
Energy Minimization with Soft Real-time and DVS for Uniprocessor and
Multiprocessor Embedded Systems �

Meikang Qiu� Chun Xue� Zili Shao� Edwin H.-M. Sha�
�Department of Computer Science �Department of Computing

University of Texas at Dallas Hong Kong Polytechnic University
Richardson, Texas 75083, USA Hung Hom, Kowloon, Hong Kong

�mxq012100, cxx016000, edsha�@utdallas.edu cszshao@comp.polyu.edu.hk

Abstract

Energy-saving is extremely important in real-time em-
bedded systems. Dynamic Voltage Scaling (DVS) is one of
the prime techniques used to achieve energy-saving. Due
to the uncertainties in execution times of some tasks of sys-
tems, this paper models each varied execution time as a ran-
dom variable. By using probabilistic approach, we propose
two optimal algorithms, one for uniprocessor and one for
multiprocessor to explore soft real-time embedded systems
and avoid over-designing them. Our goal is to minimize
the expected total energy consumption while satisfying the
timing constraint with a guaranteed confidence probability.
The solutions can be applied to both hard and soft real-time
systems. The experimental results show that our approach
achieves significant energy-saving than previous work.

1 Introduction

Power and energy reductions are critical for real-time
embedded systems. In practice, many of these systems can
tolerate occasional deadline misses and some tasks in them
may not have fixed execution time. Such tasks usually con-
tain conditional instructions and/or operations that could
have different execution times for different inputs [2, 8].
It is possible to obtain the execution time distribution for
each task by sampling and knowing detailed timing infor-
mation about the system or by profiling the target hardware.
Also some multimedia applications, such as image, audio,
and video data streams, often tolerate occasional deadline
misses without being noticed by human visual and auditory
systems. For example, in packet audio applications, loss
rates between 1% - 10% can be tolerated.

Prior approaches for hardware/software codesign of em-
bedded systems guarantee no deadline missing by consid-
ering worst-case execution time of each task [3, 6]. These

�This work is partially supported by TI University Program, NSF EIA-
0103709, Texas ARP 009741-0028-2001, NSF CCR-0309461, NSF IIS-
0513669, Microsoft, USA, HK POLYU A-PH13, and A-PA5X, HK.

approaches are pessimistic and only suitable for hard real-
time systems, where any deadline miss will be catastrophic.
They are not suitable for soft real-time systems, which can
tolerate occasional violations of timing constraints. Us-
ing probabilistic approach [2, 8], we can take advantage of
this feature and deliver higher performance with less en-
ergy consumption. Probabilistic approach can be applied
to both hard real-time systems and soft real-time systems.
Hard real-time is a special case of soft real-time when the
probability equals to 1.

Dynamic voltage scaling (DVS) is one of the most effec-
tive techniques to reduce energy consumption [1, 4, 5, 7].
In many embedded systems, the supply voltage can be
changed by mode-set instructions according to the work-
load. With the trend of multiple processors being widely
used in embedded systems, it is important to study DVS
techniques for multiprocessor systems.

In this paper, we use probabilistic approach [2, 8] and
DVS to avoid over-designing systems. We propose two
novel optimal algorithms, one for uniprocessor and one for
multiprocessor embedded systems, to minimize expected
value of total energy consumption while satisfying timing
constraints with guaranteed probabilities for real-time ap-
plications. Hua et al. [2] proposed a heuristic algorithm
for uniprocessor. Their data flow graph (DFG) is a sim-
ple path. We call the offline part of it as HUA algorithm for
convenience. In this paper, we also apply the greedy method
of HUA algorithm to multiprocessor and call the new algo-
rithm as Heu.

Our contributions are listed as the following:
1) For uniprocessor, our algorithm VAP S gives the op-

timal solution and achieves significant energy saving than
HUA algorithm.

2) For the general problem, that is, multiprocessor, our
algorithm, VAP M, gives the optimal solution and achieves
significant average energy reductions than the Heu algo-
rithm.

