
Efficient Computation of the Worst-Delay Corner

Luis Guerra e Silva, L. Miguel Silveira
Cadence Labs / INESC-ID

IST / TU Lisbon
Lisbon, Portugal

{lgs,lms}@inesc-id.pt

Joel R. Phillips
Cadence Berkeley Labs

Cadence Design Systems
San Jose, CA 95134, U.S.A.

jrp@cadence.com

Abstract

Timing analysis and verification is a critical stage in dig-
ital integrated circuit design. As feature sizes decrease to
nanometer scale, the impact of process parameter varia-
tions in circuit performance becomes extremely relevant.
Even though several statistical timing analysis techniques
have recently been proposed, as a form of incorporating
variability effects in traditional static timing analysis, cor-
ner analysis still is the current timing signoff methodology
for any industrial design. Since it is impossible to analyze
a design for all the process corners, due to the exponential
size of the corner space, the design is usually analyzed for
a set of carefully chosen corners, that are expected to cover
all the worst-case scenarios. However, there is no estab-
lished systematic methodology for picking the right worst-
case corners, and this task usually relies on the experience
of design and process engineers, many times leading to over
design. This paper proposes an efficient automated method-
ology for computing the worst-delay process corners of a
digital integrated circuit, given a linear parametric charac-
terization of the gate and interconnect delays.

1 Introduction
As integrated circuit feature sizes decrease, the impact

of process and operational parameter variations in circuit
performance becomes very significant [7]. Under these cir-
cunstances, proper timing of the circuit is now considerably
harder to predict and ensure. The ability to accurately iden-
tify the parameter settings that correspond to critical timing
conditions is therefore increasingly important.

Statistical timing analysis (STA) has been introduced
as a form of incorporating variability effects in traditional
static timing analysis. Even though several promising STA
modeling techniques have been proposed [3, 1, 9], their
practical applicability is still quite limited, as their usage
could ultimately entail an overhaul of the timing verification
flow [5]. Industrial tools and design flows are not yet pre-
pared to handle statistical information, and EDA companies
are still evaluating the best ways to incorporate it in their
products and design flows, as it does not represent a natu-
ral extension to traditional static timing flows. Further, STA
requires complex parameter characterization, like multidi-
mensional statistical distributions, and most foundries still
do not provide that information on their fabrication tech-
nologies in a consistent manner, either due to confidential-

ity issues, or simply because they are still trying to figure
out themselves the best way to represent and convey such
information. Additionally, most often process control can
be best described by ranges, rather than statistics.

Even though STA is not yet a mature methodology,
mainly due to poor parameter characterization and lack of
tool support, the parametric delay and slew formulations
that it prescribes, can be used to determine the parameter
settings that correspond to the critical timing conditions of a
circuit. Since it is impossible to analyze a design for all pos-
sible parameter settings, the design is usually analyzed for
a small set of carefully selected settings, that are expected
to cover the worst-case fabrication and operation scenarios.
These settings are usually designated as corners, since they
correspond to extreme conditions. Unfortunately, picking
the right corners in a realistic manner is not trivial and most
often than not either such corners are missed or gross over-
design may happen.

This paper proposes an efficient automated methodology
for computing the exact worst-delay corner of a digital inte-
grated circuit, given a parametric characterization of the cell
and interconnect delays. In our approach, parameters only
need to be characterized by their respective value ranges, as
opposite to STA where they need to be characterized by sta-
tistical distributions. Additionally, our approach produces
meaningful and insightful information for the designer, like
corners and specific circuit paths where they induce critical
timing conditions, which makes it much more useful in ef-
fectively guiding manual or automated circuit optimization
than other approaches.

Recently, [6] proposed a linear-time approach for timing
analysis that computes a delay upper bound estimate, cov-
ering all process corners. No matter how tight, this estimate
is just an approximation, and the worst-case corner for the
delay upper bound may not be the true worst-delay corner
of the circuit. The goal of our work is quite different, as we
target the determination of the exact worst-delay corner and
associated paths.

