
Accounting for Cache-Related Preemption Delay
in Dynamic Priority Schedulability Analysis

Lei Ju Samarjit Chakraborty Abhik Roychoudhury
Department of Computer Science, National University of Singapore

E-mail: {julei, samarjit, abhik}@comp.nus.edu.sg

Abstract
Recently there has been considerable interest in incor-

porating timing effects of microarchitectural features of
processors (e.g. caches and pipelines) into the schedula-
bility analysis of tasks running on them. Following this line
of work, in this paper we show how to account for the ef-
fects of cache-related preemption delay (CRPD) in the stan-
dard schedulability tests for dynamic priority schedulers
like EDF. Even if the memory space of tasks is disjoint, their
memory blocks usually map into a shared cache. As a re-
sult, task preemption may introduce additional cache misses
which are encountered when the preempted task resumes ex-
ecution; the delay due to these additional misses is called
CRPD. Previous work on accounting for CRPD was re-
stricted to only static priority schedulers and periodic task
models. Our work extends these results to dynamic prior-
ity schedulers and more general task models (e.g. sporadic,
generalized multiframe and recurring real-time). We show
that our schedulability tests are useful through extensive ex-
periments using synthetic task sets, as well as through a de-
tailed case study.

1 Introduction
Model-based design is increasingly emerging as the key

to tackle the growing complexity of modern real-time and
embedded systems. It typically involves choosing an ap-
propriate task model which accurately reflects the charac-
teristics of the underlying application, annotating such a
model with parameters such as execution times, deadlines
and periods, followed by a schedulability analysis to verify
whether all timing constraints are satisfied for all possible
runs of the system. For such an analysis to be meaningful,
it is important to accurately estimate the execution times of
the different tasks constituting the system being designed.
This has led to a lot of recent work on what is referred to
as the worst-case execution time (WCET) analysis of pro-
grams [5, 10, 12, 16], which involves both program path
analysis and modeling the timing effects of processor mi-
croarchitectural features (e.g. caches and pipelines).

However, such WCET analysis is usually carried out for
each task in isolation and there has been relatively less em-
phasis on estimating the effects of inter-task interferences

on the execution times of tasks. For example, depending on
the cache blocks shared by two tasks T and T ′, the preemp-
tion of T by T ′ introduces additional cache misses when
T resumes execution, thereby incurring an increase in its
execution time. This additional execution time or delay is
referred to as the cache-related preemption delay (CRPD)
[7, 11]. Here, it may be noted that many timing analysis
and system integration tools (e.g. SymTA/S which targets
the automotive electronics domain [8, 15]) require the de-
signer to annotate each task with its execution time (as dis-
cussed above), but currently do not provide any convenient
mechanism to account for the CRPD. However, neglecting
the CRPD may lead to unsafe execution time estimates for
tasks (and hence incorrect schedulability tests).

Our contribution and relation to previous work: To ad-
dress this shortcoming, there have been a number of recent
attempts to integrate a CRPD estimation scheme within a
schedulability analysis framework [6, 13, 14]. But all of
these efforts were restricted to strictly periodic task sets and
static priority schedulers. In this paper we show how CRPD
can be accounted for within a dynamic priority schedulabil-
ity analysis framework. Further, our proposed technique is
not restricted to periodic task sets; it is applicable to more
general task models such as sporadic [3], multiframe, gen-
eralized multiframe [2], and recurring real-time [1]. Our
technique comprises three main steps: (i) using program
analysis techniques to estimate the maximum CRPD in-
curred by each preemption of a task, due to possible pre-
empting tasks. (ii) bounding the number of preemptions of
each task. (iii) augmenting the execution time of each task
with its total CRPD (due to all possible preemptions) and
using these augmented execution times to perform a schedu-
lability analysis using the processor demand criterion [2, 3].