3) Our algorithms are not only optimal, but also provide
more choices of smaller expected total energy consumption
with guaranteed confidence probabilities satisfying timing
constraints. In many situations, algorithms HUA and Heu

978-3-9810801-2-4/DATE07 © 2007 EDAA

cannot find a solution, while ours can find satisfied results.
4) Our algorithms are practical and quick. In practice,

when the number of multi-parent nodes and multi-child
nodes in the given Probabilistic Data Flow Graph (PDFG)
graph is small, and the timing constraint is polynomial to
the size of PDFG, the running times of these algorithms are
very small and our experiments are always finished in very
short time.

The rest of the paper is organized as following: The
models and basic concepts are introduced in Section 2. In
Section3, we give a motivational example. In Section 4, we
propose our algorithms. The experimental results are shown
in Section 5, and the conclusion is shown in Section 6.

2 Models and Concepts

In this section, we introduce the system model, the en-
ergy model, and VAP problem for multiprocessor systems
that will be used in the later sections.

System Model: We focus on real-time applications
on uniprocessor and multiprocessor embedded systems.
Probabilistic Data-Flow Graph (PDFG) is used to model
an embedded systems application. A PDFG G �
������ �� � � is a directed acyclic graph (DAG), where
U � ���� � � � � ��� � � � � ��� is a set of nodes representing
tasks; V � ���� � � � � �� � � � � � �� � is a voltage set; the ex-
ecution time ��� ��� is a random variable; ED � � � �
is the edge set that defines the precedence relations among
nodes in � . There is a timing constraint � and it must be
satisfied for executing the whole PDFG. In multiprocessor
systems, each processor has multiple discrete levels of volt-
ages and its voltage level can be changed independently by
voltage-level-setting instructions without the influence for
other processors.

Energy Model: Dynamic power, which is the domi-
nant source of power dissipation in CMOS circuit, is pro-
portional to ������ 	� � �

�
��, where ����� represent the

number of computation cycles for node�,	� is the effective
switched capacitance, and ��� is the supply voltage. Reduc-
ing the supply voltage can result in substantial power and
energy saving. Roughly speaking, system’s power dissipa-
tion is halved if we reduce ��� by 30% without changing
any other system parameters. However, this saving comes
at the cost of reduced throughput, slower system clock fre-
quency, or higher cycle period time (gate delay).

We use the similar energy model as in [4, 5, 7]. Let
� represent the execution time of a node and � stand for
energy consumption. The cycle period time �� is propor-
tional to ���

����������
, where ��	 is the threshold voltage and

 � ����� ���� is a technology dependent constant. Given
the number of cycles � of node �, the supply voltage ���
and the threshold voltage ��	, its computation time � ���
and the energy ���� for node � are calculated as follows:

�� �
� � ���

���� � ��	�

(1)

� ��� � ������ �� � ������
� � ���

���� � ��	�

(2)

���� � ������ 	� � �
�
�� (3)

In Equation (1), k is a device related parameter. From
Equations (2) and (3), we can see that the lower voltage will
prolong the execution time of a node but reduces its energy
consumption.

VAP problem: Assume there are maximum differ-
ent voltages in a voltage set � � ���� ��� � � � � �� �. For
each voltage, there are maximum � execution time vari-
ations, although each node may have different execution
time variations. An assignment for a PDFG G is to assign
a voltage level to each node. In a PDFG G, each varied ex-
ecution time is modeled as a probabilistic random variable,
��� ���, � � � � , representing the execution times of
each node � � � when running at voltage level �� . ��� ���
and��� ��� is corresponding probability and expected value
of energy consumption.

We define the voltage assignment with probability (VAP)
problem as follows: Given different voltage levels:
��,��,� � �,�� , a PDFG� � ������ with ��� ���, ��� ���,
and 	�� ��� for each node � � � executed on each voltage
�� , a timing constraint � and a confidence probability � ,
find an assignment of voltage level for� that gives the min-
imum expected total energy consumption� with confidence
probability � under timing constraint �.

3 Motivational Examples

First we give an example for multiprocessor embedded
systems, which is shown in Figure 1. Figure 1(a) shows
the input PDFG, and (b) shows the times, expected energy
consumption, and probabilities of each node. Each node has
two different voltage levels to choose from, and is executed
on them with probabilistic execution times.

