
Energy-Efficient Real-Time Task Scheduling with Task Rejection ∗

Jian-Jia Chen, Tei-Wei Kuo, Chia-Lin Yang

Department of Computer Science and
Information Engineering

National Taiwan University Taipei, Taiwan.
Email:{r90079, ktw, yangc}@csie.ntu.edu.tw

Ku-Jei King

xSeries Development
IBM Systems Technology Group (STG)

Email: kujei@tw.ibm.com

Abstract
In the past decade, energy-efficiency has been an important system
design issue in both hardware and software managements. For mo-
bile applications with critical missions, both energy consumption
reduction and timing guarantee have to be provided by system en-
gineers to extend operation duration and maintain system stability.
This research explores real-time systems composed of homogeneous
multiple processors with the capability of dynamic voltage scaling
(DVS), in which a given task can be rejected with a specified value
of rejection penalty. The objective is to minimize the summation of
the total rejection penalty for the tasks that are not completed in
time and the energy consumption of the system. This study provides
analysis to show that there does not exist any polynomial-time ap-
proximation algorithm for the studied problem, unless P = NP .
Moreover, we propose algorithms for systems with ideal and non-
ideal DVS processors. The capability of the proposed algorithms is
provided with extensive evaluations. The evaluation results reveal
that our proposed algorithms could derive effective solutions of the
energy-efficient scheduling problem with task rejection considera-
tions.

Keywords: Energy-Efficient Scheduling, Task Rejection, Real-
Time Task Scheduling.

1. Introduction
Along with the low-power demands in electronic circuit designs, a
modern processor can now operate at different supply voltages to
balance its power consumption and performance. Different supply
voltages lead to different execution speeds on a dynamic voltage
scaling (DVS) processor. Well-known DVS processors for embed-
ded systems are Intel StrongARM SA1100 processor [17] and Intel
XScale [18]. Moreover, technologies, such as Intel SpeedStep R© and
AMD PowerNOW!TM, provide dynamic voltage scaling for laptops
to prolong the battery lifetime.

In the past decade, energy-efficient designs have received a lot
of attention in industry and academics. For systems with real-time
demands, energy-efficient task scheduling has been studied to min-
imize the energy consumption with timing guarantee, especially for
uniprocessor systems with DVS supports. Due to the convexity of
the power consumption function, implementations in multiproces-
sor systems are often more energy-efficient [2]. Moreover, since
many chip makers, such as Intel and AMD, are releasing multi-core
chips, multiprocessor energy-efficient scheduling is becoming more
and more important. Various heuristics were proposed for energy
consumption minimization under different task models in multipro-
cessor environments, e.g., [1, 4–7, 15, 19] for independent real-time
tasks and [9, 20] for real-time tasks with precedence constraints.

Due to the increase of leakage power consumption in technology,
researchers have started exploring energy-efficient scheduling with

∗ Support in parts by research grants from ROC National Science Coun-
cil NSC-95-2752-E-002-008-PAE, Aim for Top University Plan 95R0062-
A100-07, and IBM Faculty Award.

the considerations of the non-negligible power consumption of leak-
age current [12]. For uniprocessor scheduling, Irani et al. [10] pro-
posed approximation algorithms for aperiodic real-time tasks. For
periodic real-time tasks in uniprocessor systems, Jejurikar et al. [12],
Lee et al. [14], and Chen et al. [8] provided scheduling algorithms
with task procrastination to decide when to turn the processor into a
dormant mode. Moreover, Chen et al. [6] developed approximation
algorithms for multiprocessor leakage-aware scheduling.

However, most studies for energy-efficient real-time task schedul-
ing do not take task rejection into considerations. Most heuristics
for multiprocessor energy-efficient scheduling cannot guarantee the
schedulability of the derived schedules. Chen et al. [6] applied the
constraint violation approach to augment the highest available speed
with a 4

3
factor. However, resource augmentation might not be pos-

sible since it is hardware-dependent. Hence, some tasks might be
rejected to guarantee the schedulability of the selected tasks.

This research explores systems with the possibility to reject a
task for execution with a specified cost (penalty). If a task is more
important than another, its rejection penalty should be specified
with a greater value. We consider a homogeneous multiprocessor
system with continuously available speeds or discretely available
speeds. The objective is to minimize the summation of the total
rejection cost for the tasks that are not completed in time and the
energy consumption of the system. The contribution of this paper
is on two folds. Firstly, we show the NP-hardness of the studied
problem, and provide analysis on the non-existence of polynomial-
time approximation algorithms, provided that P �= NP. Secondly,
we propose a branch-and-bound approach and heuristic algorithms.
The proposed algorithms are evaluated by extensive experiments.
The evaluation results reveal that our proposed algorithms could
derive effective solutions of the energy-efficient scheduling problem
with task rejection considerations.