As one might expect, our tests are safe (sufficient) but
not tight (necessary). The pessimism arises from both steps
(i) and (ii). However, through a number of experiments us-
ing both synthetic task sets and a case study, we show that
our tests are useful. In particular, we show that many task
sets which were originally schedulable, fail our tests when
CRPD is taken into account. At the same time, our tests are
not overly pessimistic.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Overview of the proposed CRPD-aware dy-
namic priority schedulability analysis framework.

A schematic overview of our analysis framework is
shown in Figure 1. Given the program code correspond-
ing to each task and its layout in the memory, we use cache
modeling and program analysis techniques to estimate the
WCET and CRPD in step (i). This is followed by estimat-
ing the number of task preemptions in step (ii). Towards
this, we propose two possible techniques. The first uses
task deadlines and is more practical for reasons we describe
later. The second relies on computing the worst case re-
sponse times (WCRT) of tasks. Although for a restricted
class of task sets this might lead to a less pessimistic test,
such task sets would rarely arise in real-life applications.
Finally, in step (iii) we use the augmented execution times
of tasks to compute their demand bound functions (DBFs)
and use these functions to perform a schedulability test.

The rest of the paper is organized as follows. In the next
section we outline our program analysis technique to esti-
mate the maximum CRPD incurred by each task of a task
set (i.e. step (i)). In Section 3 we discuss the details of
steps (ii) and (iii). Finally, an experimental evaluation of
our framework is presented in Section 4, followed by a dis-
cussion on possible directions for future work in Section 5.

2 Cache-Related Preemption Delay
In the following, we consider the effects of instruction

cache to concretely define and understand the concept of
CRPD. As the reader will observe, the same definitions and
analysis can be employed (with minor modifications) for
data cache as well. Also, we implicitly assume a direct-
mapped cache for simplicity of discussion; again this can
be extended in a straightforward fashion to set-associative
caches. We do not make any assumptions about whether
the code memories of different tasks share memory blocks.

Thus the memory space of different tasks can be considered
disjoint, even though the memory blocks of different tasks
get mapped to the same cache block.

Given a preempted task T and a preempting task T ′, the
cache-related preemption delay is an upper bound on the
delay due to additional cache misses caused by preemption
of T by T ′. Consequently we have to consider all possible
program points of T where it can get preempted and capture
the possible “cache states” at these preemption points. Fur-
ther, in each such cache state we need to find which memory
blocks in the cache will be used in subsequent execution of
T . We can then consider all possible “cache states” when T ′

completes, and combine it with the possible “cache states”
due to T at preemption, to get the maximum number of
cache misses in T (after it resumes) due to the preemption
by T ′. This number multiplied by the cache miss penalty
provides CRPD(T, T ′), the cache-related preemption de-
lay of T due to preemption by T ′.

2.1 Abstract Cache States
Our preceding discussion on CRPD is a high-level one,

since we did not discuss what “cache states” are and how
they are computed. This indeed is a matter of choice since
we can tune the level of abstraction at which we capture the
cache states. This decides the precision of the analysis and
the tightness of the CRPD estimation.

Assuming direct-mapped cache, it is possible to define
a concrete cache state as a mapping {1, . . . , n} → M ∪
{⊥}; where n is the number of blocks in the cache, M is
the set of memory blocks (which get mapped to different
cache blocks) and ⊥ denotes the situation where a certain
cache block is empty. Conceptually, an abstract cache state
represents a set of concrete cache states. However, there can
be differences in representation of an abstract cache state
leading to different degrees of abstraction. Here we present
two possible choices to illustrate this issue. The notation 2S

for a set S denotes the powerset of S.

• For each cache block c, the content of c is not a sin-
gle memory block (as would be the case for a concrete
cache state in a direct-mapped cache) but a set of mem-
ory blocks (see [6]). The type of such an abstract cache
state is {1, . . . , n} → 2M∪{⊥}.

• The content of the cache is not given by one map-
ping from cache blocks to memory blocks, but a set
of mappings from cache blocks to memory blocks (see
[11]). The type of such an abstract cache state is
2{1,...,n}→M∪{⊥}.

