , this values is large enough to guarantee preservation of
memory state, yet with a reduction of leakage of a factor 10.
Energy data are related to a temperature of 50 ◦C. Such a temper-
ature, for the used technology, implies γ = 0.5, therefore the aver-
age dynamic power is two times the average power due to leakage.
Since in our exploration framework what matters is the dependency
of these quantities on memory size, Figure 5 shows the dependency
on memory size of PleakA and PleakS (left), and of Ed and ESA

(right).
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Figure 5: PleakA , PleakS (µW ) (left), Ed, ESA (pJ) (right).

The evaluation time transition cost is much simpler because, as al-
ready mentioned, we can conservatively assume an overhead of one
cycle for the Sleep-to-Active transition. The actual overhead is in
fact smaller than a cycle; an entire cycle is in fact needed to re-
store the active state from a 0V state, while in our case we have to
restore from a larger voltage level (VddL). Estimating of this over-
head would require an evaluation of the internal capacitance of the
memory array similar to what has been done for energy overhead
estimation. However, the analysis is in this case more difficult, be-
cause not all the internal nodes are charged simultaneously, and
internal propagation delays must be taken into account.

4.3 Partitioning Overhead
Partitioning a monolithic SPM into disjoint sub-blocks implies an
overhead due to an additional decoder (to convert global addresses
into sub-block addresses), and to the wiring to connect the decoder
to the sub-blocks [9]. As the number of sub-blocks increases, the
complexity of the decoder stay almost constant, but the wiring over-
head increases, thus preventing arbitrarily fine grain partitioning of
the SPM. Following the approach described in [9], we character-
ized the partitioning overhead by adapting published data to the
65nm technology used in this work (e.g., doubling the relative im-
portance of wires with respect to that of cells on energy consump-
tion). In spite of that, the overhead stays relatively small. The over-
head partitioning for a 2-block partition is only 4% of the mono-
lithic SPM, about 6% for a 3-block partition, and a 8.5% for a 4-
block partition.
Results in [9] have shown that the overhead for larger number of
blocks is in most cases not amortized.

5. ENERGY-EFFICIENT SCRATCHPAD
PARTITIONING

5.1 Problem Formulation
We assume that the memory accesses of the application running
on the system is described by a trace T = {a1, ..., aL}, where ai

denotes the generic address accessed at cycle i. L is the length of
the trace, i.e., the number of execution cycles of the application.
Without loss of generality, we assume that addresses are all 32-bit
wide, and are aligned to 4-bytes boundary.
We consider a memory consisting of M words, to be parti-
tioned into a set of N non-overlapping blocks. A partition is de-
fined by the N − 1 boundaries (addresses) of the partition Π =
[p1, p2, . . . , pN−1], where pi is the address boundary between the
i-th and the i+1-th memory block.
The problem we are solving can be formulated as follows: Given
a trace T of length L, and the maximum number N of blocks into
which to split the memory, find a partition Π = [p1, p2, . . . , pN−1]
for which total energy consumption:

E(p1, p2, . . . , pN−1) =
NX

i=1

Ei + OV(N) (2)

is minimized.
In the above formula, Ei is the energy spent by the i-th block (com-
puted with formula 1), while OV(N) is the partitioning overhead
that depends only on N .

5.2 Searching the Solution Space
Scanning the trace, we can obtain information about which mem-
ory cell is accessed at which time, hence we can build, in principle,
a bidimensional matrix MAP with addresses on the horizontal di-
mension and times on the vertical one. Each cell MAP[a, t] is thus
identified by the address a and the time t, and it contains a 1 if the
address a was been accessed at time t, and 0 otherwise. Such a
matrix, however, is unpractical because of its huge size. Moreover,
storing data for each distinct cycle and address is useless, because
data locality makes sense only on larger time and address inter-
vals. Furthermore, exploring a possible partitioning with a step of
one word is unrealistic, because memory cuts cannot have arbitrary
small dimension.
For these reasons, we discretized both addresses and times, denot-
ing with ∆S and ∆T the space and time granularity, respectively.
As a result of discretization, a cell MAP[a, t] of the matrix con-
tains 1 if at least an access to some address between a and a + ∆S
happened in the time interval [t, t+∆T ]; otherwise it contains a 0.
The matrix has now size L ×M, where L = L

∆T
and M = M

∆S
.