The paper is organized as follows. Section 2 introduces
a few basic concepts. Section 3 formulates the worst-delay
corner problem and discusses possible exhaustive solutions.
Section 4 proposes the use of branch-and-bound techniques.
Section 5 discusses a few practical issues. Finally, Section 6
presents the experimental results and Section 7 presents
some concluding remarks.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



2 Background
2.1 Timing Analysis

The timing information of a circuit is usually modeled
by a timing graph, where vertices model pins in the circuit,
and edges to pin-to-pin delays in cells or interconnect. Each
edge is annotated with the corresponding delay. Some ver-
tices are annotated with timing constraints, such as required
arrival times. The timing graph is the result of a delay cal-
culation procedure. Since its discussion is out of the scope
of this paper, we assume that the timing information of a
circuit is made available in the form of a timing graph.

Two main approaches have been proposed for timing
analysis: block-based and path-based. In the block-based
approach, characterized by linear runtime, arrival times are
pushed through the timing graph in a levelized fashion, per-
forming sum operations with delays over the edges and
min/max operations over the vertices with multiple incom-
ing edges. The alternative path-based approach consists in
individually computing the delay of each path in the circuit
by adding the delay of each of its edges. Even though more
accurate, this approach is computationally much more ex-
pensive than the former, since the number of paths can grow
exponentially with the number of vertices (pins).

In the following, we shall consider a timing graph as a
directed acyclic graph, G = (V,E), composed of vertices,
v∈V , and directed edges, e ∈ E , connecting them. The pri-
mary inputs are vertices with no incoming edges. All ver-
tices with no outgoing edges are primary outputs, but there
may also be primary outputs with outgoing edges. The sets
of primary inputs and outputs of G are respectively PI(G)
and PO(G). A complete path is a sequence of edges, con-
necting a primary input to a primary output, and will be
referred to simply as a path. A partial path is a sequence of
edges connecting any two vertices.

2.2 Parametric Formulation

In this work, instead of assuming delays to be constant
real-numbered values, we assume them to be described by
affine functions [8] of process/operational parameter vari-
ations, corresponding to a first-order linearization of every
delay, d, around a nominal point, λ0, in the parameter space,

d(λ−λ0) = d(λ0)+
∂d

∂λ

∣

∣

∣

∣

λ0

(λ−λ0) = d(λ0)+
∂d

∂λ

∣

∣

∣

∣

λ0

∆λ

(1)
where ∆λ = λ− λ0, represents the incremental parameter
variation vector. Considering the parameter space to have
size p, Eqn. (1) can be rewritten more compactly as

d(∆λ) = d0 +
p

∑
i=1

di∆λi = d0 +dT∆λ (2)

where d0 is the nominal value of d, computed at the nominal
values of the parameters, λi, i= 1,2, . . . , p, and di is the sen-
sitivity of d to parameter λi, computed at the nominal point
λ0. Information on parametric delay computation can found
in [4]. The application of a linear parametric formulation in
the context of statistical timing analysis was first proposed
in [9]. This representation is mathematically equivalent to
the canonical formulation prescribed in [9], but the inter-
pretation and subsequent treatment is, as we shall see, quite

different. Throughout this paper, and without loss of gener-
ality, we will assume that all the parametric formulas have
been normalized such that ∆λ ∈ [0,1]p.

2.3 Affine Operations

The max of affine functions is a piecewise-affine func-
tion, and the max of piecewise-affine functions is also a
piecewise-affine function. Similarly, the sum of affine func-
tions is an affine function, and the sum of a piecewise-affine
function and an affine function is a piecewise-affine func-
tion. Therefore, any arrival time can be exactly represented
by a piecewise-affine function, since it is the result of a
sequence of max and sum operations between piecewise-
affine functions and affine function. If no simplification
is performed, the piecewise-affine representation of arrival
times should grow linearly with the number of paths, and
therefore can be exponential in the number of vertices.