In the first choice, an abstract cache state can be given by

1 → {a,⊥}, 2 → {b, d}
or [{a,⊥}, {b, d}] for a direct-mapped cache with two cache
blocks into which memory blocks {a, b, c, d} get mapped

to. This abstract state represents four concrete cache states
[a, b], [⊥, b], a, d], [⊥, d] — corresponding to the two
choices in each of the two cache blocks. In the second
choice, the abstract cache state is directly represented as a
set of concrete cache states. We have adopted the second
choice in this paper since it leads to more precise program
analysis.

2.2 Associating Abstract Cache States with Pro-
gram Points

Given a definition of abstract cache states, we can tra-
verse the control flow graph of a task T to associate each
program point of T with an Incoming Abstract Cache State.

Definition 1. An incoming abstract cache state for a pro-
gram point p must capture all the concrete cache states with
which p can be reached.1

Since the control flow graph contains loops, the compu-
tation of the Incoming Abstract Cache State will be itera-
tive, where the Incoming Abstract Cache State estimate for
each program point gets updated in every iteration. This
is continued until a (least) fixed-point is reached. Con-
vergence to a fixed point is guaranteed because the set of
concrete cache states represented by the Incoming Abstract
Cache State estimates monotonically increase and the do-
main of concrete cache states is finite.

Similar to the Incoming Abstract Cache State computa-
tion, we also compute Outgoing Abstract Cache State for
each program point of a task T .

Definition 2. An outgoing abstract cache state for a pro-
gram point p must capture all concrete cache states at which
any cache block can be first referenced after p.

Again, the Outgoing Abstract Cache State for each point
is also computed as a (least) fixed-point. The only differ-
ence between the two fixed point computations is that while
computing the Incoming Abstract Cache State of a program
point p, we (iteratively) propagate the abstract cache states
for p’s predecessors in the task’s control flow graph. How-
ever, for computing the Outgoing Abstract Cache State of
p, we (iteratively) propagate the abstract cache states of p’s
successors.

2.3 CRPD Estimation

Using the above notions, we can now compute
CRPD(T, T ′) — the cache related preemption delay due
to the preemption of task T by task T ′ — as follows.

For each program point p in the preempted task T (there
are only finitely many such points), we compute (i) the

1Depending on the precision of the analysis, it could also represent
some concrete cache states with which p is never reached in concrete pro-
gram executions.

incoming abstract cache state of p, (ii) the outgoing ab-
stract cache state of p, and (iii) a pointwise intersection
(performed on a per cache block basis) between incoming
and outgoing cache states of p. The intersection conserva-
tively estimates the cache blocks which contain such mem-
ory blocks at program point p that they are referenced after
p. We call such cache blocks as Useful cache blocks at pro-
gram point p of task T , and denote this set as UCB(p, T).

After having computed the Useful Cache Blocks at every
program point of the preempted task T , we compute the In-
coming Abstract Cache state at the end of the preempting
task T ′. This will be done by a fixed-point analysis over the
control flow graph of T ′. From the incoming abstract cache
state of the termination point of T ′ we can find out the num-
ber of cache blocks used by some memory block of T ′. Let
us call these the Used Cache blocks of T ′ and denote this
set as usedCB(T ′). We can now compute CRPD(T, T ′)
as follows.

CRPD(T, T ′) = maxp∈Prog(T) | UCB(p, T)∩usedCB(T ′) |

Here, Prog(T) is the set of all program points in task T .
Thus we want to capture those cache blocks which could be
useful at some program point p of task T , and are used by
task T ′ when it preempts T — thereby resulting in addition
cache misses when task T resumes execution from program
point p.