The rest of this paper is organized as follows: Section 2 defines
the energy-efficient task scheduling problem with task rejection and
provides the hardness analysis. Section 3 presents our algorithms.
Experimental results for the performance evaluation of the proposed
algorithms are presented in Section 4. Section 5 is the conclusion.

2. Problem Definition and Hardness Analysis
Processor models This paper explores energy-efficient scheduling
on M homogeneous DVS multiprocessors, where the power con-
sumption function of each task is the same on every processor. The
power consumption function P (s) of the adopted processor speed on
a DVS processor can be divided into two parts Pd(s) and Pind, in
which Pd(s) is dependent (Pind is independent, respectively) upon
the processor speed s [21]. The speed-dependent power consump-
tion function is mainly contributed by the dynamic power consump-
tion resulting from the charging or discharging of CMOS gates and
the short-circuit power consumption, while the leakage power con-
sumption contributes the major of the speed-independent power con-
sumption. The algorithms proposed in this paper can be adopted with
many power consumption function formulations, such as those in

978-3-9810801-2-4/DATE07 © 2007 EDAA

[16, §5.5]. We consider systems with Pd(s) as a convex and increas-
ing function, e.g., Pd(s) ∝ sα for any α > 1.

The number of CPU cycles executed in a time interval is linear of
the processor speed. That is, the number of CPU cycles completed
in time interval (t1, t2] is

R t2
t1

s(t)dt, where s(t) is the processor

speed at time t. The energy consumed in (t1, t2] is
R t2

t1
P (s(t))dt.

We first target ideal processors, in which a processor may operate
at any speed in [Smin, Smax]. We also show the extension to cope
with non-ideal processors with discrete speeds. For non-ideal pro-
cessors, there are H available speeds indexed by s1, s2, . . . , sH in
an increasing order. For non-ideal processors, for brevity, sH+1 and
P (sH+1) are both assumed∞, Smin is s1, and Smax is sH .

When needed, turning the processor into a dormant mode (or
turning the processor off) might further reduce the energy consump-
tion. However, turning off or waking up a processor takes time and
has energy overheads. For processors with non-negligible overheads
to be turned off, the overheads could be treated as part of the over-
heads to turn on the processor [6, 10]. We denote Esw (tsw, re-
spectively) as the energy (the time, respectively) requirement of the
switching overheads for the whole process on turning off the proces-
sor and then turning on the processor.

Task models Tasks considered in this paper are periodic and inde-
pendent in execution. A periodic task is an infinite sequence of task
instances, referred to as jobs, where each job of a task comes in a
regular period. Each task τi is associated with its initial arrival time
(denoted as ai), its computation requirement in CPU cycles (denoted
as ci), and its period (denoted as pi). The relative deadline of each
task τi is equal to its period pi. That is, the arrival time and dead-
line of the j-th job of task τi are ai + (j − 1) · pi and ai + j · pi,
respectively. We assume that all the tasks arrive at time 0, but ex-
tensions can be achieved easily for tasks with different arrival times.
Given a task set T, the hyper-period of T, denoted by L, is defined
as the minimum L so that L/pi is an integer for any task τi in T.
For example, L is the least common multiple (LCM) of the periods
of tasks in T when the periods of tasks are all integers. Without loss
of generality, we only consider tasks τis with ci

pi
≤ Smax, since it is

not possible to complete any task τj with
cj

pj
> Smax in time.

This research explores systems with the possibility to reject a
task for execution with a specified cost (penalty) provided by system
designers. If a task is more important than another, its rejection cost
should be specified with a greater value. If a task instance of task
τi is not completed in time, the system receives χi penalty, where
χi > 0. (If a task can be rejected without penalty, we can reject the
task directly.) If a task is very important and cannot be rejected, its
rejection cost should be specified as∞. If the rejection costs of all
the tasks are infinite, all the tasks are asked to be completed in time.

Problem definition This paper explores the problem on the min-
imization of the energy consumption of the system and the rejec-
tion cost at the same time. We pursue the objective on the linear
combination of the energy consumption and the rejection cost, i.e.,
(1 − α)E + αΠ, where α is a non-negative factor no more than 1
specified by the system designer, E is the energy consumption of
the system in the hyper-period, and Π is the total rejection penalty
of the task instances missing their deadlines in the hyper-period. If
energy consumption minimization is more important than task rejec-
tion penalty minimization, α should be specified as close to 0, and
vice versa.

For notational brevity, we normalize the rejection penalty of task
τi as αχi, the power consumption function P () as (1− α)P (), the
energy switching overheads as (1 − α)Esw. Hence, the objective
of the linear combination can be treated as the summation of the
(normalized) penalty and the (normalized) energy consumption.