Affine functions are convex [2]. An important prop-
erty of the max operator over affine functions, or convex
piecewise-affine functions, is that it always produces con-
vex functions. The same applies to the sum operator. The
convexity implies that the largest value for a given affine or
piecewise-affine function is obtained by setting each vari-
able to one of its extreme values. In the context of timing
analysis this corresponds to state that the largest delay or
arrival time is obtained by setting each parameter to one of
its extreme values, in this case either 0 or 1. For the sim-
ple case of delays, that are represented by affine functions,
this value is fairly easy to compute. If, in Eqn. (2), we set
to 1 all the parameter variations with positive sensitivities,
and to 0 the remaining ones, we are maximizing the value
of the affine delay function over the parameter space, and
therefore we obtain the maximum value,

max
∆λ

[d(∆λ)] = d(∆λ∗) = d0 +
p

∑
i=1

di∆λ∗i (3)

where the maximizing parameter variation assignment is

∆λ∗i =

{

0 i f di ≤ 0

1 i f di > 0
, i= 1,2, ..., p (4)

The minimum value can be computed by replacing ∆λ∗i by
(1− ∆λ∗i ) in Eqn. (3). For affine functions this computa-
tion takes linear time in the number of parameters, however,
for piecewise-affine functions (that we use for arrival times)
this computation is much more expensive, since it requires
an implicit or explicit enumeration of all the 2p possible
corners, making it exponential in the number of parameters.

3 The Worst-Delay Corner Problem
3.1 Formulation

The worst-delay corner (WDC) problem, consists in
computing the assignment (corner) to the parameter vari-
ation vector, ∆λ, that maximizes the largest arrival time
among all the primary outputs of a given circuit. As we have
seen, since arrival times are represented by piecewise-affine
functions which are convex, their largest value is obtained
by setting each parameter variation to one of its extreme
values. Therefore, in essence this problem can be cast as a
combinatorial optimization problem where, by searching in
a finite but typically large set of elements, we want to opti-
mize a given cost function. In this case the set of elements
can be the set of all the 2p possible corners, and the cost



function is the arrival time at a given primary output. The
major difficulty with this type of discrete problems, as op-
posed to continuous linear problems, is that we do not have
any optimality conditions to check if a given (feasible) so-
lution is optimal or not. Therefore, in order to conclude that
a feasible solution is optimal, we must somehow compare
its cost with the cost of all other feasible solutions. This
amounts to always explore the entire solution space, either
explicitly or implicitly, by a complete or partial enumeration
of all the feasible solutions and their associated costs.

3.2 Exhaustive Methods

The simplest conceivable algorithm for computing the
WDC is to just evaluate the delay of the circuit for all the
2p possible corners, and verify which corner produces the
largest arrival time at a primary output. This corner clearly
corresponds to the WDC. By using a block-based timing
analysis procedure, the arrival times can be computed in lin-
ear time of the number of vertices. However, since we must
run such a procedure for each of the 2p corners, the overall
algorithm will be exponential in the number of parameters.

Instead of performing an exhaustive search in the param-
eter space as outlined in the previous paragraph, we can
perform such a search in the path space. Essentially, this
corresponds to performing an exhaustive path-based timing
analysis and, for each path, computing the corresponding
affine delay function, by adding the delay functions of the
edges along that path. Given the affine delay function of
a path, we can easily compute the WDC for that path by
applying Eqns. (3) and (4). For each path, the procedure
of computing the delay function and obtaining the WDC of
the path is linear in the number of parameters. However,
since the number of paths can grow exponentially with the
number of vertices, and we must perform this procedure for
every single path, the overall procedure has a worst-case
exponential complexity in the number of vertices.