Indirect preemptions: In the preceding discussion, we
sketched a method for estimating CRPD(T, T ′). But in
a system with more than two tasks, T may be preempted by
T ′, which further gets preempted by another task T ′′. Since
all tasks share the same cache, the execution of T ′′ can also
potentially introduce additional cache misses which are en-
countered when T resumes. To solve this problem in a
clean way, we always define the CRPD between a pair of
tasks, and conservatively estimate the delay due to indirect
preemptions. Thus, the cache-related delay in the execu-
tion of T owing to the preemption scenario where T gets
preempted by T ′ and T ′ gets preempted by T ′′ is conser-
vatively estimated to be CRPD(T, T ′) + CRPD(T, T ′′).
Hence, given a task set, it is sufficient to compute the CRPD
for all possible (ordered) task pairs only.

3 CRPD-aware Schedulability Analysis
In what follows, for simplicity of exposition we only

consider sporadic task sets being preemptively scheduled
using the Earliest Deadline First (EDF) scheduler. How-
ever, it will not be difficult to see that our framework can be
used for more general task models as well.

Each task T in a sporadic task set τ , is characterized by
a Worst Case Execution Time e, a deadline d and p, which
is the minimum seperation in time between two consecutive
releases of T [3]. In order to account for cache-related inter-
task interferences, we need to augment e with the CRPD

that may be incurred by T due to all preempting tasks. This
is given by:

ê = e +
∑

T ′∈pr(T)

CRPD(T, T ′) × n(T, T ′)

where, ê is the augmented execution time of T , pr(T) is
the set of all tasks that may preempt T under EDF schedul-
ing policy and n(T, T ′) is the number of preemptions of T
due to T ′. In the following subsection, we discuss how to
compute pr(T) and n(T, T ′), before presenting our schedu-
lability test.

3.1 Computing the Set of Preempting Tasks
Whereas computing the set of preempting tasks is

straightforward for static priority scheduling disciplines,
computing pr(T) is less obvious for EDF.

Theorem 1. A task T can preempt a task T ′ under EDF
scheduling policy only if T has a smaller deadline than that
of T ′ (i.e. d < d′).

Proof. Suppose T has a deadline d, which is greater than or
equal to T ′’s deadline d′. At any execution point, when T ′

has been executing for some time t and T becomes ready,
the remaining deadline for T (which is d) will always be
greater than the remaining deadline for T ′ (which is d′− t).
Hence, T can never preempt T ′.

Hence, given a task set τ , any task T ∈ τ can only be
preempted by tasks belonging to the set pr(T) = {T ′ |
T ′ ∈ τ ∧ d′ < d}. It may be noted that with static priority
schedulers, if T has a higher priority than T ′, then every
instance of T will preempt the execution of T ′. However,
with dynamic priority schedulers, in particular EDF, T ∈
pr(T ′) only implies that some instances of T may preempt
T ′, depending on their remaining deadlines. However, a
task that does not belong to pr(T ′) will never be able to
preempt T ′.

Using WCRT to bound the number of preemptions:
Accurately determining n(T, T ′) under EDF is not possible
without unrolling a concrete schedule. Hence, we use an
upper bound on the number of possible preemptions of T
to approximate n(T, T ′). Towards this, we first exploit the
observation that the maximum number of preemptions of
T due to T ′ under a static priority assignment can serve as
an upper bound on the number of preemptions under EDF.
Such a static priority assignment may be obtained using a
deadline monotonic scheduler (i.e. a task having a smaller
deadline has a higher priority). Let us denote the result-
ing bound on the number of preemptions of T due to T ′ as
nWCRT (T, T ′), where

nWCRT (T, T ′) = �R(T)
p′

�

Here, R(T) is the Worst Case Response Time (WCRT) of
T under the above-mentioned static priority assignment and
p′ is the minimum separation time of T ′. R(T) may be ob-
tained using well-known techniques for WCRT computa-
tion for periodic and sporadic task models.