The number of computation cycles (��) for a task is pro-
portional to the execution time. The energy consumption
(�) depends on not only the voltage level � , but also the
number of computation cycles ��. We use the expected
value of energy consumption (������) as the energy con-
sumption � under a certain voltage level � . Under differ-
ent voltage levels, a task has different expected energy con-
sumptions. The higher the voltage level is, the faster the ex-
ecution time is, and the more expected energy is consumed.
According to the energy model of DVS [7], the computa-
tion time is proportional to �������� � ��	��, where ��� is
the supply voltage, ��	 is the threshold voltage; the energy
consumption is proportional to � �

��. So here we assume the
computation time of a node under the low voltage (��) is
twice as much as it is under the high voltage (��); the en-
ergy consumption of a node under the high voltage (��) is
four times as much as it is under the low voltage (��).

We use a schedule to preprocess the input PDFG. After
preprocessing, we get the scheduling graph in Figure 1(c),
which is a DAG. There are two processors, ��� and ���.
Node 5 is a multi-child node, which has two children: 3 and

1

3 4

5

2

3

5

4

1 2

PR1
Nodes

 V1 V2
E

0.1
4 1.0

E TT P
4
63

P

2 5

1 1.0 2 1.0

1 0.8
3 6
1

0.1

2 0.9
0.1

0.8

2

1

3

5

1

2 4
0.9
0.2

2

0.9
0.1

0.92

0.2

1.0

4 1

624

20

416

312

PR2

(a) (b) (c)

Figure 1. (a) A given PDFG. (b) The param-
eters of its nodes for different � . (c) The
schedule graph.

4. Node 2 is a multi-parent node, and has two parents: 3
and 4. From Figure 1(b) we can compute the time cumula-
tive distribution functions (CDFs) of each node at different
voltage levels.

T (P , E) (P , E) (P , E) (P , E)
4 0.65, 76
5 0.65, 43 0.72, 61
6 0.72, 34 0.81, 61
7 0.80, 34 0.90, 52
8 0.72, 22 0.80, 34 1.00, 52
9 0.80, 22 0.90, 40 1.00, 52
10 0.72, 19 0.80, 22 0.90, 34 1.00, 40
11 0.72, 19 0.80, 22 1.00, 34
12 0.80, 19 0.90, 22 1.00, 34
13 0.80, 19 1.00, 22
14 0.90, 19 1.00, 22
15 0.90, 19 1.00, 22
16 1.00, 19

Table 1. Minimum expected total � with com-
puted confidence � under various � for a
DAG.

For Figure 1, the minimum total energy consumptions
with computed confidence probabilities under the timing
constraint are shown in Table 1. For each row of the ta-
ble, the � in each (� , �) pair gives the minimum total
energy consumption with confidence probability � under
timing constraint � . Using our algorithm, VAP M, at tim-
ing constraint 11, we can get (0.80, 22) pair. Table 2 shows
the assignments of our algorithm. Assignment ���� repre-
sents the voltage selection of each node �. Using our al-
gorithm, we achieve minimum total energy consumption 22
with probability 0.80 satisfying timing constraint 11. While
using the heuristic algorithm HUA, the total energy con-
sumption obtained is 61, because HUA still need to use volt-
age level �� and cannot change all node’s voltage level to
�� under timing constraint 11. The energy saving improve-
ment of our algorithm is 59.1% in this case. Also, this case
shows that in many situations, the solutions obtained by our
algorithms have significant improvement compared with the
results gotten by Heu.

Node id Time V Level Prob. Energy
5 3 V1 1.00 4
4 2 V2 1.00 5

OuVs ���� 3 4 V2 0.80 6
2 2 V2 1.00 4
1 4 V2 1.00 3

Total 11 0.80 22
5 3 V1 1.00 4
4 2 V1 1.00 5

HUA ���� 3 1 V1 0.80 24
2 1 V1 1.00 12
1 2 V1 1.00 16

Total 11 0.80 61

Table 2. Under timing constraint 11, the dif-
ferent assignments between VAP M and Heu.