The problem explored in this paper is defined as follows:

DEFINITION 1. Energy-eFFicient schEduling with rejeCting Tasks
(EFFECT):

Consider a task set T of N independent tasks over M identical
processors with a common power consumption function P (s). Each
periodic task τi ∈ T arrives at time 0 and is associated with a com-
putation requirement in ci CPU-cycles, a rejection cost (penalty) χi,
and a period pi, where the relative deadline of task τi is pi. The en-
ergy consumption and timing of the switching overheads are Esw

and tsw, respectively. The problem is to derive a schedule of T to
minimize the summation of the penalty (cost) of the task instances
that miss their deadlines and the energy consumption of the system
in the hyper-period L of tasks in T, in which a job of task τi is
executed entirely on a processor.

For brevity, for the rest of this paper, the objective function of the
EFFECT problem is called as energy-penalty (EP for abbreviation).

Hardness analysis Since most previous studies on multiprocessor
energy-efficient scheduling did not take task rejection penalty into
considerations, the schedulability of the derived schedules cannot be
guaranteed, e.g., [4, 9]. As shown in [6], it is NP-hard to derive
a schedule with the minimum energy consumption to complete all
the tasks in time without rejecting any real-time task. The following
lemma shows that the EFFECT problem is still NP-hard even if we
have the flexibility to reject some tasks for execution.

LEMMA 1. The EFFECT problem isNP-hard in a strong sense even
when Esw is 0, and all the tasks have the same rejection penalty.

Proof. It can be proved by a reduction from the leakage-aware
multiprocessor energy-efficient rejection problem [6] with the same
period p. The rejection cost of each task is a constant greater than
P (Smax) · p. The detail is omitted due to space limitation.

Due to the NP-hardness of the EFFECT problem, polynomial-
time approximation algorithms might be pursued for the provision of
approximated solutions with worst-case guarantees. A polynomial-
time β-approximation algorithm for the EFFECT problem must have
polynomial-time complexity of the input size and could derive a
solution with an objective value at most β times of an optimal
solution, for any input instance. However, in addition to the NP-
hardness of the EFFECT problem, the following theorem shows the
hardness on the approximability of polynomial-time algorithms.

THEOREM 1. There does not exist any polynomial-time approxima-
tion algorithm for the EFFECT problem unless P = NP .

Proof. This theorem can be proved by a gap reduction from the
NP-complete PARTITION problem: Given a set of N non-negative
numbers, denoted by o1, o2, . . . , oN , the PARTITION problem is to
answer whether there is a partition of these N numbers into two sets,
so that the sum of the numbers in each set is the same. Suppose for
contradiction that there is a polynomial-time (1 + ε)-approximation
algorithm, denoted by Algorithm A, with ε > 0 for the EFFECT
problem. We will show that we can use Algorithm A to answer
the PARTITION problem in polynomial time, which contradicts the
assumption on P �= NP .

To solve the PARTITION problem by applying Algorithm A, we
have to create an input instance for the EFFECT problem. For each

number oi, a unique task τi is created with ci as oi, pi as
PN

j=1 oj

2
,

and χi as (1 + ε)(
PN

j=1 oj), where P (s) = s3 and Esw = 0.
Moreover, Smax is 1, and Smin is no more than 1. If the input
instance of the PARTITION problem admits a positive answer, the
optimal solution for the constructed input instance is

PN
j=1 oj . By

the construction, there exists no feasible solution with EP more thanPN
j=1 oj and no more than (1 + ε)

PN
j=1 oj . Since Algorithm A

is a (1 + ε)-approximation algorithm, Algorithm A guarantees to
derive a solution whose EP is

PN
j=1 oj . If the input instance of the

PARTITION problem does not admit a positive answer, the solution
answered by Algorithm A must be greater than

PN
j=1 oj .

Since the construction of the input instance of the EFFECT prob-
lem takes O(N) time, and Algorithm A is with polynomial-time

complexity, we can determine whether an input instance of the PAR-
TITION problem admits a positive answer in polynomial time by ver-
ifying the solution of Algorithm A, which is a contradiction.

3. Our Algorithms
By Theorem 1, it is impossible to derive optimal solutions or ap-
proximated solutions with worst-case guarantee for the EFFECT
problem in polynomial time, unless P = NP . This section pro-
vides a branch-and-bound approach and heuristics to derive solu-
tions. We first partition tasks into M + 1 task sets, denoted by
T1,T2, . . . ,TM ,TM+1, so that the tasks in task set Tm are exe-
cuted on the m-th processor for m ≤M and the tasks in TM+1 are
rejected. The off-line derivation is obtained by assuming negligible
switching overheads. Whether a rejected task instance determined
in the off-line phase can be executed for performance improvement
is done in an on-line fashion.

If a task has high computation requirement but low rejection
penalty, it should be a good candidate to be rejected to reduce the
EP, and vice versa. For the rest of this section, tasks are sorted
non-increasingly according to χi

ci
. We will consider the execution

or rejection of tasks in the sorted order. Moreover, throughout this
section, the earliest-deadline-first (EDF) schedule will be applied
for task scheduling on each processor. By [3], a task set Tm is
schedulable on a processor if and only if

P
τi∈Tm

ci
pi
≤ Smax.

