
Temperature Aware Task Scheduling in MPSoCs

Ayse Kivilcim Coskun† Tajana Simunic Rosing† Keith Whisnant‡
†University of California, San Diego ‡Sun Microsystems, San Diego

Abstract

In deep submicron circuits, elevation in temperatures has
brought new challenges in reliability, timing, performance,
cooling costs and leakage power. Conventional thermal man-
agement techniques sacrifice performance to control the ther-
mal behavior by slowing down or turning off the processors
when a critical temperature threshold is exceeded. Moreover,
studies have shown that in addition to high temperatures, tem-
poral and spatial variations in temperature impact system re-
liability. In this work, we explore the benefits of thermally
aware task scheduling for multiprocessor systems-on-a-chip
(MPSoC). We design and evaluate OS-level dynamic schedul-
ing policies with negligible performance overhead. We show
that, using simple to implement policies that make decisions
based on temperature measurements, better temporal and spa-
tial thermal profiles can be achieved in comparison to state-
of-art schedulers. We also enhance reactive strategies such as
dynamic thread migration with our scheduling policies. This
way, hot spots and temperature variations are decreased, and
the performance cost is significantly reduced.

1 Introduction

Advancements in process technology enable manufacturing a
complete MPSoC including CPUs, memories and communica-
tion architectures on a single die. Sun’s UltraSPARC T1 [14]
and IBM’s Cell [13] are examples of such systems. However,
as semiconductor processing technology migrates to more ad-
vanced deep-submicron technologies, new challenges arise for
the next generation of MPSoC products. High power and tem-
perature densities, process imperfections and reduced voltage
margins have made the systems much more vulnerable to both
permanent and transient faults. Elevation in temperatures (i.e.
thermal hot spots) and temperature gradients bring new chal-
lenges in reliability, timing, performance, cooling costs and
leakage power. In this work, we propose MPSoC scheduling
optimization with negligible performance overhead for mitigat-
ing these temperature induced problems.

Thermal hot spots cause high cooling costs, poor reliabil-
ity and performance degradation. Cost of cooling increase at a
super-linear rate [9], which requires designing for temperature
margins that are lower than the worst-case. Hot spots accelerate
the failure mechanisms such as electromigration, stress migra-
tion and dielectric breakdown, which cause permanent device
failures [12]. In fact, a small difference in the operating tem-
perature (i.e. 10 − 15oC) can result in a 2X difference in the
lifespan of the devices [29]. Leakage is exponentially related to
temperature, and a positive feedback loop exists between tem-

perature and leakage, which can cause dramatic increases in
temperature and damage the circuit if not controlled. For fea-
ture sizes below 65nm, leakage is expected to account for more
than 50% of the overall power consumption [23]. High tem-
peratures can also adversely affect performance, because the
effective operating speed decreases with high temperatures due
to the carrier mobility’s dependence on temperature.

In addition to thermal hot spots, temporal fluctuations in
temperature have an adverse effect on system reliability. Ther-
mal cycling phenomenon is correlated with the magnitude
and frequency of the temperature cycles the device experi-
ences [12]. It causes accelerated package fatigue and plastic
deformations of materials that accumulate at each temperature
cycle, and can lead to cracks and other permanent failures.
Temperature cycles are created by either low frequency power
changes such as system power on/off cycles, or workload rate
changes and power management decisions which happen much
more frequently [24]. Previous work shows that addressing
thermal hot spots alone is not enough to achieve better relia-
bility, and temperature gradients in time and space determine
device reliability at moderate temperatures [16].