4 The Algorithms

��� �������	�
 ��� ����

To solve the VAP problem, we use dynamic program-
ming method traveling the graph in bottom up or top down
fashion. For the ease of explanation, we will index the
nodes based on bottom up sequence. For example, Figure 1
(a) shows a tree indexed by bottom up sequence. The se-
quence is: �� 	 �� 	 � � � 	 ��. Define a root node to
be a node without any parent and a leaf node to be a node
without any child. A multi-child node is a node with more
than one child. For example, in Figure 1 (a), node 3 and
5 are multi-child nodes. Similarly, a multi-parent node is a
node with more than one parent.

Given the timing constraint�, a PDFG�, and an assign-
ment �, we first give several definitions as follows:

1) ��: The sub-graph rooted at node ��, containing all
the nodes reached by node ��. In our algorithm, each step
will add one node which becomes the root of its sub-graph.
For example, in Figure 1 (a),�� is the tree containing nodes
1, 2, and 3.

2) ����
�� and����

��: The total energy consumption
and total execution time of �� under the assignment A. In
our algorithm, each step will achieve the minimum total en-
ergy consumption of �� with computed confidence proba-
bilities under various timing constraints.

3) Define the (Probability, Energy) pair (����, ����)
as follows: ���� is the minimum energy consumption
of ������ computed by all assignments � satisfying
����

�� � � with probability
 ���� .
We introduce the operator “�” in this paper. For two (P,

E) pairs �� and ��, if �� is (� �
��� , �

�
���), and �� is (� �

��� ,
��
���), then, after the � operation between �� and ��, we

get pair (�
�

, �
�

), where �
�

= � �
��� * � �

��� and �
�

= ��
��� +

��
��� . We denote this operation as ��� ����.
In every step in our algorithm, one more node will be

included for consideration. The information of this node is
stored in local table ���� . A local table store only data of
probabilities and energy of a node itself. Table ���� is the

local table storing only the data of node ��. In more de-
tail, ���� is a local table of linked lists that store pair (���� ,
����) sorted by ���� in an ascending order;���� is the energy
consumption only for node �� at time �, and ���� is the cor-
responding probability. The building procedures of ���� are
as follows. First, sort the execution time variations in an as-
cending order. Then, accumulate the probabilities of same
type. Finally, let ���� be the linked list in each entry of���� ,
insert ���� into ������ while redundant pairs canceled out
based on Lemma 4.1.

In our algorithm, table ���� will be built. Each entry of
table ���� will store a linked list of (Probability, Energy)
pairs sorted by probability in ascending order. In our al-
gorithm, ���� is the table in which each entry has a linked
list that store pair (���� , ����) sorted by ���� in an ascend-
ing order. Here, � represents a node number, and � repre-
sents time. For example, a linked list can be (0.1, 2)	(0.3,
3)	(0.8, 6)	(1.0, 12). Usually, there are redundant pairs
in a linked list. We can use the following Lemma to cancel
redundant pairs.

Lemma 4.1 Given (� �
��� , �

�
���) and (� �

��� , �
�
���) in the same

list:
1. If � �

��� � � �
��� , then the pair with minimum ���� is se-

lected to be kept.
2. If � �

��� � �
�
��� and ��

���
 ��
��� , then ��

��� is selected to be
kept.

��� ��� ��� � ���	�����

The Algorithm for uniprocessor system is shown in
VAP S. Using dynamic programming, it can give the op-
timal solution for the VAP problem when there is only one
processor.

The VAP S Algorithm

In algorithm VAP S, first build a local table���� for each
node. Next, in step 2 of the algorithm, when � � �, there is
only one node. We set the initial value, and let���� � ���� .
Then using dynamic programming method, build the table
���� . For each node �� under each time �, we try all the
times � (� � � � �) in table ���� . We use “�” on the two
tables ��� and ������� . Since � 	 �� � �� � �, the total
time of nodes from �� to �� is �. The “�” operation add
the energy consumptions of two tables together and multi-
ply the probabilities of two tables with each other. Finally,
we use Lemma 4.1 to cancel the conflicting (Probability,
Energy) pairs. The new energy consumption in each pair
obtained in table ���� is the energy consumption of current
node �� at time � plus the energy consumption in each pair
obtained in ������� . Since we have used Lemma 4.1 can-
celing redundant pairs, the energy consumption of each pair
in ���� is the minimum total energy consumption for graph
�� with confidence probability ���� under timing constraint
�.

