
Feasibility Intervals for Multiprocessor Fixed-Priority
Scheduling of Arbitrary Deadline Periodic Systems

Liliana Cucu∗ Joël Goossens

Université Libre de Bruxelles, C.P. 212
50 Avenue Franklin D. Roosevelt

1050 Brussels, Belgium
E-mail: {liliana.cucu, joel.goossens}@ulb.ac.be

Abstract

In this paper we study the global scheduling of periodic
task systems with arbitrary deadlines upon identical multi-
processor platforms. We first show two very general prop-
erties which are well-known for uniprocessor platforms and
which remain for multiprocessor platforms: (i) under few
and not so restrictive assumptions, we show that any fea-
sible schedule of arbitrary deadline periodic task systems
is periodic from some point and (ii) for the specific case of
synchronous periodic task systems, we show that the sched-
ule repeats from the origin. We then present our main re-
sult: any feasible schedule of asynchronous periodic task
sets using a fixed-priority scheduler is periodic from a spe-
cific point. Moreover, we characterize that point and we
provide a feasibility interval for those systems.

1 Introduction

The use of computers to control safety-critical real-time
functions has increased rapidly over the past few years. As a
consequence, real-time systems — computer systems where
the correctness of each computation depends on both the
logical results of the computation and the time at which
these results are produced — have become the focus of
much study. Since the concept of “time” is of such im-
portance in real-time application systems, and since these
systems typically involve the sharing of one or more re-
sources among various contending processes, the concept of
scheduling is integral to real-time system design and anal-
ysis. Scheduling theory as it pertains to a finite set of re-
quests for resources is a well-researched topic. However,
requests in real-time environment are often of a recurring
nature. Such systems are typically modelled as finite col-
lections of simple, highly repetitive tasks, each of which

∗Post-doctorante du F.N.R.S.

generates jobs in a very predictable manner. These jobs
have upper bounds upon their worst-case execution require-
ments, and associated deadlines. In this work, we consider
periodic task systems, each periodic task τi generates jobs
at each integer multiple of its period Ti and the jobs must be
executed for at most Ci time units and completed by its rela-
tive deadline Di. The first job of a task τi is released at time
Oi (the task offset). If there is a time instant at which jobs
of all tasks are released synchronously, the system is said
to be synchronous; otherwise the system is said to be asyn-
chronous. We shall distinguish between implicit deadline
systems where Di = Ti,∀i; constrained deadline systems
where Di ≤ Ti,∀i and arbitrary deadline systems where
there is no constraint between the deadline and the period.

The scheduling algorithm determines which job[s]
should be executed at each time instant. When there is at
least one schedule satisfying all constraints of the system,
the system is said to be feasible. More formal definitions of
these notions are given in Section 2.

Uniprocessor real-time systems are well studied since
the seminal paper of Liu and Layland [1] which introduces a
model of constrained deadline systems. The arbitrary dead-
line systems model is firstly considered in [2].

The literature considering scheduling algorithms and
feasibility tests for uniprocessor scheduling is tremendous.
In contrast for multiprocessor parallel machines the prob-
lem of meeting timing constraints is a relatively new re-
search area.

In this paper we deal with global scheduling1 of arbitrary
deadline systems upon identical parallel machines, i.e., all
the processors are identical in the sense that they have the
same computing power.

Related research. The problem of scheduling periodic
constrained deadline task systems was originally proposed
in [3]. A better understanding of this problem was provided
through [4, 5, 6]. All these papers considered results on

1task and job migration are allowed.

1
978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



feasibility tests or improved algorithms in order to increase
processors utilization for constrained deadline systems. For
the case of scheduling periodic tasks with arbitrary dead-
lines, Goossens et al. [7] showed that many uniprocessor
results do not remain for multiprocessor scheduling. For
instance the synchronous case is not necessarily the worst
case for identical processors. Moreover, the feasibility in-
terval of the uniprocessor case given in [8] does not stand
for identical processors. For that reason we shall present
and prove correct in this paper feasibility intervals and re-
lated properties for periodic tasks with arbitrary deadlines
on identical multiprocessors.