Using deadlines to bound the number of preemptions:
There are two problems with the above approach: (i) it
might lead to overestimation, and (ii) computing the WCRT
for more general task models (e.g. generalized multiframe
and recurring teal-time) is non-trivial. To avoid these draw-
backs, an alternative approach is to bound n(T, T ′) using
the task deadlines.

It is easy to see that under EDF, for T ′ to preempt T n
times, the following inequality must hold: d′ +(n− 1)p′ <
d. This inequality holds irrespective of whether the task
set is feasible or not. Using this inequality, it is possible to
obtain the following upper bound on the number of preemp-
tions of T by T ′:

ndeadline(T, T ′) = �d − d′

p′
�

Although this bound on n(T, T ′) might also be pessimistic
at times, it will often be tighter than nWCRT (T, T ′). More
importantly, this technique is applicable to a much wider
variety of task models.

3.2 Putting Everything Together

We are now ready to describe our schedulability test
which takes into account the CRPD incurred by tasks. As
mentioned in Section 1, we use the processor demand
criterion-based test [2, 3], where for each task T we
compute its demand bound function T.dbf(t) and check
whether the following set of inequalities hold:

∑

T∈τ

T.dbf(t) ≤ t, ∀0 ≤ t ≤ t(τ)

where t(τ) is a bound that we will derive shortly. Now, if
we use the deadline-based approach to bound n(T, T ′) then
the augmented execution time of any task T is given by:

ê = e +
∑

T ′∈pr(T)

CRPD(T, T ′) × (�d − d′

p′
�)

and T.dbf(t) = ê×max{0,
 t−d
p �+ 1}. Alternatively, the

WCRT-based approach may also be used to compute T ’s
augmented execution time. Finally, the bound t(τ) on the
number of tests is given by the following lemma.

Lemma 1. If a task set τ is not schedulable and
∑

T∈τ
ê
p ≤

1, then
∃ t ≤ (max

T∈τ
{p − d}) ×

∑
T∈τ

ê
p

1 − ∑
T∈τ

ê
p

for which
∑

T∈τ T.dbf(t) > t.

Relationship between the schedulability tests
based on nWCRT (T, T ′) and ndeadline(T, T ′).

Proof sketch. If τ is not schedulable then it follows from
the processor demand criterion that there exists some t′ for
which t′ >

∑
T∈τ T.dbf(t′). Solving this inequality leads

to an upper bound on t′.

3.3 Discussion

It should be noted that the two bounds we obtained for
n(T, T ′) are both meaningful. However, in the following
discussion we aim to show that ndeadline(T, T ′) is more rel-
evant from a practical point of view, apart from it being easy
to derive for a wide variety of task models. Figure 2 shows
three sets of task sets S, S1 and S2, where S is the set of
all schedulable sporadic task sets, S1 is the set of sporadic
task sets which pass our schedulability test using WCRT
to bound the number of preemptions, and S2 is the set of
sporadic task sets which pass the ndeadline-based schedula-
bility test.

Task sets in S − (S1 ∪ S2) are schedulable task sets
which fail both our tests. As mentioned in Section 1, this
is due to the pessimism introduced by the CRPD estima-
tion and the bound on the number of task preemptions. A
more interesting set is S1 −S2. This set comprises task sets
which pass the nWCRT -based test, but fail the ndeadline-
based test. This would happen for task sets with tasks hav-
ing large deadlines but small execution times (and hence
small response times). This results in ndeadline(T, T ′) be-
ing overly pessimistic compared to nWCRT (T, T ′). How-
ever, this pessimism alone is not sufficient for such task sets
to fail the ndeadline-based test. This is because such task
sets are schedulable under a deadline monotonic scheduler
and hence pass our processor demand criterion-based test.
For such task sets to fail the ndeadline-based test, the CRPD
of the constituent tasks must contribute to a large fraction
of the tasks’s execution time (i.e. ê), which for most realis-
tic applications in not true. In summary, S1 − S2 consists
of task sets whose tasks have small execution times, large
deadlines, and relatively large CRPD compared to the orig-
inal WCET.