Spatial temperature variations across the chip can cause
performance mismatches, leading to performance or logic fail-
ures. Negative bias temperature instability (NBTI) and hot car-
rier injection (HCI) cause the circuits to fail in meeting the tim-
ing constraints [15]. In process technologies below 0.13um, re-
liability issues arise due to NBTI and HCI, considering that the
operating temperatures and electric fields reach high enough
values to accelerate these mechanisms during device lifetime.
A number of other design issues arise due to large spatial dif-
ferentials. Local resistances scale linearly with temperature.
Increasing temperature increases resistances, and thus circuit
delays and IR drop [23]. Global clock networks are especially
vulnerable to spatial variations. Every 20 degrees increase in
temperature causes 5-6% increase in Elmore delay in intercon-
nects. As a result, clock skew problems become noticeable for
spatial variations of around 20 degrees and above [2]. Recently,
there have been proposals that address such delay problems in
clock networks (e.g. [6, 2]).

To date, the temperature related problems have been ad-
dressed to some extent by techniques that lower the average
temperature or keep the temperature under a given threshold.
Power aware synthesis, dynamic power management (DPM),
and dynamic voltage scaling (DVS) are such techniques. Ther-
mal modeling and management have been introduced to guar-
antee the die temperature does not reach critical values. A sig-
nificant bottleneck of traditional thermal management methods

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



is the performance impact associated with stalling or slowing
down the processor [26]. When the workload that is go-
ing to run on the system is known (e.g. in some embedded
systems), predictive techniques can be applied which select
voltage/frequency levels or architecture configuration at design
stage to avoid dynamic thermal management as much as possi-
ble [27].

Despite their significant benefits to the thermal profile of the
chip, conventional power or thermal management techniques
cannot always eliminate the problems associated with tempera-
ture in a cost-effective way. Both temporal and spatial temper-
ature variations cause a number of reliability problems, while
typical power and thermal management do not focus on the ef-
fects of these variations. Moreover, reactive thermal manage-
ment methods, which address some of the temperature prob-
lems effectively, often have considerable performance impact.
In high end computing domain, lower overhead strategies such
as optimizing workload and core frequency at design stage are
not very useful because workload varies significantly over time.
Thus, techniques that can lower and balance temperature at run-
time with low performance overhead are needed.

In this paper, we investigate how dynamic OS-level work-
load scheduling can achieve temperature profiles that are ben-
eficial for reliable MPSoC design. In contrast to thermal man-
agement techniques, which perform computation migration or
clock gating (e.g. [25]) when temperatures reach critical val-
ues, our goal is to adjust the workload distribution to achieve
the best temporal and spatial temperature distribution possi-
ble. We evaluate heuristic methods that make decisions based
on the current temperature, and we also propose a probabilis-
tic scheduling technique, Adaptive Random. This technique
adapts to the changes in the temperature by taking into ac-
count the thermal history when making scheduling decisions.
We also look at how dynamic power management affects the
temperature, and provide results on combined power manage-
ment/thermal management policies. Our analysis shows that,
when combined with reactive methods such as thread migra-
tion and voltage scaling, the Adaptive Random policy decreases
the performance impact of such techniques considerably, while
achieving better thermal profiles.

2 Related Work

In this section, we first briefly discuss the previous work on
multiprocessor scheduling. We then review more closely the
prior work on thermal management, and compare it against our
approach.

2.1 Scheduling in MPSoCs
In MPSoC research, a lot of focus has been on optimizing
the scheduling with performance and energy objectives. A
power management strategy for mission critical systems con-
taining heterogeneous devices is proposed in [18]. Design time
and runtime optimizations are combined in a two-level strat-
egy introduced in [30]. The problem of concurrent commu-
nication and task scheduling for heterogeneous NoCs is for-
mulated in [10], and a static schedule that considers real-time
constraints is proposed. Rong et al. formulates the optimiza-
tion problem of finding the optimal voltage schedule and task
ordering for a system consisting of a single core and peripheral

devices using integer linear programming (ILP), and proposes
a three-phase solution framework [20]. In [21], the MPSoC
scheduling problem is decomposed into allocation and schedul-
ing sub-problems, which are solved using ILP and constraint
programming respectively, with the objectives of minimizing
the data transfer on the bus and guaranteeing deadlines for the
average case.