This research. In this paper, we adapt the results con-
cerning feasibility intervals for periodic tasks with con-
strained deadlines on uniform processors [6] to periodic
tasks with arbitrary deadlines on identical processors. We
show that any feasible schedules of arbitrary deadline peri-
odic task systems on identical processors repeat from some
point. For synchronous arbitrary deadline periodic task sys-
tems on identical processors using fixed-priority schedul-
ing2 we show that the schedule repeats from the origin.
Then we give a feasibility interval for the case of global
fixed-priority scheduling of these systems. Then we prove a
more precise and useful result, the main contribution of this
paper: any feasible schedules of fixed-priority scheduling
of asynchronous arbitrary deadline periodic task systems
on identical parallel processors are periodic from a specific
point (or possibly before). We also characterize that point
and we provide a feasibility interval for those systems.

Organization. This paper is organized as follows. In
Section 2, we introduce our model of computation. In Sec-
tion 3, we show that any feasible schedules of periodic task
systems are periodic from some point. In Section 3.1, we
consider the specific case of synchronous periodic task sys-
tems. In Section 4, we present our main result: a feasibil-
ity interval for asynchronous periodic task sets using global
fixed-priority scheduling. We conclude in Section 5.

2 Definitions and assumptions

We consider the scheduling of periodic task systems. A
system τ is composed by n periodic tasks τ1, τ2, . . . , τn,
each task is characterized by a period Ti, a relative dead-
line Di, a worst-case execution time Ci and an offset Oi.
The costs relatively to migrations or context switches are
neglected in the sense that the worst-case execution times
of tasks contain them. Such a periodic task generates an
infinite sequence of jobs, with the kth job arriving at time-
instant Oi + (k − 1)Ti (k = 1, 2, . . .), having a worst-case
execution requirement of Ci units, and a hard deadline at
time instant Oi + (k − 1)Ti + Di.

2the priorities are assigned to the tasks beforehand, at run-time each
request inherits of its task priority and remains constant.

In some cases, we shall consider the more general prob-
lem of scheduling set of jobs, each job Jj = (rj , ej , dj)
is characterized by a release time rj , an execution time ej

and an absolute deadline dj . The job Jj must execute for ej

time units over the interval [rj , dj). A job is active from its
release time to its completion time.

We denote by τ (i) def= {τ1, τ2, . . . , τi}, by Omax
def=

max{O1, O2, . . . , On}, by Pi
def= lcm{T1, T2, . . . , Ti} and

P
def= Pn.

A system τ is said to be feasible upon a multiprocessor plat-
form if there exists at least one schedule in which all tasks
meet their deadlines. If A is an algorithm which schedules
τ upon a multiprocessor platform to meet its deadlines, then
the system τ is said to be A-feasible.

We consider in this paper m identical processors
{p1, p2, . . . , pm}.

The time model is a discrete model, i.e. the characteris-
tics of the tasks and the time are integers.

We define now the notions of the state of the system and
the schedule.

Definition 1 (State of the system θ(t)) For any arbitrary
deadline system τ = {τ1, . . . , τn} we define the state θ(t)
of the system τ at instant t as θ : N → ({−1, 0, 1} × N2)n

with θ(t) def= (θ1(t), θ2(t), . . . , θn(t)) where

θi(t)
def=



(−1, t1, 0), if no job of task τi was acti-
vated before or at t and it re-
mains t1 time units until the
first activation of τi. (We have
0 < t1 ≤ Oi.);

(n1, t2, t3), where t2 is the time elapsed at
instant t since the last action of
the oldest active job of τi. If
there are n1 6= 0 active jobs
of τi then t3 units were already
executed from the oldest active
job. If there is no active job of
τi at t but at least one job of
τi was already actived before t,
then n1 = t3 = 0. (We have
0 ≤ n1 ≤ dDi

Ti
e, 0 ≤ t2 < Ti

and 0 ≤ t3 < Ci.)

Notice that at any instant t several jobs of the same task
might be active and we consider that the oldest job is sched-
uled first, i.e. the FIFO rule is used to serve the various jobs
of given task.