3.1 Off-line derivation of task partitions with negligible
switching overheads

Although the power consumption function P (s) is a convex and
increasing function, the energy consumption at speed s, which is
P (s)

s
, might be not. For example, if P (s) = s3 + γ, P (s)

s
is a de-

creasing function for s in (0, 3
p

γ
2
] and an increasing function for

s in (3
p

γ
2
, Smax]. If the switching overheads are negligible, there

is a lower-bounded execution speed for tasks, referred to as the
critical speed s∗ as in [6, 8, 12]. For ideal processors, the critical
speed s∗ can be derived by solving d(P (s∗)/s∗)

ds∗ = 0 [6]. By the
definition, if s∗ is greater than Smin, the critical speed s∗ is re-
vised as Smin. If s∗ > Smax, s∗ is Smax. For non-ideal proces-
sors, the critical speed s∗ is sh with P (sh+1)/sh+1 > P (sh)/sh

and P (sh−1)/sh−1 ≥ P (sh)/sh for h = 1, 2, . . . , H by taking
P (s0)/s0 and P (sH+1)/sH+1 as∞ for boundary checking.

For clarity, we first focus on systems with ideal processors. The
extensions to systems with non-ideal processors will be shown by
the end of this subsection. A task partition is said a feasible solution
if all the selected tasks for execution can meet their deadlines.

3.1.1 A branch-and-bound approach for ideal processors

For a given task partition (T∗
1,T

∗
2, . . . ,T

∗
M ,T∗

M+1) with �m de-
fined as

P
τi∈T∗

m

ci
pi

. If �m ≤ Smax for all m = 1, 2, . . . , M ,
the earliest-deadline-first (EDF) schedule on each processor by
executing all the tasks in Tm at speed min{s∗, �m} can make
all the tasks in T∗

m complete in time with the minimum energy
consumption for the task partition [3]. Therefore, we can apply
the depth-first search in a search tree to obtain the task parti-
tion (T∗

1,T
∗
2, . . . ,T

∗
M ,T∗

M+1) with the minimum EP in O((N +
M)NM+1) time.

The branch-and-bound (BB) approach can be adopted to reduce
the time complexity on exploration of the solution space. Since
homogeneous multiprocessor systems are under considerations, we
can restricted τ1 to be executed on the first processor by symmetry
or to be rejected. In our BB approach, we visit the search tree rooted
from τ1, and the k-th level represents the selection of task τk to a
task set Tm with m = 1, 2, . . . , M, M + 1.

Suppose that we are at the n-th level in the search tree. The basic
pruning condition is on the schedulability test. If cn

pn
+
P

τi∈Tm

ci
pi

is greater than Smax, the BB approach can eliminate all subsets
containing the infeasible subset. The lower-bounded elimination is

Algorithm 1 : LEP

Input: T†, T�, n;
1: T� ← {τi | n < i ≤ N};
2: yi ← 0,∀τi ∈ T�, U1 ←P

τi∈T†
ci
pi

;
3: for (i← n + 1; i ≤ N ; i← i + 1) do
4: Let yi be the value between 0 and 1 which minimizes

P ∗(

ci
pi

yi+U1

M
)M + (1 − yi)

χi
pi

with ci
pi

yi + U1 ≤M · Smax;
5: if (yi < 1) then

6: return L · (P ∗(

ci
pi

yi+U1

M
)M + (1 − yi)

χi
pi

+
P

τj∈T�
χj

pj
+

PN
j=i+1

χj

pj
);

7: else
8: U1 ← U1 + ci

pi
;

9: return L · (P ∗(U1
M

)M +
P

τj∈T�
χj

pj
) ;

Algorithm 2 : BB
Procedure: DFSBB(n, X)

Input: n, X, where Xi is an integer between 1 and M + 1 for i < n;
1: for m← 1; m ≤M + 1; m← m + 1 do
2: if m ≤M and cn

pn
+

P
i:1≤i≤n−1 and Xi is m

ci
pi

> Smax then
3: continue;
4: Xn ← m;
5: if n is equal to N then
6: evaluate the EP by executing τi at the Xi-th processor with Xi ≤

M and rejecting task τis with Xi = M + 1;
7: save this task partition if the EP is better than the best solution so

far;
8: else
9: T† ← {τi | 1 ≤ i ≤ n and Xi ≤M};

10: T� ← {τi | 1 ≤ i ≤ n and τi /∈ T†};
11: EPm ← LEP(T†, T�, n);
12: if EPm is greater than the best solution so far then
13: continue;
14: else
15: call DFSBB(n + 1, X)

Procedure: BB()
1: sort tasks in T non-increasingly according to χi

ci
;