As can easily be concluded, both exhaustive methods ex-
hibit exponential run-time complexity, either in the number
of parameters or in the number of vertices. For small cir-
cuits, or when a small number of parameters is of interest,
they may constitute viable options. However, even average
size circuits will render both approaches unpractical.

4 Dynamic Pruning
In this section we propose an approach for computing the

WDC that, by using branch-and-bound techniques, is able
to dynamically prune parts of the search space and therefore
avoid an explicit enumeration of all possible solutions. We
start by briefly explaining the basic foundations of branch-
and-bound techniques and subsequently present path-space
and parameter-space search algorithms based on them.

4.1 BranchandBound

Most combinatorial problems, including the one at hand,
can only be solved by explicitly or implicitly evaluating a
specific, nonlinear, cost function over the entire solution
space, in order to compute the solution that yields the op-
timal cost. Branch-and-bound techniques focus on prun-
ing useless regions of the solution space, thus avoiding the
explicit evaluation of all the possible solutions that they
may contain. During the execution of the algorithm, the

doutv

active

PO

v
fanin

cone

trail

PIs

current vertex
dinv

Figure 1. Illustration of delay estimates.

best known value for the cost function is maintained, corre-
sponding to the cost of the best solution already found. If by
some simple and quick procedure we are able to determine
that the cost of all the solutions contained in a certain sub-
space is worse than the best known cost, then it is useless
to explore that subspace, since no improvement on the cost
function will be obtained. Therefore, that portion of the so-
lution space can be pruned, and an explicit enumeration of
all the solutions it may contain is avoided. Even though in
the worst case this approach can be as bad as the exhaustive
enumeration, on average for a wide range of applications, it
has proven to perform significantly better.

4.2 Path Space Exploration

In the following we will detail a branch-and-bound based
algorithm that computes the worst-delay corner by finding
one path where it occurs. Considering one primary output
at a time, the algorithm performs an implicit search over all
the complete paths that end at that output, that we will des-
ignate as the active primary output. The timing graph is tra-
versed in a backward fashion, starting at the active primary
output, going through the internal vertices, and eventually
ending at the primary inputs (if no pruning is performed).
The vertex being explored in a certain step is designated by
current vertex. The path taken to reach that vertex from the
active primary output is designated by trail. If reconvergent
fanouts exist, the same vertex can be reached from the same
primary output, through distinct trails. The largest delay,
w∗, among the complete paths already analyzed is continu-
osly updated, as well as the corresponding corner, ∆λ∗. For
each current vertex v, the algorithm relies on three paramet-
ric delay estimates, illustrated in Figure 1:

• dinv is an upper bound on the delay from any primary
input to vertex v (e.g. in the fanin cone of v);

• doutv is the delay of the trail;

• d pathv = dinv +doutv , which represents an upper bound on
the delay of any path going through v, that contains the
trail.

The rationale underlying this algorithm is that, if for a given
current vertex v, the following condition is verified,

max
∆λ

[d pathv ]≤ w∗ (5)

then there is no path, going through v and containing the
trail, with delay larger than w∗, and therefore it is useless to
further explore the fanin cone of v.

The pseudocode for the algorithm is presented in
function WDC-PATH-BNB. It receives the timing graph
G as the only argument and it returns a tuple with the
worst delay value, w∗, and its associated corner, ∆λ∗.



1: function WDC-PATH-BNB(G)
2: w∗← 0 ⊲ worst delay
3: ∆λ∗←<> ⊲ worst corner
4: INITIALIZE(G)
5: for all v← PO(G) do
6: 〈w,∆λ〉 ← PROCESS-VERTEX(G,v,w∗,0)
7: if w> w∗ then
8: 〈w∗,∆λ∗〉 ← 〈w,∆λ〉
9: end if

10: end for
11: return 〈w∗,∆λ∗〉
12: end function

1: function PROCESS-VERTEX(G,v,w∗,doutv )

2: dinv ← IN-DELAY-ESTIMATE(v)