Definition 2 (Schedule σ(t)) For any task system τ =
{τ1, . . . , τn} and any set of m processors {p1, . . . , pm} we
define the schedule σ(t) of system τ at instant t as σ : N →

2



{0, 1, . . . , n}m where σ(t) def= (σ1(t), σ2(t), . . . , σm(t))
with

σj(t)
def=

 0, if there is no task scheduled on pj

at instant t;
i, if τi is scheduled on pj at instant t

∀1 ≤ j ≤ m.

Notice that Definition 2 can be extended trivially to the
scheduling of a set of jobs.

In this work, we consider that task parallelism is forbid-
den: a task cannot be scheduled at the same instant on dif-
ferent processors, i.e. @j1 6= j2 ∈ {1, 2, . . . ,m} and t ∈ N
such that σj1(t) = σj2(t) 6= 0.

The scheduling algorithms considered in this paper are
deterministic with the following definition:

Definition 3 (Deterministic algorithms) A scheduling al-
gorithm is said to be deterministic if it generates a unique
schedule for any given set of jobs .

Moreover, we shall assume that the decision of the
scheduling algorithm at time t is not based on the past, nor
on the actual time t, but only on the characteristics of active
jobs and on the state of the system at time t. More formally,
we consider memoryless schedulers.

Definition 4 (Memoryless algorithms) A scheduling al-
gorithm is said to be memoryless if the scheduling decision
made by it at time t depends only on the characteristics of
active tasks and on the current state of the system, i.e., on
θ(t).

Consequently, for memoryless and deterministic sched-
ulers we have the following property:

∀t1, t2 such that θ(t1) = θ(t2) then σ(t1) = σ(t2).

We formalize the notion of work-conserving algorithms
and the notion of feasibility interval.

Definition 5 (Work-conserving algorithm)
A work-conserving algorithm is a scheduling algorithm that
never idles a processor while there is at least one active
task.

Definition 6 (Feasibility interval) For any task system
τ = {τ1, . . . , τn} and any set of m processors
{p1, . . . , pm}, the feasibility interval is a finite interval such
that if no deadline is missed while considering only requests
within this interval then no deadline will ever be missed.

The fact that work-conserving and priority-driven algo-
rithms are predictable on identical platforms allows us to
give a feasibility interval even if the actual execution times
are less than Ci (which is only an upper bound of the actual
execution time of the task requests). But first we need some
additional definitions in order to present the predictability
result given in [6].

Definition 7 (Priority-driven algorithms) A scheduling
algorithm is a priority-driven algorithm if and only if it
satisfies the condition that for every pair of jobs Ji and Jj ,
if Ji has higher priority than Jj at some time instant, then
Ji always has higher priority than Jj .

Definition 8 (Predictable algorithms) Let J =
{J1, . . . , J`} a set of jobs with Ji = (ri, ei, di). Let
S(Ji) be the time instant at which Ji begins its execution
in a schedule and, similarly, let F (Ji) be the time instant
at which Ji completes its execution in a schedule. Let
J ′ = {J ′1, . . . , J ′`} be a set of jobs obtained from J such
that J ′i = (ri, e

′
i, di) and e′i ≤ ei,∀i. A scheduling

algorithm A is predictable if and only if we have that
S(J ′i) ≤ S(Ji) and F (J ′i) ≤ F (Ji), ∀i (1 ≤ i ≤ `),∀J
and ∀J ′ (as defined above).

Theorem 1 ([6]) Work-conserving and priority-driven al-
gorithms are predictable on identical platforms.

3 Periodicity of deterministic and memory-
less scheduling algorithms

In this section, we shall show that feasible schedules of
arbitrary deadline task systems obtained using determinis-
tic and memoryless algorithm are periodic from some point
(Theorem 2), assuming that the execution times of tasks are
constant.

Theorem 2 For any deterministic and memoryless algo-
rithm A, if an asynchronous arbitrary deadline system τ is
A-feasible on m processors, then the A-feasible schedule of
τ on m processors is finally periodic, i.e. from some point
the schedule repeats. (Assuming that the execution time of
each task is constant.)