Once the map has been generated, we can use it to evaluate for-
mula 2 for an arbitrary partition Π = {p1, p2, . . . , pN−1}. In this
work we adopted a very conservative choice for ∆S (64 bytes) and
∆T (1000 cycles). However, as we will show later, searches can in
most cases be sped up by using much larger values of ∆S, without
compromising the effectiveness of the search.
The computation of an optimal partition can be carried out by
searching the solution space, identified by all possible N -block par-
tition. An exhaustive exploration of all the partitions has complex-
ity O(MN−1)2. Given the large values of M, an exhaustive search
is prohibitive. Search-based algorithms that deal with dynamic en-
ergy only ([9, 10]) completely abstract away the time dimension,
transforming the problem into a uni-dimensional search. Further-
more, the dynamic energy cost function allows to avoid useless
computation. A more formal analysis ([10]) shows that the search
space exhibits the properties of the optimality of sub-problems as
well as the fact that the optimal solution is a set of sub-optimal
solutions, allowing to fit it to a dynamic programming paradigm.
Considering (i) the time dimension and (ii) the leakage energy cost
function makes the problem totally different, and, more problem-
atic, the search space very much less regular.

2The actual size of the solution space is
„

M
N − 1
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Figure 6 shows the total energy as a function of the bi-partition
boundary, for an example trace; we can notice how the cost func-
tion is quite irregular, with several local minima (notice, also, that
the rising portion, on the left side of the plot, is actually composed
of many little oscillations, thus of many local minima that could
trap a local search). The shape of the energy cost is even more ir-
regular when the partition cardinality N increases, thus preventing
alternatives to exhaustive search. In general the cost function is not
convex, thus a search algorithm cannot leverage such a simplifi-
cation (albeit the function cost is application dependent, thus it is
not impossible, only very unlikely that some realization turns out
to be convex). Searching a global optimum in a non-convex space
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Figure 6: Normalized energy consumption as function of the
partition boundary (KB) in a bi-partition.

implies resorting to approximate solutions, which do not guaran-
tee optimality in general, but can yield a provably good solution
in reasonable time. Many methods do exist to solve the problem
of searching into a very large (non-convex) space, such as sim-
ulated annealing, tabu search, genetic algorithms, particle swarm
optimization. In this work, we have used a variant of a random-
restart gradient descent approach [21], which essentially consists
of a running an outer loop over a conventional gradient descent
search; each step of the outer loop chooses a random initial condi-
tion to start the descent.
Our implementation starts by picking a set of random partitions,
among which the best one is selected (the candidate solution).
Then, we generate and evaluate a new random partition. If
this partition does not improve the candidate solution, we
discard it. Otherwise, we perform a local search around
it: partition boundaries are perturbed by a vectorial quantity
{∆p1, ∆p2, . . . , ∆pN−1} in direction of the opposite of the en-
ergy gradient −∇E(p1, . . . , pN−1). In order to avoid computing
all the possible incremental ratios around the current position, we
estimate ∇E with a Montecarlo search. In this way we quickly
reach a local minimum that outperforms and, therefore, replaces
the candidate solution.
When the candidate solution survives R (namely, 1000) random
jumps, the algorithm terminates and returns the best solution found.
This search algorithm has no optimality claim, but it aims at achiev-
ing a solution with good quality in acceptable time. As results will
show, the approximate solution is very close, in most cases, to the
optimal partition (when the latter can be computed).

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
To assess the effectiveness of our algorithm, we used two sets of
traces. The first one was generated by running the Powerstone

benchmarks [17] on top of Platune [18] (a MIPS simulator). Ap-
plications are fed with small inputs, in order to keep their memory
footprint (and thus M ) small enough to allow exhaustive explo-
rations.
The second set of traces are taken from MIBENCH [19] applica-
tion suit on the ARM version of Simplescalar [20]. Since we used
large input data for these simulations, the resulting traces and the
required memory are quite large, thus exhaustive explorations can-
not be performed within practical times.

6.2 Experimental Data
Figure 7 shows the results of the exploration performed on Power-
stone benchmarks. For each trace and γ value, we plot three energy
savings: (i) the one provided by a partitioning scheme that consid-
ers dynamic energy only, (ii) the one achieved with the optimum
partition (found with the exhaustive search), and (iii) the saving
obtained with our algorithm. All values are computed against the
energy spent by a monolithic SPM.
We can notice that, for almost all the traces, our search heuris-
tic provides almost identical results to exhaustive search, and, in
the few cases where it does not, its sub-optimality is very limited.
Notice that, in some cases, the savings provided by a partitioning
scheme driven only by dynamic energy increases for larger val-
ues of γ; this is because these partitioning schemes tend to cluster
accesses in small memory areas, leaving large memory portions
which are barely used. Because spatial correlation is often associ-
ated to temporal correlation of accesses, such memory blocks can
very often be turned into Sleep state, also saving leakage.
However, the actual effectiveness of a partitioning depends on the
distribution over time of the idleness, that is not taken into account
by dynamic-energy-based strategies (e.g., if a block remains idle
one time for 1000 cycles, the saving is higher than if it is idle 10
times for 100 cycles each). Therefore, their saving potential is al-
ways smaller than our method, and decreases as γ increases.