2: initialize X with Xi ←M + 1, for i = 1, 2, . . . , N ;
3: call DFSBB(1, X) to obtain the task partition;

applied by verifying whether the lower bound of the EP of the
feasible solutions for the subsets of solutions rooted at the n-th level
is lower than the best solution derived so far. If the lower bound
is greater than the best solution derived so far, we can prune all
the subsets rooted at the n-th level. For a specified partition of set
{τi | 1 ≤ i ≤ n} into two disjoint sets T† and T� by rejecting all
the tasks in T� and executing all the tasks in T†, Algorithm LEP,
shown in Algorithm 1, can be applied to calculate a lower bound of
the EP of feasible solutions, where P ∗(s) in Steps 4, 6, and 9 is

P ∗(s) =

P (s), when s > s∗, and
s

s∗ P (s∗), otherwise. (1)

The proof for the correctness on the provision of the lower-bounded
EP of Algorithm LEP is omitted due to space limitation.

The branch-and-bound approach is presented in Procedure DFSBB
in Algorithm 2, in which the search space is pruned with the feasi-
bility test in Step 2 and Step 3 and the lower-bounded elimination
between Step 9 and Step 13. The solution in this phase is obtained
by calling DFSBB(1, X) with initialization shown in Procedure BB
in Algorithm 2.

3.1.2 Polynomial-time algorithms for ideal processors

This section presents efficient algorithms, i.e., in polynomial time,
for the determination of the task partition. The rationale behind the
proposed algorithms is to select tasks with higher χi

ci
for execution

Algorithm 3 : SGA

Input: T, M ;
1: sort tasks in T non-increasingly according to χi

ci
;

2: let y∗
i be the value of yi of task τi after calling LEP(∅,∅, 0);

3: T† ← {τi | y∗
i = 1}, T� ← T \T†;

4: let (T†
1,T†

2, . . . ,T†
M) be the task partition of T† on M processors

derived from Algorithm LA+LTF in [6];
5: for m← 1; m ≤M ; m← m + 1 do
6: while

P
τi∈T

†
m

ci
pi

> Smax do

7: let τj be the task with the minimum
χj

pj
in T†

m;

8: T†
m ← T†

m \ {τj}, T� ← T� ∪ {τj};
9: return (T†

1,T†
2, . . . ,T†

M ,T�) as the task partition;

and tasks with lower χi
ci

for rejection. Let T† be the set of tasks

decided to be executed on these M processors. Initially, T† is ∅.
For scheduling the selected tasks on these M processors in poly-

nomial time, we apply Algorithm LA+LTF (Leakage-Aware Largest-
Task-First) in [6] to partition these tasks into M disjoint sets. Algo-
rithm LA+LTF sorts these selected tasks in a non-increasing order of
their loads, in which the load of a task τi is defined by its compu-
tation requirement divided by its period, i.e., ci

pi
. Then, Algorithm

LA+LTF assigns tasks according to the sorted order to the processor
with the least load so far.

The first algorithm is Algorithm SGA, stands for Standard Greedy
Algorithm. For each iteration, we consider the selection of task
τi according to the non-increasing order of

χj

cj
for tasks τj in T.

Algorithm SGA applies Algorithm LEP for the determination. Let
(y∗

1 , y∗
2 , . . . , y∗

N) be the vector of yis of tasks τis after calling
LEP(∅, ∅, 0). Algorithm SGA then first attempts to execute all the
tasks in T† ← {τi | y∗

i = 1} on these M processors. By apply-
ing Algorithm LA+LTF to assign tasks in T† to M processors, we
can have a task partition (T†

1,T
†
2, . . . ,T

†
M). However,

P
τi∈T

†
m

ci
pi

might be greater than Smax, and, hence, we must reject some tasks
in T†. Algorithm SGA then repeatedly evicts the task with the mini-
mum

χj

pj
from T†

m until the schedulability is guaranteed on the m-th
processor. Algorithm SGA is summarized in Algorithm 3. The time
complexity is O((N + M) log(N + M)).

Algorithm EGA, stands for Enhanced Greedy Algorithm, is an
enhancement of Algorithm SGA. The difference is on the derivation
of (y∗

1 , y∗
2 , . . . , y∗

N) in Algorithm LEP. Instead of returning the result
when yi < 0 in Step 6 in Algorithm 1, the revised Algorithm
LEP continues the loop by setting yi to 0. The time complexity of
Algorithm EGA is the same as that of Algorithm SGA.