Proof. First notice that from t0 ≥ Omax all tasks
are released, and the configuration θi(t) of each task is
a triple of finite integers (α, β, γ) with 0 ≤ α ≤ dDi

Ti
e,

0 ≤ β < max1≤i≤n Ti and 0 ≤ γ < max1≤i≤n Ci. There-
fore there is a finite number of different system states, hence
we can find two instants t1 and t2 (t2 > t1 ≥ t0) with the
same state of the system. The schedule repeats from that
instant with a period dividing t2 − t1, since the scheduler is
deterministic and memoryless. 2

3.1 The particular case of synchronous pe-
riodic systems

In this section we deal with the particular case of syn-
chronous arbitrary deadlines task systems and we show the
periodicity of feasible schedules obtained using preemptive
fixed-priority scheduling algorithms.

3



In the following without loss of generality we consider
the tasks ordered in decreasing order of their priorities τ1 >
τ2 > · · · > τn.

Lemma 3 For any preemptive fixed-priority algorithm A
and any synchronous arbitrary deadline system τ on m pro-
cessors, if no deadline is missed in the time interval [0, P )
and the system is in the same state at time instants 0 and P ,
then the schedule of τ is periodic with a period P that be-
gins at instant 0. (Assuming that the execution time of each
task is constant.)

Proof. Since at time instants 0 and P the system is in
the same state, i.e. θ(0) = θ(P ), then at time instants 0 and
P a preemptive fixed-priority algorithm will make the same
scheduling decision and the scheduled repeats from 0 with
a period equal to P . Notice also that we have proved that
the system is A-feasible. 2

Theorem 4 For any preemptive fixed-priority algorithm A
and a synchronous arbitrary deadline system τ on m pro-
cessors, if there is more than one active job of the same task
at P , then τ is not A-feasible.

Proof. Since there is more than one active job of the
same task at P , then we may consider i0 ∈ {1, 2, . . . , n}
to be the smallest task index such that τi0 has at least two
active jobs at Pi0 . In order to prove the lemma we will prove
that τi0 will miss a deadline.

Since θ(0) = θ(Pi0−1) and by definition of i0 from
Lemma 3 we have that the time instants, such that at least
one processor is available, are periodic with a period Pi0−1,
i.e., the schedule σ(i0−1) obtained by considering only the
task subset τ (i0−1) is periodic with a period Pi0−1. More-
over since Pi0 is a multiple of Pi0−1, then the schedule
σ(i0−1) obtained by considering only the task subset τ (i0−1)

is periodic with a period Pi0 . Therefore in each time in-
terval [k · Pi0 , (k + 1)Pi0) with k ≥ 0 after scheduling
τ1, τ2, . . . , τi0−1 there is the same number ti0 of time in-
stants such that at least one processor is available and where
τi0 is scheduled. At time instant Pi0 , since the task paral-
lelism is forbidden, there are Pi0

Ti0
Ci0 − ti0 remaining units

for execution of τi0 and, consequently, at each time in-
stant (k + 1) · Pi0 there will be k · (Pi0

Ti0
Ci0 − ti0) remain-

ing units for execution of τi0 . Consequently we can find
ki0 = d Di0

Pi0
Ti0

Ci0−ti0

e such that the job actived at (ki0 +1)Pi0

will miss its deadline since it cannot be scheduled before
older jobs of τi0 and there are ki0(

Pi0
Ti0

Ci0 − ti0) ≥ Di0

remaining units for execution of τi0 at (ki0 + 1)Pi0 .
Since we consider fixed-priority scheduling, then the

tasks τi with i > i0 will not interfere with the higher prior-
ity tasks already scheduled, particularly with τi0 that misses
its deadline, and consequently the system is not A-feasible.

2

Corollary 5 For any preemptive fixed-priority algorithm A
and any synchronous arbitrary deadline system τ , τ is A-
feasible on m processors if and only if: (1) all deadlines
are met in the interval [0, P ), and (2) θ(0) = θ(P ).