Algorithm 4.1 Optimal algorithm for the VAP problem
when there is a uniprocessor (VAP S)
Input: � different voltage levels, a DAG, and the timing con-

straint �.
Output: An optimal voltage assignment

1. Build a local table ���� for each node of PDFG.
�� � � � , where �� � is the number of nodes.

2. let ���� � ����

for each node ��� � 	 � do
for each time
 do

for each time � in ���� do
if �������� � � ���� then
���� � �������� �����

else
continue

end if
end for
insert ������ to ���� and remove redundant pairs
using Lemma 4.1.

end for
end for

3. return ����

��� ��� ���	�����
 �	� �������	��

	�

In this subsection, we first give the algorithm of
schedule-graph construction. Next, we give a heuristic al-
gorithm Heu, then we propose our novel and optimal algo-
rithm, VAP M, for multiprocessor embedded systems. We
will compare them in the experiments section.

Algorithm 4.2 Algorithm to get scheduling graph
(VAP SG)
Input: a task graph PDFG
Output: a scheduling graph

1: build a graph to show the order using list scheduling.
2: show the dependency in the graph.
3: remove all redundant edges according Lemma 4.2.

For an input PDFG with multiple processors, given the
order of nodes and expected energy consumption of each
node, the basic steps of our schedule are shown in algorithm
VAP SG. In the graph built in step 1 of VAP SG, If there is
a edge from �� to �� , this means that �� is scheduled before
�� in the same processor or �� depends on �� in the original
PDFG. The new graph is a DAG that represents the order of
nodes and dependencies.

Lemma 4.2 For two nodes �� and �� , there is an edge ��� ,
if we can find another separate path �� 	 �� , then the edge
��� can be deleted.

The Heu Algorithm
We first design an heuristic algorithm for multiprocessor

systems according to the HUA algorithm in [2], we call this
algorithm as Heu. The PDFG now is a DAG and no longer

Algorithm 4.3 Heuristic algorithm for the VAP problem
when there are multiple processors and the PDFG is DAG
(Heu)
Input: � different voltage levels, a DAG, and the timing con-

straint �.
Output: a voltage assignment to minimize energy with a guaran-

teed probability satisfying �
1: Scheduling graph construction.
2: for each vertex ��, let �� � ��; /* assign worst-case time to ��

*/
3: � � �;
4: while (�)
5: � pick �� that has the maximum ����������������

����
��������

;

6: � � � �
����

��������
;

7: if (�)
8: �� � �� � �; �
9: � �

�
���� ; /* calculate the total execution time � */

10: if (� 	 �) exit; /* if cannot be met */
11: for each vertex ��, let �� � ���� � �� ;

limited to a simple path. The authors of [2] did not give the
algorithm for multiple processors situation, and their data
flow graph is a simple path. Heu is an algorithm that use
the idea of the algorithm of [2] and using for multiple pro-
cessors situation, the data flow graph is a DAG. In Heu al-
gorithm, �� is the largest possible time variation for node
��, �� is the time variation of node ��, �� is the scaled time
slot for node ��, and ��� is the j time variation of node ��.
The VAP M Algorithm
Input: different voltage levels, a DAG, and the timing

constraint �.
Output: An optimal assignment for the DAG

1. Scheduling graph construction.
2. Topological sort all the nodes, and get a sequence A.
3. Count the number of multi-parent nodes ��� and the

number of multi-child nodes ���. If ��� � ���, use bottom
up approach; Otherwise, use top down approach.

4. For bottom up approach, use the following algorithm.
For top down approach, just reverse the sequence.

5. If the total number of nodes with multi-parent is �, and
there are maximum � variations for the execution times of
all nodes, then we will give each of these t nodes a fixed
assignment.

6. For each of the �� possible fixed assignments, As-
sume the sequence after topological sorting is �� 	 �� 	
� � � 	 �� , in bottom up fashion. Let���� � ���� . Assume
�

�

��� is the table that stored minimum total energy consump-
tion with computed confidence probabilities under the tim-
ing constraint � for the sub-graph rooted on �� except ��.
Nodes ��� � ��� � � � � � ��� are all child nodes of node �� and
 is the number of child nodes of node ��, then

�
�

��� �

�
��� �� if � �
����� if � �
����� � � � � ������ if
 �

(4)

7. For ����� ������ , �
�

is the union of all nodes in the

graphs rooted at nodes ��� and ��� . Travel all the graphs
rooted at nodes ��� and ��� .