In our work, we focus on MPSoCs for the high end com-
puting domain, where workload is not known a priori and gen-
erally not easy to predict. For such systems, making dynamic
and fast decisions for workload allocation is crucial for perfor-
mance. Thus, the techniques we focus on are low overhead OS
level schedulers, as opposed to high complexity strategies with
aggressive performance and energy optimization goals.

2.2 Thermal Modeling and Management
Elevated temperatures impact system reliability, cause difficul-
ties in circuit design and increase the cooling costs signifi-
cantly. Consequently, accurate thermal modeling has become
a requirement. HotSpot [26] is an automated thermal model,
which calculates transient temperature response given the phys-
ical characteristics and power consumption of units on the die.
A fast thermal emulation framework for FPGAs is introduced
in [3], which reduces the thermal simulation time considerably
while maintaining accuracy. As policies based on power met-
rics are not sufficient to prevent local thermal hot spots, several
thermal management approaches have been presented to date.
These methods are either dynamic (online) and make decisions
while the system is running, or static (offline) where optimiza-
tions are performed at design stage.

Dynamic thermal management (DTM) controls over-
heating by keeping the temperature below a critical thresh-
old. Computation migration and fetch toggling are examples
of DTM techniques [26]. Heat-and-Run performs temperature
aware thread assignment and migration for multicore multi-
threaded systems [7].

Static methods for thermal and reliability management are
based on system characterization at design time. In [27], a
thermal management approach is introduced that predicts the
hot spots based on the execution profile of the multimedia
benchmarks. A simulated-annealing based thermal floorplan-
ning method at micro-architecture level is presented in [22],
which achieves 20 degrees reduction of temperature in aver-
age. Including temperature as a constraint in the co-synthesis
framework and in task allocation for platform-based system de-
sign is introduced in [11]. RAMP provides a reliability model
at architecture level for temperature related intrinsic hard fail-
ures [28]. It analyzes the effects of application behavior on
reliability, and optimizes the architectural configuration and
power/thermal management policies for reliable design. The
trade off between power consumption and reliability is studied
in [24], and it is shown that aggressive power management can
adversely affect reliability due to fast thermal cycles. They pro-
pose a joint policy optimization method that can achieve high
amount of power savings while meeting the reliability criteria
on MPSoCs.

Our work focuses on optimizing the thermal profile of the
MPSoC with minimal impact on performance. Our technique
can be combined with more aggressive DTM strategies to re-



duce their performance cost while further lowering and balanc-
ing the temperature.

3 Temperature Aware Task Scheduling

In this work, we present dynamic OS-level temperature aware
scheduling techniques with negligible performance overhead.
These techniques can mitigate the thermal hot spots and large
temperature variations, which cause significant challenges in
reliable system design. When combined with previously in-
troduced reactive thermal management methods such as thread
migration and voltage scaling, the proposed techniques can
achieve even lower and more stable thermal profiles while re-
ducing the performance impact of reactive techniques signifi-
cantly. The thermally-aware policies we investigate are cost-
effective and can be easily implemented into existing sched-
ulers at the OS level.

Most of the techniques we discuss in this work make deci-
sions based on the temperature measured on the MPSoC. Cur-
rent chips typically contain several thermal sensors, and these
sensors can be read by a continuous system telemetry infras-
tructure for collecting and analyzing time series sensor data [8].
The data from the sensors are written to memory and read by
the OS to be processed on a regular basis. This information
is then passed to the scheduler at each time interval to guide
scheduling in a thermally-aware way. The thermal information
collected by sensors often includes a certain amount of inac-
curacy. However, online validation of the sensor outputs can
be performed through advanced pattern recognition techniques
such as the multivariate state estimation technique (MSET) [8],
ensuring that only valid sensor readings drive the scheduler.

In this section, we provide the details of the scheduling
techniques that were implemented for this work. We start by
discussing multiprocessor schedulers in state-of-art operating
systems. We then follow with two previously introduced reac-
tive thermal management methods that are applicable to MP-
SoCs. Finally, we explain the temperature aware scheduling
techniques we propose.