Proof. The result is a direct consequence of Theorem 4
and Theorem 1, since fixed-priority schedulers are priority-
driven. 2

Similarly to the uniprocessor case (see [9], p. 57 for de-
tails) both conditions of Corollary 5 are necessary for the
feasibility of a system. The following example shows that a
system with no deadline missed in [0, P ) can be infeasible.
It also shows that the natural generalization of the unipro-
cessor property:

∑n
i=1

Ci

Ti
≤ 1 ⇒ θ(0) = θ(P ) is not valid

in the multiprocessor case since
∑n

i=1
Ci

Ti
≤ m 6⇒ θ(0) =

θ(P ).
We consider the synchronous arbitrary deadline task

system τ = {τ1 > · · · > τ4} with τ1 = (3, 5, 5),
τ2 = (1, 5, 5), τ3 = (2, 5, 7) and τ4 = (2, 4, 10), where
τi = (Ci, Ti, Di). The schedule on 2 processors is given
in Figure 1 and the 7th job of τ4 misses its deadline at time
instant 34. The utilization of processors is 34

20 < 2 and no
deadline is missed in the time interval [0, 20), while the sys-
tem is infeasible. In Figure 1 indicates the time instant
when a job is actived and its associate deadline. indicates
that the time unit of a job is scheduled on the first processor
and ���

���
���

���
���
���

on the second processor.

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
	
	








�
�
�

�
�
�





�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

1

2

30 35252015105

tau1

tau2

tau3

tau4

0

Figure 1. Fixed-priority schedule of task sys-
tem given as example

4 Fixed-priority scheduling of asynchronous
systems

In this section we present our main result: any feasible
schedule on m identical processors of asynchronous arbi-
trary deadline systems, obtained using preemptive fixed-
priority algorithms, is periodic from some point (Theo-
rem 8), assuming that the execution time of each task τi

is constant. Moreover, we define a feasibility interval for
this case (Corollary 9).

4



We introduce now the availability of the processors for
any schedule σ(t).

Definition 9 (Availability of the processors a(t)) For any
task system τ = {τ1, . . . , τn} and any set of m processors
{p1, . . . , pm} we define the availability of the processors
a(t) of system τ at instant t as the set of available proces-

sors a(t) def= {j | σj(t) = 0} ⊆ {1, . . . ,m}.

We denote by δk
i the kth job of task τi which becomes

active at time instant Rk
i

def= Oi + (k − 1)Ti.

Definition 10 For any task τi, we define εk
i (t) the amount

of time already executed from the kth job of task τi in the
interval [Rk

i , t).

The following lemma and corollary extend results given
for arbitrary deadline task systems in the uniprocessor case
(see [9], p. 55 for details).

Lemma 6 For any preemptive fixed-priority algorithm A
and an asynchronous arbitrary deadline system τ on m pro-
cessors, we have that: for each task τi, for any time instant
t ≥ Oi and k such that Rk

i ≤ t ≤ Rk
i + Di, if there is no

deadline missed up to time t+P , then εk
i (t) ≥ εk+hi

i (t+P )

with hi
def= P

Ti
.

Proof. The proof is made by contradiction. Notice first
that the function εk

i is a non-decreasing discrete step func-
tion with 0 ≤ εk

i (t) ≤ Ci,∀t and εi(Rk
i ) = 0 = εi(Rk+hi

i ).
We assume that a first time instant t exists such that there

are j and k with Rk
j ≤ t ≤ Rk

j +Dj and εk
j (t) < ε

k+hj

j (t+
P ). This assumption implies that there is a time instant t′

with Rk
j ≤ t′ < t such that δ

k+hj

j is scheduled at t′ + P

while δk
j is not scheduled at t′. We obtain that either m jobs

of m higher priority tasks are scheduled at t′, or an older job
of τj is scheduled at t′. Among these jobs there is one job

δ
k′`
i`

with i` ∈ {1, 2, . . . , j} that is not scheduled at t′ + P .

This implies that ε
k′`
i`

(t′) < ε
k′`+

P
Ti`

i`
(t′ + P ) = Ci`

which
is in contradiction with the fact that t is the first such time
instant. 2

Corollary 7 For any preemptive fixed-priority algorithm A
and an asynchronous arbitrary deadline system τ on m pro-
cessors, we have that: for each task τi, for any time instant
t ≥ Oi, if there is no deadline missed up to time t + P ,
then either (αi(t) < αi(t + P )) or [αi(t) = αi(t + P ) and
γi(t) ≥ γi(t + P )], where by the triple (αi(t), βi(t), γi(t))
we denoted θi(t).