8. Then, for each � in ���.

���� � �
�

���� ���� (5)

9. For each possible fixed assignment, we get a ���� .
Merge the (Probability, Consumption) pairs in all the pos-
sible ���� together, and sort them in ascending sequence
according probability.

10. Then use the Lemma 4.1 to remove redundant pairs.
���� � a table of MIN(�) with �!"#��� � ��
 � ;
Output����.

Now we explain our optimal algorithm VAP M in de-
tails. In VAP M, we exhaust all the possible assignments
of multi-parent or multi-child nodes. Without loss of gen-
erality, assume we using bottom up approach. If the total
number of nodes with multi-parent is �, and there are maxi-
mum� variations for the execution times of all nodes, then
we will give each of these � nodes a fixed assignment. We
will exhausted all of the�� possible fixed assignments. Al-
gorithm VAP M gives the optimal solution when the given
PDFG is a DAG. In the following, we give the Theorem 4.1
and Theorem 4.2 about this. Due to page limit, we will not
give proofs in this paper.

Theorem 4.1 In each possible fixed assignment, for each
pair (���� , ����) in���� (� � � � �) obtained by algorithm
VAP M, ���� is the minimum total energy consumption for
the graph �� with confidence probability ���� under timing
constraint �.

Theorem 4.2 For each pair (���� , ����) in ���� (� � � �
�) obtained by algorithm VAP M,���� is the minimum total
energy consumption for the given DAG � with confidence
probability ���� under timing constraint �.

In algorithm VAP M, there are �� loops and each loop
needs$�� ���� ��� running time. The complexity of
Algorithm VAP M is$������� �����. Let ��� be the
number of nodes with multi-parent, and ��� be the number
of nodes with multi-child, then � � %�&����� ����. � is
the number of nodes, � is the given timing constraint, is
the maximum number of voltage levels for each node, and
� is the maximum number of execution time variation for
each node. The experiments show that algorithm VAP M
runs efficiently.

5 Experiments

This section presents the experimental results of our al-
gorithms. We conduct experiments on a set of benchmarks
including voltera filter, 4-stage lattice filter, 8-stage lattice
filter, differential equation solver RLS-languerre lattice fil-
ter, and elliptic filter. Three different voltage levels, ��� ��,
and ��, are used in the system, in which a processor under
�� is the quickest with the highest energy consumption and
a processor under �� is the slowest with the lowest energy

consumption. There are two processors: ��� and ���.
We compare our VAP M algorithm with the Heu algorithm.
The distribution of execution times of each node is Gaus-
sian. For each benchmark, the first timing constraint we use
is the minimum execution time. The experiments are per-
formed on a Dell PC with a P4 2.1 G processor and

512 MB memory running Red Hat Linux 7.3.

RLS-Laguerre Filter (19 nodes)
TC 0.8 0.9 1.0

Heu Ours � Heu Ours � Heu Ours �
130 900 892 0.9 � � � �

136 900 804 10.6 900 892 0.9 � �

140 900 756 16.0 900 727 9.2 900 892 0.9
180 900 408 54.6 900 430 52.2 900 444 50.7
220 900 268 70.2 900 277 69.2 900 261 70.0
260 225 218 3.2 900 248 72.4 900 251 72.1
272 225 202 10.2 225 218 3.2 900 232 74.2
280 225 186 17.2 225 212 6.0 225 218 3.2
320 225 152 32.4 225 164 27.2 225 172 23.6
360 225 94 58.2 225 98 56.4 225 106 52.9
420 225 58 74.2 225 58 74.2 225 58 74.2

Ave. Redu.(�) 54.3 57.6 59.2

Table 3. The minimum expected total � with
computed confidence � under various � for
RLS-Laguerre filter.