3.1 State-of-the-Art Load Balancing Schedulers
Many modern OS schedulers are based on multilevel queuing,
which is a dynamic technique that mixes several elements such
as priority, round-robin and shortest-job-first scheduling prin-
ciples. While there are other scheduling methods such as gang
scheduling (which sends related threads to same core) and dedi-
cated processor assignment (which uses fixed processor assign-
ments), multilevel queuing with some amount of load balancing
is commonly used for performance reasons. In Linux 2.6, each
processor in the multiprocessor system has a queue, and a task
stays in a queue for cache affinity. Tasks are moved to different
queues only when the load is unbalanced (i.e., when length of
one queue is less than one fourth of another). Solaris makes
use of load balancing for performance reasons, and migrates
threads to other processors when a core becomes overloaded.
The thread migration in Solaris is performed based on giving
priority to locality, following the assumption that the threads
on nearby cores share the same caches.

In this work, we implemented a dynamic strategy (referred
to as Load Bl. in later sections) where the scheduler balances
the workload by sending workload to the least busy processor at

each interval. This dynamic load balancing strategy is in prin-
cipal similar to load balancing performed by operating systems
such as Solaris, which balances the workload in the processors’
queues at regular intervals. We used a balancing interval of 200
seconds in our experiments.

3.2 Thermal Management Techniques for MPSoCs

Here we discuss two previously introduced techniques that can
be applied to MPSoCs for controlling temperature. Both of
these techniques are reactive, that is they are activated only
when a critical temperature is reached.

Dynamic Thread Migration is an MPSoC thermal man-
agement method that migrates threads from hot processors to
cooler ones. For minimizing the performance impact of thread
migration, Heat-and-Run proposed loading the cores as much
as possible and migrating workload when critical temperature
values are observed [7]. In our implementation of this tech-
nique, we migrate the thread from the hot processor to the
coolest processor available at that moment. The threshold tem-
perature for migration is set at 85oC, which is considered a
critical temperature in many systems.

Voltage Scaling for Thermal Management (VSTM) per-
forms dynamic voltage and frequency scaling when the temper-
ature reaches the threshold [26]. This technique lowers the tem-
perature on the hot cores by reducing power consumption. In
our implementation, we assume two built-in voltage/frequency
settings for each core. All jobs run at full speed (fmax) un-
less a critical temperature value (85oC) is observed. If a core
reaches the critical value, the voltage level of the particular core
is reduced to the lower setting (flow) until the current job ter-
minates. In our experiments, flow is two thirds of fmax.

3.3 Low-Overhead Temperature Aware Scheduling

The policies we investigate here have negligible overhead in
comparison to the existing decision-making process in OS-level
multiprocessor schedulers, and they can be implemented in the
OS scheduler with minimal changes. We first look at heuristic
methods that make scheduling decisions based on the current
temperature and floorplan. We then present a more advanced
approach that adjusts the likelihood of each processor receiving
workload based on the temperature history.

Sending Workload to Coolest Core: Reactive methods for
thermal management have to trade off performance to control
temperature. The heuristics we investigate here avoid excessive
heating of cores by making scheduling decisions based on the
current temperature of the cores. The two heuristics we im-
plemented are: 1) Coolest, where for each ready job, the sched-
uler selects the coolest processor for allocation; 2)Coolest-FLP,
where the principle is same as (1), but in addition the scheduler
gives priority to processors that have “idle” neighbors. Hori-
zontal heat transfer plays an important role in determining the
temperature, as discussed previously in [22]. Coolest-FLP ac-
counts for the fact that a significant amount of heat transfer oc-
curs among neighboring units on the die, and active processors
with active neighbors will cause the particular region to heat
up faster. Considering the floorplan and current activity of the
neighbor units also decreases the spatial variations in tempera-
ture.