Algorithm ES+EGA (Enhanced Greedy Algorithm with Esti-
mated Schedule) applies Algorithm LA+LTF on the fly to verify
whether the execution of task τi can reduce the EP by evaluating the
EP of the derived schedule.1

Both Algorithms SGA and EGA evict those tasks τis with y∗
i < 1,

and Algorithm ES+EGA evicts a task τi if executing τi and the se-
lected tasks has greater EP . However, execution of some of these
tasks with eviction on some selected tasks might reduce the EP. Al-
gorithm TE+EGA (Enhanced Greedy Algorithm with Task Eviction)
is the revision of Algorithm ES+EGA with the possibility of evictions
of tasks already in T†. If applying Algorithm LA+LTF to execute
T†∪{τi} is not a feasible solution or with greater EP than that to ex-
ecute T†, Algorithm TE+EGA first finds the index m′, in which T†

m′
is the task set T†

m of the task partition of T† derived from Algorithm
LA+LTF with the smallest

P
τj∈T

†
m

χj

pj
−P ∗(

P
τj∈T

†
m

cj

pj
). That is,

m′ is the index, in which evicting all the tasks in T†
m′ increases no

greater EP than any other index. Then, if Algorithm LA+LTF can

1 The pseudo-code of Algorithm ES+EGA is to eliminate the steps between
Step 6 and Step 10 in Algorithm 4.

Algorithm 4 : TE+EGA

Input: T, M ;
1: sort tasks in T non-increasingly according to χi

ci
;

2: T† ← ∅, T� ← T;
3: for i← 1; i ≤ N ; i← i + 1 do
4: if applying Algorithm LA+LTF to execute T†∪{τi} has a feasible so-

lution with less EP than the EP to execute T† by applying Algorithm
LA+LTF then

5: T† ← T† ∪ {τi}, T� ← T� \ {τi};
6: else
7: let (T†

1, T†
2, . . . , T†

M) be the task partition of T† on M proces-
sors derived from Algorithm LA+LTF;

8: let m′ be the index m with the smallest
P

τj∈T
†
m

χj

pj
−

P ∗(
P

τj∈T
†
m

cj

pj
);

9: if Algorithm LA+LTF can have a feasible task partition for task set
T† \T†

m′ ∪ {τi} with less EP than the EP by applying Algorithm

LA+LTF to T† then
10: T† ← T† \T†

m′ ∪ {τi}, T� ← T� \ {τi} ∪T†
m′ ;

11: return (T†
1,T†

2, . . . ,T†
M , T�), where T†

m is the task set on the m-th
processor by applying Algorithm LA+LTF for T†;

have a feasible task partition for task set T† \T†
m′ ∪ {τi} with less

EP than the EP by applying Algorithm LA+LTF to T†, we update
T† as T† \ T†

m′ ∪ {τi}. The detail procedure is shown in Algo-
rithm 4. Algorithm TE+EGA has the same time complexity as Algo-
rithm ES+EGA, which is O(N(N + M) log(N + M)).

3.1.3 Extensions to non-ideal processors

Algorithms in Sections 3.1.1 and 3.1.2 are designed for ideal proces-
sors. With slight modifications, they can be applied to systems with
discretely available speeds. As shown in [11, 13], if a task is going
to execute for t time units to complete C cycles, we can execute the
task at two speeds sh and sh+1, in which sh < C

t
≤ sh+1, for th

and th+1 time units so that th +th+1 is t and thsh +th+1sh+1 is C.
Therefore, what we have to do is to re-define the power consumption
function P ∗ in Equation (1) as follows:

P ∗(s) =

8>><
>>:

sh+1−s

sh+1−sh
P (sh)+

s−sh
sh+1−sh

P (sh+1)

!
, when sh < s < sh+1,

P (s), when s = sh, for some h
s

s∗ P (s∗), otherwise.
(2)

All the algorithms in Sections 3.1.1 and 3.1.2 can be applied to non-
ideal processors according to the revision of P ∗(s) in Equation (2).

3.2 Systems with non-negligible switching overheads

For systems with non-negligible switching overheads, we first apply
the first-fit strategy to re-assigned the tasks selected for execution
to reduce the number of processors executed at the critical speed
[6]. Then, each processor determines its schedule independently
by applying the procrastination algorithm in [12]. Due to space
limitation, we only sketch the ideas here.

Suppose that at time instant t, there is no task instance in the
ready queue on a processor. By the procrastination algorithm [6, 12],
the processor is either turned off or idle at the lowest available speed.
The determination of the switching can be done by verifying whether
the idle interval is longer than max{tsw, Esw/P (Smin)}. If the
processor is turned off, the scheduler has to decide when to turn
on the processor, and the energy consumption in the idle interval is
Esw. Suppose that the procrastination schedule decides to turn off
the processor at time instant t, and turn on the processor at time
instant t∗ by applying the procrastination algorithm [12]. We then
evaluate whether there is a task instance which is decided to be
rejected in the off-line phase and be done before the time instant t∗.
If such a task instance exists and the EP obtained in the estimated

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(a) M = 2, proportional model

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(b) M = 2, inverse model

 1

 1.2

 1.4

 1.6

 1.8

 2

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(c) M = 2, independent model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(d) M = 4, proportional model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(e) M = 4, inverse model

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 n
or

m
al

iz
ed

 E
P

Number of tasks (N)

EGA
ES+EGA
TE+EGA

(f) M = 4, independent model

Figure 1. Average normalized energy-penalty (EP) for the evaluated algorithms under different models.

schedule is less than that by turning off the processor before t∗, we
can execute the task instance instead of turning off the processor.
On the other hand, we can also have a similar approach when the
processor is determined to be idle before the next task instance
assigned on the processor arrives.