γ = 0.5 γ = 0.75 γ = 1 γ = 2 γ = 5

CRC32 64.8 60.4 57.2 49.8 42.5
adpcm.dec 89.1 84.1 87.5 85.0 84.3
adpcm.enc 86.8 84.3 87.9 86.4 83.4

search 58.1 51.7 48.7 41.1 33.8
sha 82.9 86.6 85.8 83.9 82.1

rijndael o 59.8 55.5 52.3 44.4 36.9
rijndael i 58.7 54.1 51.1 43.2 35.7

gsmd 73.1 69.6 68.0 62.1 57.1
gsme 73.5 69.0 66.3 61.9 57.0

tiff2bw 77.1 74.1 73.3 69.1 65.1
dijkstra 69.7 66.4 62.4 58.4 52.8
djpeg 70.1 65.8 64.1 58.2 52.7
fft 1 60.3 52.9 50.2 42.8 36.2
fft 2 59.2 53.4 49.1 42.8 31.9
say 68.1 63.7 60.7 56.3 50.1
mad 64.4 60.9 55.3 51.4 42.6
cjpeg 64.2 59.4 55.2 48.0 39.3
ispell 58.3 50.3 44.3 34.3 24.6

Table 1: Savings for MIBENCH Trace (4-Block Partition).

Table 1 shows the energy savings, with regard to the unpartitioned
case, that result for the MIBENCH applications. For each bench-
mark we reported results concerning four different values of γ. We
can see as our algorithm provides savings between 24% and 89%
(60% on average). The decreasing savings when γ increases is due
to the characteristics of the applications: when γ → 0 the resulting
saving is Sd (the one related to dynamic energy only), while when
γ → ∞ the saving is SL (saving that accounts only leakage en-
ergy). The relation between this two quantities depends on the ap-
plication memory usage: if the least used memory areas are almost
uniformly accessed (as it happens for applications we examined),



Energy Savings (%)

-10

0

10

20

30

40

50

60

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

0
.5 1 2 5

qurt bcnt des fir blit crc adpcm compress ucbqsort pocsag g3fax engine

dyn exh heur

Figure 7: Energy savings for Powerstone benchmarks and a 4-blocks partition.

than there is fewer potential for leakage saving, because they must
be frequently turned on. Therefore, for MIBENCH applications,
when leakage impact increases, the energy saving decreases.

6.3 Sensitivity Analysis
We also analyzed the impact of the discretization step (∆S) on
the results of our algorithm. In general, increasing ∆S reduces
the solution space, thus decreasing the search time. Intuitively, we
expect a trade-off between the algorithm speed and its efficiency,
depending on the application.
Figure 8 shows the behavior of the energy savings when ∆S varies,
for some of the MIBENCH benchmarks. We reported the energy
savings obtained for increasing steps normalized to the saving ob-
tained with a very small ∆S. Notice that step values are normalized
with respect to the actual memory usage of the application (M ).
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Figure 8: Normalized energy savings when varying ∆S.

Interestingly, for values of ∆S below 5% of the application address
space, the savings are not impacted (there are a few oscillations,
due to the randomness of the algorithm). Moreover, even increas-
ing ∆S up to 10% of M still yields quite good energy savings. In
quantitative terms, since the typical values of M of these bench-
marks is between 256KB and 1MB, it means that we can achieve
good results with exploration steps in the range 2–16KB.
Notice that for large step values, the 4-partition solution reduces
first to a 3-partition (when ∆S ∼ M

3
), and then to a bi-partition

(when ∆S approaches M
2

), thus further reducing the effectiveness
of the algorithm.

7. CONCLUSIONS
In this work we have used the selective shutdown paradigm to re-
duce the energy consumption of scratchpad memories in a scenario
where leakage energy takes a relevant fraction of total energy.
We propose a search-based partitioning algorithm that accounts for
both spatial and temporal correlation, and leverages (i) a careful
characterization of the solution space, (ii) an accurate state-based
model of memory energy. Results show an average energy saving

of about 60% (up to 89% for the most profitable cases), while just
for 8% of cases the saving is below 40%.
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