Random Policy with Temperature Aware Adaptation:
The scheduling policies we have discussed so far have different
strengths. For example, load balancing achieves better load dis-
tribution and higher performance. On the other hand, making
scheduling decisions based on current temperature decreases
the hot spots and temperature gradients. In order to address
several objectives and yet avoid introducing significant com-
plexity to the scheduler, we developed a probabilistic policy
called Adaptive-Random. This policy updates probabilities of
sending workload to cores at each interval based on an analysis
of the temperature history on the chip.

At each job arrival, the new probability value for each core
is computed using Equation 1. In the equation, Pn is the new
probability, Po is the previous probability, and W is the weight.
Pn values saturate at 0 and 1. In order to evaluate the thermal
stress on each core, W is computed at regular intervals using a
sliding window of temperature history. We set the interval and
sliding window lengths at 1 second in order to account for the
rapid changes in temperature. As we compute only Equation 1
at workload arrivals, the computation cost of our technique is
negligible, and we do not have to stall execution. Once the
probabilities are updated, the core for allocating the current job
is selected through generating a random number.

Pn = Po ± W (1)

The probability values are decremented or incremented by
Wdec or Winc, depending on whether the temperature has risen
above the threshold temperature (Tthr), or dropped below a sec-
ond threshold Tlow respectively. If there are processors that
have exceeded Tthr in the past interval, their Pn values are
dropped to 0 (i.e. Wdec = Po). We increase the Pn of cores that
did not spend any time above Tthr by Winc (see Eqn. 2). In our
simulations we set Tthr at 80oC. We used a threshold lower
than 85oC for preventing hot spots before they occur. In order
to avoid allocating workload to cores that have temperatures
slightly below 80oC, we used a second threshold, Tlow. We do
not increase Pn unless in the last interval the core temperature
has dropped below Tlow, which is 75oC in our experiments.
While calculating Winc, we evaluate Avthr, which is the aver-
age temperature below Tthr divided by Tthr. This way, if a
core is cooler than another, its Winc is greater. We selected the
β value as 0.1 empirically. When the temperature of a core is
between Tthr and Tlow, no action is taken.

Winc = β/Avthr (2)

This scheduling policy can be implemented on a real system
easily. As discussed previously, collecting the thermal data and
computation of weights do not impose noticeable performance
impact. The random number generator is implemented through
a linear-feedback shift register (LFSR), which often already ex-
ists on the chip for test purposes. Another benefit of this policy
is that it achieves better load balancing than making decisions
solely on current temperature. The Adaptive-Random policy
addresses the issues of maintaining a balanced and low temper-
ature profile as well as distributing the thermal stress to cores
as evenly as possible throughout system lifetime.

4 Results

4.1 Experimental Methodology
In this work, our experimental results are based on the data
collected from an UltraSPARC T1 processor, which contains
8 cores and memory, communication and I/O units. This MP-
SoC has been manufactured in 90nm process technology. The
processors are in-order execution cores and have multithread-
ing capability. Every two cores share an L2-cache. The cores
communicate through shared memory. The power distribution
among the units and relative sizes of each unit on the chip are
provided in Table 1. The power data is obtained through simu-
lations. Figure 1 demonstrates the MPSoC floorplan [17].

Component Type Power (%) Area (%)

Cores 65.27 37.66
Caches 25.50 50.69

Crossbar 6.01 5.84
Other 3.22 5.81

Table 1. Power and area distributions of the units

Figure 1. Floorplan of the MPSoC

We collected the percentage of times the processors were
active or idle throughout the execution of a collection of
CPU-intensive, network-intensive, memory-intensive and bus-
intensive threads. The MPSoC runs a multilevel queuing sched-
uler with basic load balancing capabilities.

To fairly compare different scheduling techniques, we im-
plemented a simulator. In our simulation, we took a represen-
tative trace of data collected at runtime. Our simulation trace
is 70 minutes long, and the execution time of each job in the
trace varies between 10 and 1000 seconds. In the first step of
the simulator, the scheduler is provided a list of jobs and their
start times, which represents the job arrivals to the system. The
scheduler then dynamically allocates the ready tasks.