3: d
path
v ← dinv +doutv

4: 〈w,∆λ〉 ← max∆λ[d
path
v ]

5: if w≤ w∗ then ⊲ fanin cone gets pruned
6: return 〈w∗,0〉
7: else if v ∈ PI(G) then
8: return 〈w,∆λ〉 ⊲ worst delay is updated
9: else

10: for all e← INCOMING-EDGES(v)do
11: s← SOURCE-VERTEX(e) ⊲ get source vertex
12: de← DELAY(e)
13: douts ← d

out
v +de

14: 〈w,∆λ〉 ← PROCESS-VERTEX(G,s,w∗,douts )
15: if w> w∗ then
16: 〈w∗,∆λ∗〉 ← 〈w,∆λ〉
17: end if
18: end for
19: return 〈w∗,∆λ∗〉
20: end if
21: end function

The algorithm starts by invoking INITIALIZE on the tim-
ing graph, G. This function, whose pseudocode is not pre-
sented due to space constraints, performs a forward lev-
elized traversal of the timing graph, starting at the primary
inputs and ending at the primary outputs. For each vertex v,
it computes, the parametric formula for the delay estimate

dinv , that is an upper bound on the delay from any primary
input to v. This formula is computed by performing a block-
based timing analysis, where the max operation computes
conservative upper bounds. The upper bounds can either be
constant values, affine functions or piecewise-affine func-
tions, depending on how the max operation is implemented.
See Section 5.2 for further details.

After completing the initializations, the algorithm pro-
cesses all the primary outputs, one at a time. For every
primary output it invokes the recursive function PROCESS-
VERTEX, that performs a backwards depth-first traversal of
the timing graph towards the primary inputs. At each step,
a given current vertex v is visited, and each one of its fanins
is scheduled to be visited in the next step. Therefore, the
current vertex v is always connected to the active primary
output by the incomplete path used to reach v, that we al-
ready defined as trail. All the vertices in the trail were vis-
ited before v. For a given vertex v, we can exactly compute
the delay of the trail, doutv , by adding the delay of all the
edges in the trail. That computation is implicitly performed

in PROCESS-VERTEX. Adding dinv and doutv we obtain d
path
v ,

that is an upper bound on the delay of any path that contains
v, starting at any primary input, and reaching the primary

output trough the trail. d
path
v is an affine function of the

parameter variations, therefore its worst value and the cor-

3+∆λ1+∆λ2

2�∆λ1+∆λ2

1+∆λ1�∆λ2

2+2∆λ1�∆λ2

a

b

c

d

e

f

1�∆λ1�∆λ2

3

dinf = 2+2∆λ1�∆λ2

dine = 3+∆λ1+∆λ2

ding = 5+3∆λ1+2∆λ2

dina = 0

dinb = 0

dinc = 0

dind = 0

g

v trail d
path
v w ∆λ w∗ ∆λ∗

g /0 5+3∆λ1 +2∆λ2 10 〈1,1〉 0 /0
e 〈e,g〉 5+2∆λ2 7 〈X ,1〉 0 /0
a 〈a,e〉,〈e,g〉 5+2∆λ2 7 〈X ,1〉 7 〈X ,1〉
b 〈b,e〉,〈e,g〉 5−∆λ1 +∆λ2 6 〈0,1〉 7 〈X ,1〉
f 〈 f ,g〉 3+3∆λ1−2∆λ2 6 〈1,0〉 7 〈X ,1〉

Figure 2. Execution ofWDC-PATH-BNB.

responding worst corner can be computed using Eqns. (3)

and (4). If the worst value of d
path
v , w, is smaller than the

largest known delay, w∗, computed so far, that means that
the worst-delay path does not contain the trail, and therefore
we stop the traversal at this vertex. If w is larger than w∗,
and v is a primary input, it means that there is a complete
path with delay larger than the largest known delay com-
puted so far, and therefore the largest known delay is up-
dated. If v is not at a primary input, the delay estimate is just
an upper bound, and therefore it cannot be used to update
the largest known delay. The algorithm proceeds until all
the paths in the circuit are explicitly or implicitly explored.
At the end, the largest known delay w∗ and the correspond-
ing corner, ∆λ∗, are the worst delay and the worst-delay
corner of the circuit, respectively.