Proof. If αi(t) = 0, then either αi(t+P ) > 0 or αi(t+
P ) = 0 = βi(t + P ) = βi(t). Otherwise, αi(t) = ni(t)−
mi(t) where ni(t) is the number of jobs actived before or at

t, and mi(t) is the number of jobs that have completed their
execution before or at t. We have ni(t + P ) = ni(t) + P

Ti

and from Lemma 6 we obtain that mi(t+P ) ≤ mi(t)+ P
Ti

.
Consequently αi(t + P ) ≥ αi(t), and if αi(t) = αi(t + P )
then mi(t + P ) = mi(t) + P

Ti
, and βi(t) = εmi(t)+1 ≥

ε
mi(t)+1+ P

Ti
i (t + P ) = βi(t + P ). 2

Theorem 8 For any preemptive fixed-priority algorithm
A, if an asynchronous arbitrary deadline system τ is A-
feasible on m processors, then the A-feasible schedule of
τ is periodic with a period P from instant tn where tn are
defined inductively as follows:

• t1
def= O1

• ti
def= max{Oi, Oi+d ti−1−Oi

Ti
eTi}+Pi, (i > 1)

(Assuming that the execution time of each task is con-
stant.)

Proof. The proof is made by induction by n (the number
of tasks). We denote by σ(i) the schedule obtained by con-
sidering only the task subset τ (i), the first higher priority i
tasks {τ1, . . . , τi}, and by a(i) the corresponding availabil-
ity of the processors. Our inductive hypothesis is the fol-
lowing: the schedule σ(k) is periodic from tk with a period
Pk, for all 1 ≤ k ≤ i.

The property is true in the base case: σ(1) is periodic
from t1 = O1 with period P1, for τ (1) = {τ1}: since we
consider feasible systems, at instant P1 + O1 = T1 + O1

the previous job of τ1 has finished its execution (C1 ≤ T1)
and the schedule repeats.

We shall now show that any A-feasible schedule of
τ (i+1) is periodic with period Pi+1 from ti+1.

Since σ(i) is periodic with a period Pi from ti the fol-
lowing equation is verified:

σ(i)(t) = σ(i)(t + Pi),∀t ≥ ti. (1)

We denote by ti+1
def= max{Oi+1, Oi+1 +

d ti−Oi+1
Ti+1

eTi+1} + Pi+1 the time instant obtained by
adding Pi+1 to the time instant which corresponds to the
first activation of τi+1 after ti.

Since the tasks in τ (i) have higher priority than τi+1,
then the scheduling of τi+1 will not interfere with higher
priority tasks which are already scheduled. Therefore, we
may build σ(i+1) from σ(i) such that the tasks τ1, τ2, . . . , τi

are scheduled at the very same instants and on the very same
processors as there were in σ(i). We apply now the induc-
tion step: for all t ≥ ti in σ(i) we have a(i)(t) = a(i)(t+Pi)
the availability of the processors repeats. Notice that at the
instants t and t + Pi the available processors (if any) are
the same. Hence at only these instants task τi+1 may be
executed in the time interval [ti+1, ti+1 + Pi+1).

5



The instants t such that ti+1 ≤ t < ti+1 + Pi+1, where
τi+1 may be executed in σ(i+1), are periodic with period
Pi+1, since Pi+1 is a multiple of Pi and ti+1 ≥ ti. We
prove now by contradiction that the system is in the same
state at time instant ti+1 and ti+1 + Pi+1. We suppose that
θ(ti+1) 6= θ(ti+1 + Pi+1).

We first prove that @t ∈ [ti+1, ti+1 + Pi+1) such that
at t there is at least one available processor in σ(i) and no
job of τi+1 is scheduled at t in σ(i+1). If there is such an
instant t′, then from Corollary 7 we have that θ(t′−Pi+1) =
θ(t′) since from the inductive hypothesis (notice that Pi+1

is multiple of Pi) and since t′ − Pi+1 ≥ ti+1 − Pi+1 ≥
ti ≥ · · · ≥ t1 we obtain that θk(t′ − Pi+1) = θk(t′) for
1 ≤ k ≤ i. Consequently, θ(ti+1) = θ(ti+1 + Pi+1) which
is in contradiction with our assumption.