In the next step of the simulator, power values are derived
based on each unit’s execution profile. Dynamic power man-
agement or voltage scaling is also applied in this stage, depend-
ing on the policy simulated. For cores, we used average power
values for the active and idle states for UltraSPARC T1. In the
average case, the ratio between active and idle state power is
7.4. We estimated the power at the lower voltage levels based
on the relationship between power, frequency and voltage (i.e.
P ∝ f ∗ V 2). We used reported sleep state values for sim-
ilar cores in order to estimate the sleep state power. For the



crossbar, we used a simple power model, where the power con-
sumption scales according to how many cores are active. For
dynamic power management (DPM), we implemented a fixed
timeout policy [4] with timeout set to 100ms. We also apply
dynamic voltage scaling as a part of the thermal management
(For more details, see Section 3.2).

The next step is to obtain the temperature distributions us-
ing a thermal simulator. We used HotSpot version 2 [26] as
the thermal modeling tool, and modified it accordingly for MP-
SoCs. For characterizing the thermal package, we used the de-
fault heat sink and spreader parameters (i.e. thermal resistance
and capacitance values) in HotSpot, which represent a thermal
package commonly found in modern processors. We observed
the thermal constant of our system at several hundred millisec-
onds, and we used a time slice of 100ms in the thermal simula-
tions which provided a good precision. We use the temperature
output from HotSpot [26] to drive temperature based decisions
at the next scheduling point.

Next we present the experimental evaluation of the schedul-
ing techniques. We compare their efficiency in reducing
high temperatures and temperature gradients, with and with-
out power management. We also evaluate the performance of
each technique.

4.2 Thermal Hot Spots
Here we compare the thermal distributions achieved by each
technique we discussed in the previous section. In Table 2, we
show the percentage of time spent above 85oC. We provide
results for cases with and without DPM. In the first row, we
show the normalized performance of each policy. To evaluate
the performance impact, we computed the average delay in the
completion time of jobs with respect to the baseline case of load
balancing. In thread migration, we assumed each migration
takes 200ms, according to the results provided in [5]. All the
results regarding the Adaptive-Random technique are averaged
over a hundred runs in order to obtain statistical convergence.

We observe from these results that the two heuristics we
proposed and the Adaptive-Random technique perform simi-
larly with load balancing in terms of reducing the hot spots.
When DPM is applied, the benefits of Coolest increase. This
is due to the fact that much lower temperatures that can be
achieved in the sleep state. When we combine thread migra-
tion (DTM) and voltage scaling with Adaptive-Random, the
performance impact is significantly reduced, while even lower
frequency of hot spots is achieved.

4.3 Spatial Temperature Variations
Load balancing balances the workload based on the processor
activity in an interval, but does not consider temperature dis-
tributions. Therefore, very often large spatial differential tem-
peratures are observed. The spatial variations across the whole
chip can easily go above 20oC. Previous work shows that clock
skew resulting from spatial gradients becomes noticeable for
gradients around 20 degrees and above [2]. Effects of thermal
gradients on performance of devices can even be much more
severe than the effect on interconnects, as it is shown that the
driver on-resistance is more dependent on temperature than in-
terconnect resistance [1]. In fact, device delay is correlated
with the driver on-resistance, which increases by 30% when the

Figure 2. Thermal maps: (a)Load Bl.; (b)Adaptive-Random

temperature rises from 70oC to 90oC in 0.1um technology [1].
For these reasons, even at 15 degrees of gradients, performance
degradation could occur due to varying delays of components.

Figure 2 shows thermal maps of MPSoCs (a) and (b),
which have been scheduled with load balancing and Adaptive-
Random respectively. Load balancing causes high spatial tem-
perature differences (above 20oC) across the chip frequently,
whereas Adaptive-Random typically achieves a more uniform
thermal profile. For example, without power management, we
observe that load balancing causes the maximum spatial differ-
ential among the cores to stay above 10oC 99% of the time.
However, Adaptive-Random reduces this percentage to below
30%. We can observe from the figure that scheduling has a con-
siderable effect on the spatial variations. Especially for chips
with a larger number of cores, spatial gradients will introduce
more challenges for system design and reliability.