The experimental results of RLS-Laguerre filter are
shown in Table 3. In the table, column “TC” represents the
given timing constraint, “Heu” represents the heuristic al-
gorithm Heu, and “Ours” represents our optimal algorithm
VAP M. The minimum total energy consumption obtained
from different algorithms, VAP M and Heu, are presented
in each entry. Columns “1.0”, “0.9”, and “0.8”, represent
that the confidence probability is 1.0, 0.9, and 0.8, respec-
tively. Column “%” shows the percentage of reduction on
the total energy consumption, compared the results of algo-
rithm Heu. The average percentage reduction is shown in
the last row “Ave. Redu(%)” of Table 3, which is computed
by averaging energy reductions at all different timing con-
straints. The entry with “�” means no solution available.

We found in many situations, algorithm VAP M has sig-
nificant energy saving than algorithm Heu. For example, in
Table 3, under the timing constraint 220, for probability 0.8,
the entry under “Heu” is 900, which is the minimum total
energy consumption using algorithm Heu. The entry under
“Ours” is 268, which means by using VAP M algorithm, we
can achieve minimum total energy consumption 268 with
confidence probability 0.8 under timing constraint 220, and
the energy reduction is 70.2%.

The experimental results of energy-saving improvement
of VAP M over Heu for different DSP filters are shown in
Table 4. “Node #” stands for the number of nodes of a
PDFG. The experimental results show that our algorithm
can greatly reduce the total energy consumption while have
a guaranteed confidence probability. On average, algorithm
VAP M gives an energy-saving of 56.1% with confidence
probability 0.8 satisfying timing constraints, and energy-
savings of 59.3% and 61.7%with confidence probabilities

Filter Node # type 0.8 0.9 1.0
Voltera 27 Tree 58.6% 61.7% 64.8%

4 stage Lattice 26 Tree 55.9% 59.7% 62.4%
8 stage Lattice 42 Tree 59.5% 62.8% 65.2%

Diff. Equ. Solver 11 DAG 52.6% 55.3% 57.4%
RLS laguerre 19 DAG 54.3% 57.6% 59.2%

Elliptic 34 DAG 55.8% 58.7% 61.3%
Ave. Saving 56.1% 59.3% 61.7%

Table 4. Experimental results of energy-
saving improvement of VAP M over Heu for
different DSP filters.

0.9 and 1.0 satisfying timing constraints, respectively. The
experiments using VAP M on these benchmarks are finished
within several minutes using low-end PC.

6 Conclusion

This paper uesed the probabilistic approach to explore
design space for real-time embedded systems. By taking ad-
vantage of the uncertainties in execution time of tasks, our
approach relaxes the rigid hardware requirements for soft-
ware implementation and eventually avoids over-designing
the system. For the voltage assignment with probability
(VAP) problem, by using Dynamic Voltage Scaling (DVS),
we proposed two optimal algorithms, VAP S and VAP M, to
give the optimal solutions for uniprocessor and multiproces-
sor embedded systems. Experimental results demonstrated
the effectiveness of our approach.

References

[1] Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao, and E. H.-
M. Sha. Minimizing energy via loop scheduling and dvs for
multi-core embedded systems. In ICPADS, Volume II, pages
2 – 6, 2005.

[2] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy reduc-
tion techniques for multimedia applications with tolerance to
deadline misses. In DAC, pages 131–136, 2003.

[3] K. Ito, L. Lucke, and K. Parhi. Ilp-based cost-optimal dsp
synthesis with module selection and data format conversion.
IEEE Trans. on VLSI Systems, 6:582–594, Dec. 1998.

[4] T. Sakurai and A. R. Newton. Alpha-power law mosfet model
and its application to cmos inverter delay and other formulas.
IEEE J. Solid-State Circuits, SC-25(2):584–589, 1990.

[5] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S.
Hu, C.-H. Hsu, and U. Kremer. Energy-conscious compila-
tion based on voltage scaling. In LCTES’02, June 2002.

[6] Z. Shao, Q. Zhuge, C. Xue, and E. H.-M. Sha. Efficient
assignment and scheduling for heterogeneous dsp systems.
IEEE Trans. on Parallel and Distributed Systems, 16:516–
525, Jun. 2005.

[7] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. In DAC, pages 183–188,
2002.

[8] T. Zhou, X. Hu, and E. H.-M. Sha. Estimating probabilistic
timing performance for real-time embedded systems. IEEE
Trans. on VLSI Systems, 9(6):833–844, Dec. 2001.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