Secondly, since θi+1(ti+1) 6= θi+1(ti+1 + Pi+1) then
from Corollary 7 we have that either there are less active
jobs at ti+1 than at ti+1 + Pi+1, or if there is the same
number of active jobs of ti+1 then the oldest active job at
ti+1 was executed for more time units than the oldest active
at ti+1 + Pi+1. Therefore since @t ∈ [ti+1, ti+1 + Pi+1)
such that at t there is at least one processor available in σ(i)

and no job of τi+1 is scheduled at t in σ(i+1), then we have
that there are no sufficient time instants when at least one
processor is available to schedule all the jobs actived of τi+1

in the time interval [ti+1, ti+1 + Pi+1). We obtain that the
system is not feasible, which is in contradiction with our
assumption of τ being feasible.

Consequently θ(ti+1) = θ(ti+1 + Pi+1), moreover by
definition of ti+1 (which corresponds to an activation of
τi+1) the task activations repeat from ti+1 which proves the
property. 2

Now we have the material to define a feasibility interval for
asynchronous arbitrary deadline periodic systems.

Corollary 9 For any preemptive work-conserving fixed-
priority algorithm A and for any A-feasible asynchronous
arbitrary deadline system τ on m processors, [0, tn + P )
is a feasibility interval where ti are defined inductively in
Theorem 8.

Proof. The Corollary 9 is a direct consequence of The-
orem 8 and Theorem 1, since fixed-priority algorithms are
priority-driven. 2

Notice that the length of our feasibility interval is pro-
portional to P (the least common multiple of the periods)
which is unfortunately also the case of most feasibility inter-
vals for the simpler uniprocessor scheduling problem (and
for identical or simpler task models). In practice, the peri-
ods are usually harmonics which limits fairly the term P .

5 Conclusion and future work

In this work we adapted some results concerning the pe-
riodicity of feasible schedules and the feasibility intervals
from the uniprocessor case to the multiprocessor case for
arbitrary deadline task systems. We showed that any feasi-
ble schedule of a periodic task system on identical parallel
processors repeats from some point. We provided feasibil-
ity intervals for synchronous arbitrary deadline task systems
using preemptive fixed-priority algorithms. Then, we pre-
sented the main contribution of this paper: feasibility inter-
vals for asynchronous arbitrary deadline task systems ob-
tained using preemptive fixed-priority algorithms.

As future work we are interested in extending the results
to heterogeneous multiprocessor platforms. We are also
interested in obtaining results concerning feasibility inter-
vals for asynchronous arbitrary deadline task systems ob-
tained using preemptive fixed-priority algorithms on multi-
processor platforms when active jobs of the same task can
be scheduled at the same time on different processors.

References

[1] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[2] W.K. Shih, J.W.S. Liu, and C.L. Liu. Scheduling periodic
jobs with deffered deadlines. Technical report, University of
Illinois, 1990.

[3] C.L. Liu. Scheduling algorithms for multiprocessors in a hard
real-time environment. JPL Space Programs Summary 37-
60(II), pages 28–31, 1969.

[4] B. Andersson, S. Baruah, and J. Jansson. Static-priority
scheduling on multiprocessors. Proceedings of the 22nd IEEE
Real-Time Systems Symposium, pages 193–202, 2001.

[5] J. Anderson, P. Holman, and A. Srinivasan. Fair scheduling of
real-time tasks on multiprocessors. Handbook of Scheduling,
2005.

[6] L. Cucu and J. Goossens. Feasibility intervals for fixed-
priority real-time scheduling on uniform multiprocessors.
Proceedings of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation, pages 397–
405, 2006.

[7] J. Goossens, S. Funk, and S. Baruah. EDF scheduling on mul-
tiprocessors: some (perhaps) counterintuitive observations.
Proceedings of the 8th International Conference on Real-Time
Computing Systems and Applications, pages 321–330, 2002.

[8] J.P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In IEEE Real-Time Systems Sympo-
sium, pages 201–213, 1990.

[9] J. Goossens. Scheduling of Hard Real-Time Periodic Sys-
tems with Various Kinds of Deadline and Offset Constraints.
PhD thesis, Université Libre de Bruxelles, Brussels, Belgium,
1999.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