4.4 Temporal Temperature Variations
Here we evaluate how each technique affects temporal tempera-
ture fluctuations on the cores. Higher magnitude and frequency
of thermal cycles affect reliability adversely [12, 28]. Changes
in the workload cause a certain amount of temperature varia-
tions on each core, but most of the time the magnitude of these
variations are not large enough to cause problems. However,
sleep state of the cores typically consume power much less than
the active state, and dynamic power management can create
large enough variations in temperature to increase the failure
rates considerably [24]. Therefore, in our evaluation, we only
investigate the cases with DPM.

The number of cycles to failure can be approximated as
Nf = Co ∗ (∆T )−q using Coffin-Manson model [12], where
Co is a material dependent constant and q is an empirically de-
rived constant. For example, if we use a q value of 4 for metallic
structures [12], assuming the same frequency of cycles, when
∆T increases from 10 to 20oC, Nf decreases by a factor of
16. Table 3 shows the average percentage of time the cores ex-
perience temporal variations above 20oC. These results were
obtained by computing the ∆T over a sliding window of 1000
seconds for each core, and averaging the ∆T s of all cores in
the MPSoC.

While load balancing performs similarly to the temperature
aware techniques in terms of reducing the hot spots, it causes
cores to experience ∆T s greater than 20oC close to 10% of the
time. Load balancing cannot effectively take care of the tempo-
ral variations because balancing workload does not consider the



Load Bl. Coolest Coolest-FLP AdaptRand DTM AdaptRand-DTM VSTM AdaptRand-VSTM

Without DPM
Performance 1 1 1 1 0.941 0.976 0.85 0.935

% > 85oC 1.19 1.21 1.21 1.15 0.50 0.09 0.00 0.00

With DPM
% > 85oC 0.29 0.09 0.29 0.28 0.00 0.00 0.00 0.00

Table 2. Performance Evaluation and Hot Spots

Load Bl. Coolest Coolest-FLP AdaptRand DTM AdaptRand-DTM VSTM AdaptRand-VSTM

With DPM
% > 20oC 9.66 5.25 5.98 4.91 2.30 0.15 5.14 0.12

Table 3. Average Temporal Temperature Variations

temporal variations on each core. With negligible performance
overhead, this ratio can be reduced by almost a factor of two
using thermally-aware techniques. When Adaptive-Random is
combined with thread migration or voltage scaling, high tempo-
ral variations are almost completely eliminated. Studies show
that having a more constant temperature will always result in
a better reliability than a varying temperature with the same
average value [19]. Therefore, minimizing the temporal fluctu-
ations is a significant achievement for improving system relia-
bility.

5 Conclusion

In this paper, we investigated dynamic OS-level schedulers for
thermal management of MPSoCs. We showed that techniques
that take into account temperature measurements achieve low
and balanced temperature profiles at negligible performance
cost. We developed an adaptive policy, which modifies the
workload allocation policy based on the temperature history.
While the adaptive method was slightly better in eliminating
hot spots than existing load balancing techniques, it provided
significant reductions in temporal and spatial temperature vari-
ations. We also demonstrated that the performance overhead
of reactive techniques such as thread migration and voltage
scaling can be reduced dramatically when they are combined
with the Adaptive-Random technique, while achieving lower
and more stable temperatures.

6 Acknowledgements

This work has been funded by Sun Microsystems, and the Uni-
versity of California MICRO grant 06-198.

References
[1] A. H. Ajami, K. Banerjee, and M. Pedram. Analysis of substrate thermal gradient

effects on optimal buffer insertion. In ICCAD, pages 44–48, 2001.

[2] A. H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform
substrate temperature effects on global ULSI interconnects. IEEE Transactions on
CAD, 24(6):849–861, June 2005.