Finally, S2 − S1 consists of task sets whose tasks have
large (possibly infinite) worst case response times, incur
high processor utilization and cannot be scheduled using
a static priority scheduler. These task sets would fail the
CRPD-aware static priority schedulability tests proposed in
[6, 13, 14].

PDCdeadline

pass fail
SPcrpd pass 498 0

fail 279 223

Results for SPcrpd versus PDCdeadline.

PDCdeadline

pass fail
PDC pass 763 42

fail 0 195

Results for PDC versus PDCdeadline.

4 Experimental Evaluation
To evaluate the usefulness of our analysis framework, we

applied it to both synthetic task sets, as well as to a real-life
case study. The results obtained show that (i) many task
sets which were originally schedulable, fail our tests when
the CRPD is taken into account, and (ii) a number of task
sets which failed a CRPD-aware static priority (deadline
monotonic) schedulability test, passed our test (meaning
that they are schedulable under EDF). These show that ac-
counting for CRPD within a schedulability analysis frame-
work might often be necessary, depending on how critical
are the real-time constraints. Secondly, our proposed tests
are not overly pessimistic; more specifically, they can dis-
tinguish between task sets which are feasible under a dy-
namic priority scheduler, but infeasible with static priority
scheduling.

4.1 Using Synthetic Task Sets
We randomly generated 1000 sporadic task sets with

the number of tasks in each set varying between 2 and 6.
The execution times of these tasks varied between 1000
and 5000, and the minimum separation time p of each task
T = (e, p, d) in τ was set to α × |τ | × e, where α was uni-
formly chosen from the range [1.0, 2.0]. Hence, the proces-
sor utilization due to τ varied between 0.5 and 1. The dead-
line d was chosen to lie between e and p and CRPD(T, T ′)
was randomly chosen to be approximately 5% of T ’s worst
case execution time.

We subjected these task sets to three different schedula-
bility tests: (i) SPcrpd – which is a CRPD-aware schedu-
lability test for static priority (deadline monotonic) sched-
ulers (as proposed in [6, 13, 14]), (ii) PDC – proces-
sor demand criterion-based dynamic priority schedulabil-
ity analysis, which ignores CRPD, and (iii) PDCdeadline

– CRPD-aware dynamic priority schedulability analysis
which uses task deadlines to bound the number of task pre-
emptions (proposed by us in this paper). The results we
obtained are shown in Tables 1 and 2. From Table 1, note
that 279 task sets pass the PDCdeadline test but fail un-
der SPcrpd; these are task sets which are schedulable under
EDF but not using a deadline monotonic scheduler, which
shows that our proposed test is not overly pessimistic. Ta-
ble 2 shows the result of accounting for CRPD; 42 task

sets (i.e. 4.2% of the total task sets) which were originally
schedulable fail when the effects of CRPD are taken into ac-
count, thereby pointing to the importance of CRPD-aware
dynamic priority schedulability analysis.

4.2 Case Study: A 3G Phone Application

Our setup is motivated by a 3G mobile phone applica-
tion which involves audio and video decoding (of incoming
streams) as well as encoding (for transmission over a net-
work). For audio, we chose the well-known adpcm pro-
gram; the mediabench suite [9] contains source codes for
the adpcm encoder as well as decoder. For video, we chose
one representative task from the MPEG encoder/decoder.
In particular, for MPEG encoding (decoding), we selected
the dct (idct) program performing discrete cosine trans-
form (inverse discrete cosine transform). Out of these four
programs, we constructed different task sets by varying pa-
rameters such as the resolution and frame rate (for video
encoding and decoding) and sampling rate (for audio en-
coding and decoding). For video, we considered resolution
choices of 120 × 90 and 160 × 120 pixels; the frame rates
were varied from 15− 25 frames per second. For audio, we
considered sampling rates from 25 − 44.1 KHz. This re-
sulted in as many as 900 different task sets. The execution
times of the four tasks remained constant across the differ-
ent task sets. But their deadlines varied depending on the
choices of the frame resolution, frame rate and audio sam-
pling rate. The minimum separation time for all tasks were
always equal to their deadlines.