Figure 2 illustrates the execution of the algorithm for a
small timing graph. It should be noticed that w∗ is only
updated when vertex a is analyzed because only then the

trail is a complete path, and therefore d
path
v is the exact

delay of that path, and not an upper bound. Further, the
fanin cone of f is not analyzed because w≤ w∗. This corre-
sponds to pruning a portion of the path space, namely paths
{〈c, f 〉,〈 f ,g〉} and {〈d, f 〉,〈 f ,g〉}.

4.3 Parameter Space Exploration

In the previous section we detailed a branch-and-bound
algorithm for computing the worst-delay corner by explor-
ing the path space and finding one path where it occurs. In
this section we try a different approach, and propose an-
other branch-and-bound algorithm exploring the parameter
space. By analyzing the worst delay obtained for specific
corners, the algorithm is able to effectively prune regions of
the parameter space. In this context the timing graph will
only be used to compute worst delay estimates for a partial
or complete assignment (corner) of the parameter variation
vector. For partial assignments we can only compute an up-
per bound on the worst delay. For complete assignments we
obtain the exact value of the worst delay.

The pseudocode for the proposed algorithm is presented
in function WDC-PARAMETER-BNB, that receives and
returns the same information as the previously studied
WDC-PATH-BNB. As we have mentioned the algorithm



1: function WDC-PARAMETER-BNB(G)
2: w∗← 0 ⊲ worst delay
3: ∆λ∗←<> ⊲ worst corner
4: T ← DT-INIT()
5: while ∆λ← DECIDE(T ) do
6: DT-REGISTER-DECISION(T,∆λ)
7: w←WORST-DELAY(G,∆λ)
8: if w≤ w∗ then
9: DT-REGISTER-PRUNE(T ,∆λ)

10: else if IS-COMPLETE(∆λ) then
11: 〈w∗,∆λ∗〉 ← 〈w,∆λ〉
12: end if
13: end while
14: return 〈w∗,∆λ∗〉
15: end function

will try to prune regions of the parameter variation space by
analyzing the worst delay produced by certain partial and
complete assignments of the parameter variation vector. In
order to help us keep track of all the partial and complete
assignments already analyzed we will use a binary tree,
commonly designated by decision tree. Each node in
the decision tree represents one element of the parameter
variation vector and can have at most a left and right child.
Each child is a subtree. The left child represents a partial
or a complete assignment of the parameter variation vector
where the corresponding element assumes value 1. For
the right child this value is 0. The leaves of the tree are
the delay estimates computed considering the parameter
variation vector assignments in the upper levels. Therefore,
if a leaf is at level p+ 1 (assuming the root at level 1), it
means that it corresponds to a complete assignment, and
therefore it contains an exact worst delay. On the other
hand, if a leaf is at level k < p, it means that it corresponds
to a partial assignment, and therefore it contains an upper
bound on the worst delay.