4. Performance Evaluations
This section provides evaluation results of the proposed algorithms.
Algorithms under simulations are Algorithm SGA, Algorithm EGA,
Algorithm ES+EGA, and Algorithm TE+EGA. Due to space limita-
tion, we only present the evaluation results for ideal processors. The
results for non-ideal processors are similar.

Environment Setup We perform evaluations for systems with
multiple Intel XScale processors. There are five available speeds
(0.15, 0.4, 0.6, 0.8, 1) GHz with corresponding power consumption
(80, 170, 400, 900, 1600) mW [18] in Intel XScale. For ideal pro-
cessors, we approximate the power consumption of processor speed
s on XScale as P (s) = 0.08 + 1.52s3 W with Smin as 0.15 and
Smax as 1. The energy Esw of switching overheads is 483µJ [12].

For each task τi, the number of jobs arriving in the hyper-period
is determined by an integral variable bi in the range of [1, 20], where
the period of task τi is L

bi
for any specified positive real number L.

Each task τi has two weights µi,1 and µi,2 to determine the amount
of CPU cycles of tasks on the DVS processors and the rejection
penalty. For input instances with N tasks on M processors, the exe-
cution cycles ci on the processor of task τi is set as

µi,1
PN

j=1 µj,1
Mpi,

and rejection penalty of τi is
µi,2

PN
j=1 µj,2

3Mpi. The linear combina-

tion in the objective of the EFFECT problem is 0.2E + 0.8Π, where
E is the energy consumption of the system in the hyper-period, and
Π is the total rejection penalty of the task instances missing their
deadlines in the hyper-period. The value of µi,1 is a random variable
in (0, 1]. We explore different types of distribution of µi,2 depend-
ing on the relationships to µi,1. In the independent model, µi,2 is
a random variable in (0, 1]; in the inverse model, µi,2 is a random
variable in (0, 1

µi,1
]; in the proportional model, µi,2 is a random

variable in (µi,1, µi,1 + 0.1].
The normalized energy-penalty (EP) for an algorithm of an input

instance is the energy-penalty of the derived solution divided by the
optimal solution of the input instance. For greater numbers of tasks
and processors, instead of normalizing to the optimal solution, the

relaxed normalized energy-penalty is defined as the energy-penalty
of the derived solution divided by the lower bound derived from
LEP(∅, ∅, 0). We perform independent tests for each configuration,
and their average values are reported.

Evaluation Results The average normalized energy-penalty (EP)
for the evaluated algorithms when M = 2 (M = 4, respectively)
is shown in Figures 1(a), 1(b), and 1(c) (Figures 1(d), 1(e), and
1(f), respectively) for the proportional, inverse, and independent
models. Since Algorithm EGA always outperforms Algorithm SGA,
the results for Algorithm SGA are omitted for clarity. We only plot
results whose normalized EP is no more than 2 in Figure 1 for
clearance. When the number of tasks is quite close to the number
of processors, i.e., N ≤ 5 when M = 2 or N ≤ 9 when M = 4,
under the proportional model, Algorithm TE+EGA can significantly
beat both Algorithms EGA and ES+EGA. This is because Step 10 in
Algorithm 4 can be reached by rejecting one or two tasks with higher
ratio in their penalty divided by their computation requirement in the
task model. When the number of tasks increases, Algorithm TE+EGA
and Algorithm ES+EGA have almost the same performance. This is
because Step 10 is seldom reached since rejecting more than two
tasks in the task model increases a lot of penalty. As in these figures,
Algorithm TE+EGA can effectively derive solutions to the EFFECT
problem.

Table 1 shows the running time of the branch-and-bound ap-
proach under different pruning methods when M is 4 running on a
machine with Intel Pentium4 3GHz CPU and 512M RAM. The LB
pruning method uses Algorithm LEP as the lower bound for prun-
ing as shown in Procedure DFSBB in Algorithm 2. The UB pruning
method accumulates the EP of the tasks decided so far instead of
applying Algorithm LEP in Step 11 in Procedure DFSBB in Algo-
rithm 2. The feasibility pruning method eliminates the steps between
Step 9 and Step 14 in Procedure DFSBB in Algorithm 2. As shown
in Table 1, applying LB pruning can effectively reduce the running
time of the branch-and-bound approach.