To study the impact of CRPD on schedulability anlysis
we considered two possible processor configurations, which
were (deliberately) made to differ only in their number of
cache blocks. We chose cache sizes of 32 blocks in the first
processor (call it P1), and 128 blocks in the second (call
it P2). Both P1 and P2 ran at 500 Mhz, and had a direct-
mapped cache with cache miss penalty of 20 clock cycles.
We used the Chronos WCET analyzer [4] to estimate the
WCET of each of the four programs (uninterrupted execu-
tion time not considering CRPD) running on P1 and P2.

Once again, we subjected the different task sets to the
three different schedulability tests listed in Section 4.1.
Whereas only 356 task sets passed the SPcrpd test, 545 task
sets passed our proposed PDCdeadline test on the proces-
sor P1. On the processor P2 these numbers were 392 and
510 respectively. The increase in the number of schedula-
ble task sets can be attributed to the larger number of cache
blocks in P2.

Finally, 728 task sets in P1 passed the PDC test, com-
pared to only 545 sets passing the PDCdeadline test. Again,
on P2 these numbers were 556 and 510 respectively, thereby
showing the importance of accounting for CRPD within a
schedulability analysis framework.

5 Concluding Remarks

In this paper we presented a dynamic priority schedula-
bility analysis framework that takes into account the CRPD
incurred by tasks. This framework extends previous work,
which considered only static priority schedulers and peri-
odic task models. Note that we associated the worst case
CRPD with each preemption of a task. One possible im-
provement would be to account for the fact that different
preemptions might incur different cache penalties, and fac-
tor this into the schedulability test. As a long-term goal, it
would be meaningful to model the timing impacts of other
microarchitectural features like pipelines and branch pre-
diction within a schedulability analysis framework.

References

[1] S. Baruah. Dynamic- and static-priority scheduling of recur-
ring real-time tasks. Real-Time Systems, 24(1):93–128, 2003.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks. Real-Time Systems, 17(1):5–22, 1999.

[3] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, Boston, 1997.

[4] Chronos WCET analyzer, www.comp.nus.edu.sg/
∼rpembed/chronos/.

[5] A. Colin and I. Puaut. Worst case execution time analysis
for a processor with branch prediction. Real-Time Systems,
18(2/3):249–274, 2000.

[6] C.-G. Lee et al. Analysis of cache-related preemption delay
in fixed-priority preemtive scheduling. IEEE Trans. Comput-
ers, 47(6):700–713, 1998.

[7] C.-G. Lee et al. Bounding cache-related preemption delay
for real-time systems. IEEE Trans. Software Engineering,
27(9):805–826, 2001.

[8] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design
space exploration and system optimization with SymTA/S–
Symbolic Timing Analysis for Systems. In RTSS, 2004.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: A tool for evaluating and synthesizing multimedia
and communicatons systems. In MICRO, 1997.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estimation
of embedded software with instruction cache modeling. ACM
Trans. Design Automation of Electronic Systems, 4(3):257–
279, 1999.

[11] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate esti-
mation of cache-related preemption delay. In CODES+ISSS,
2003.

[12] P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Real-Time Systems, 18(2/3):115–128, 2000.

[13] J. Staschulat and R. Ernst. Scalable precision cache analysis
for preemptive scheduling. In LCTES, 2005.

[14] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analy-
sis of real-time systems with precise modeling of cache re-
lated preemption delay. In ECRTS, 2005.

[15] SymTA/S Tool, http://www.symtavision.com/.
[16] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise

wcet prediction by separated cache and path analyses. Real-
Time Systems, 18(2/3):157–179, 2000.

	0000Bookmark Page.pdf
	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