[3] D. Atienza, P. D. Valle, G. Paci, F. Poletti, L. Benini, G. D. Micheli, and J. M. Men-
dias. A fast HW/SW FPGA-based thermal emulation framework for multi-processor
system-on-chip. In DAC, 2006.

[4] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for
system-level dynamic power management. IEEE Trans. Very Large Scale Integr. Syst.,
8(3):299–316, 2000.

[5] S. Bouchenak and D. Hagimont. Pickling threads state in the java system. In Tech-
nology of Object-Oriented Languages and Systems (TOOLS) Europe, 2000.

[6] A. Chakraborty, P. Sithambaram, K. Duraisami, A. Macii, E. Macii, and M. Pon-
cino. Thermal resilient bounded-skew clock tree optimization methodology. In DATE,
2006.

[7] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-Run: leveraging SMT and
CMP to manage power density through the operating system. In ASPLOS, 2004.

[8] K. Gross, K. Whisnant, and A. Urmanov. Electronic prognostics through continuous
system telemetry. In 60th Meeting of the Society for Machine Failure Prevention
Technology (MFPT), pages 53–62, April 2006.

[9] S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the impact of increasing
microprocessor power consumption. Intel Technology Journal, 2001.

[10] J. Hu and R. Marculescu. Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints. In DATE, 2004.

[11] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Thermal-aware
task allocation and scheduling for embedded systems. In DATE, 2005.

[12] Failure mechanisms and models for semiconductor devices, JEDEC publication
JEP122C. http://www.jedec.org.

[13] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM Journal of Research & Development,
49(4/5):589–604, July/September 2005.

[14] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded
SPARC processor. IEEE Micro, 25(2):21–29, 2005.

[15] H. Kufluoglu and M. A. Alam. A computational model of NBTI and hot carrier injec-
tion time-exponents for MOSFET reliability. Journal of Computational Electronics,
3 (3):165–169, Oct. 2004.

[16] C. J. Lasance. Thermally driven reliability issues in microelectronic systems: status-
quo and challenges. Microelectronics Reliability, 43:1969–1974, 2003.

[17] A. Leon, L. Jinuk, K. Tam, W. Bryg, F. Schumacher, P. Kongetira, D. Weisner, and
A. Strong. A power-efficient high-throughput 32-thread SPARC processor. ISSCC,
2006.

[18] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware scheduling under
timing constraints for mission-critical embedded systems. In DAC, 2001.

[19] Z. Lu, W. Huang, S. Ghosh, J. Lach, M. Stan, and K. Skadron. Analysis of temporal
and spatial temperature gradients for IC reliability. University of Virginia Technical
Report CS-2004-08, March 2004.

[20] P. Rong and M. Pedram. Power-aware scheduling and dynamic voltage setting for
tasks running on a hard real-time system. In ASPDAC, 2006.

[21] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano. Communication-
aware allocation and scheduling framework for stream-oriented multi-processor
system-on-chip. In DATE, 2006.

[22] K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron. A case for thermal-
aware floorplanning at the microarchitectural level. The Journal of Instruction-Level
Parallelism, 7, 2005.

[23] M. Santarini. Thermal integrity: A must for low-power IC digital design. EDN, pages
37–42, Sept. 2005.

[24] T. Simunic, K. Mihic, and G. D. Micheli. Optimization of reliability and power
consumption in systems on a chip. In PATMOS, 2005.

[25] K. Skadron. Hybrid architectural dynamic thermal management. In DATE, 2004.

[26] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In ISCA, 2003.

[27] J. Srinivasan and S. V. Adve. Predictive dynamic thermal management for multimedia
applications. In ICS, 2003.

[28] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for lifetime reliability-
aware microprocessors. In ISCA, 2004.

[29] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal performance
challenges from silicon to systems. Intel Technology Journal, (Q3), 2000.

[30] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwereins.
Energy-aware runtime scheduling for embedded-multiprocessor SoCs. IEEE Des.
Test, 18(5):46–58, 2001.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