We also evaluate the performance of the proposed polynomial-
time algorithms for larger input instances. For a given ratio K of N
to M , the number of processors is an integral random variable in
[4, 16], and the number of tasks in T is
KM�. Figure 2(a) and
Figure 2(b) show the average relaxed normalized EP by varying
the ratio of M to N when the proportional and the inverse models
are applied, respectively. Algorithm TE+EGA is the best among the
proposed polynomial-time algorithms. The reason why Algorithm

���������������Pruning methods

Number of tasks
10 11 12 13 14 15 16 17 18 19

LB pruning 0.19 0.42 1.2 3.9 20.1 80.1 177 988 3621 17232
UB pruning 0.33 0.75 2.80 10.5 59.5 263 797 4507 26140 > 1day

Feasibility pruning 0.8 3.91 20.3 111 521 2352 14261 50134 > 1day > 1day

unit: sec

Table 1. Running time for different pruning methods in the branch-and-bound approach for M = 4.

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3A
ve

ra
ge

 r
el

ax
ed

 n
or

m
al

iz
ed

 E
P

N/M

EGA
ES+EGA
TE+EGA

(a) proportional model

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3A
ve

ra
ge

 r
el

ax
ed

 n
or

m
al

iz
ed

 E
P

N/M

EGA
ES+EGA
TE+EGA

(b) inverse model

Figure 2. Average relaxed normalized energy-penalty (EP) for the
evaluated algorithms under different models.

EGA outperforms Algorithm ES+EGA when N to M is small (≤ 1.6)
for the proportional model in Figure 2(a) is because Algorithm EGA
performs task eviction for overloaded processors in Step 5 to Step
8 in Algorithm 3 but Algorithm ES+EGA does not. (It also explains
the relation between Algorithms EGA and ES+EGA when M = 4
and N = 6 in Figure 1(d).) The reason why the average relaxed
normalized EP in Figure 2(a) is much greater than that in Figure 2(b)
is due to the precision of the derived lower bound by Algorithm LEP.

As shown in Figure 1 and Figure 2, Algorithm TE+EGA and
Algorithm ES+EGA have better performance when N to M is higher
in most cases, but Algorithm SGA might not. Algorithm TE+EGA is
the best among the evaluated algorithms.

5. Conclusion
This research explores systems with the possibility for task rejec-
tion in a homogeneous multiprocessor system with continuously
available speeds or discretely available speeds. The objective is to
minimize the linear combination of the total rejection cost for the
tasks that are not completed in time and the energy consumption
of the system. We show the NP-hardness of the studied problem,
and provide analysis on the non-existence of polynomial-time ap-
proximation algorithms, provided that P �= NP . We also pro-
pose branch-and-bound and efficient algorithms. The proposed algo-
rithms are evaluated by extensive experiments, in which the branch-
and-bound approach reduce the running time effectively and Al-
gorithm TE+EGA is shown to provide very effective solution for
energy-penalty minimization.

For future research, we will consider systems with heterogeneous
multiprocessors.

References
[1] T. A. Alenawy and H. Aydin. Energy-aware task allocation for rate

monotonic scheduling. In Proceedings of the 11th IEEE Real-time and
Embedded Technology and Applications Symposium (RTAS’05), pages
213–223, 2005.

[2] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of
periodic task systems upon identical multiprocessor platforms. In
Proceedings of the 24th International Conference on Distributed
Computing Systems, pages 428–435, 2004.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages
95–105, 2001.

[4] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of 17th International Parallel and
Distributed Processing Symposium (IPDPS), pages 113 – 121, 2003.

[5] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo. Multiprocessor energy-efficient scheduling with task
migration considerations. In EuroMicro Conference on Real-Time
Systems (ECRTS’04), pages 101–108, 2004.

[6] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In IEEE Real-
time and Embedded Technology and Applications Symposium, pages
408–417, 2006.

[7] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling
for real-time tasks. In International Conference on Parallel Processing
(ICPP), pages 13–20, 2005.

[8] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor. In
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages 153–162, 2006.

[9] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low energy
systems using variable supply voltage processors. In Proceedings of
Asia South Pacific Design Automation Conference, pages 449–455,
2001.

[10] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 37–46, 2003.

[11] T. Ishihara and H. Yasuura. Voltage scheduling problems for
dynamically variable voltage processors. In Proceedings of the
International Symposium on Low Power Electronics and Design, pages
197–202, 1998.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the Design
Automation Conference, pages 275–280, 2004.

[13] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. In Proceedings of the 40th
Design Automation Conference, pages 125–130, 2003.

[14] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In 15th Euromicro
Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[15] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy
aware scheduling for distributed real-time systems. In International
Parallel and Distributed Processing Symposium, page 21, 2003.

[16] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2nd edition, 2002.

[17] INTEL. Strong ARM SA-1100 Microprocessor Developer’s Manual,
2003. INTEL.

[18] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.

[19] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. In Proceedings of
the 8th Conference of Design, Automation, and Test in Europe (DATE),
pages 468–473, 2005.

[20] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection
for energy minimization. In Annual ACM IEEE Design Automation
Conference, pages 183–188, 2002.

[21] D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In IEEE Real-time and Embedded
Technology and Applications Symposium, pages 397–407, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