The algorithm starts by calling DT-INIT, that initial-
izes the data structures for the decision tree. Afterwards
it enters a cycle, where for each iteration the function DE-
CIDE, based on the current state of the decision tree, and
the regions of the parameter variation space that need to
be explored, will produce a partial or complete assignment,
∆λ, for the parameter variation vector. This assignment
is then annotated to the decision tree by DT-REGISTER-
DECISION. Subsequently, the worst delay estimate for this
assignment is computed by WORST-DELAY, and stored in
w. If the worst delay estimate is smaller or equal to the
largest known delay estimate achieved so far, w∗, it means
that any assignment contained in the partial assignment ∆λ
will not provide an improvement over w∗ and therefore can
simply be ignored. In order to prevent DECIDE from further
exploring this region of the parameter variation space, we
call DT-REGISTER-PRUNE that will insert a marker in the
decision tree. No further expansions will be performed be-
yond this node, effectively pruning the subtree from consid-
eration. If the worst delay estimate is larger than the largest
known delay estimate computed so far and ∆λ is a complete
assignment, it means that ∆λ improves the largest known
delay estimate and therefore w∗ and ∆λ∗ are updated. If the
worst delay estimate is larger than the largest known delay
estimate computed so far, but ∆λ is only a partial assign-
ment, no conclusion can be drawn, since the worst delay
estimate obtained for a partial assignment is just an upper
bound, whose value will eventually get smaller as new el-

01
∆λ1

7

∆λ2

1

6

5+2∆λ2

prune !

1
∆λ1

7

∆λ2

1

1

7+3∆λ1

∆λ1

1
∆λ1

7

∆λ2

1

6

0

21

3 4

0

∆λ1 ∆λ2 delay
0 X 5+2∆λ2

1 X 6+2∆λ2

X 0 5+3∆λ1

X 1 7+3∆λ1

0 0 5
0 1 7
1 0 6
1 1 7

Figure 3. Execution ofWDC-PARAMETER-BNB.

ements of the parameter variation vector are assigned. The
algorithm proceeds until all the regions of the parameter
space (e.g. all possible parameter variation vector assign-
ments) are either explicitly explored or pruned.

Figure 3 illustrates the decision tree produced by the ex-
ecution of the algorithm for the timing graph in Figure 2.
The table on the right side presents the delay estimates,
which are upper bounds for partial parameter variation as-
signments, and are exact delay estimates for complete as-
signments. In steps (1) and (2) we generate a complete pa-
rameter variation assignment, ∆λ = 〈1,1〉, in order to ob-
tain the first estimate for w∗, which is 7. In step (3) we
analyze the complete assignment ∆λ = 〈1,0〉 and conclude
that it produces a delay of 6, which is smaller than the cur-
rent w∗ = 7. In step (4) we analyze the partial assignment
∆λ = 〈0,X〉 and conclude it produces a delay of 5 + 2∆λ2,
that in the worst case assumes value 7. Since this delay
is equal to the largest known delay found so far, we can
discard (e.g. prune) the remainig subtree. This effectively
prunes part of the parameter variation space, namely assign-
ments 〈0,1〉 and 〈0,0〉. After this all the parameter variation
space has been explored, and the final solution is w∗= 7 and
∆λ∗ = 〈1,1〉.

5 Practical Issues
This section addresses two issues concerning the prac-

tical application of the proposed corner computation al-
gorithms: the computation of corners induced by timing
constraints, and the computation of loose and tight upper
bounds on the max function.

5.1 Corners Induced by Timing Constraints

Slacks are induced by required arrival time (RAT) con-
straints in specific circuit pins. If RATs are constant val-
ues, finding the setting of parameter variation values that
produces the minimum slack in a pin is equivalent to find-
ing the setting of parameter variation values that produces
the largest delay in one of the pins where these constraints
exist. Therefore we can use our algorithm to compute the
parameter settings that produce the worst delay in every pin
with RAT constraints. Among these pins, we choose the pa-
rameter settings for the pin where the slack is the smallest.
Therefore, computing the worst-slack corner amounts to a
sequence of worst-delay corner computations.

When the constraints are also parametric, as in the case
of setup and hold constraints, where clock latencies also de-
pend on process parameters, it is also possible to cast the
problem as a worst-delay corner problem. Due to lack of
space we will address this issue in a future publication.



5.2 Bounding the max

The algorithms presented in the previous sections explic-
itly or implicitly rely on computing upper bounds on the ar-
rival times at specific vertices in the timing graph, namely
the primary outputs. Their correctness is independent of the
upper bounds computed. Their performance, however, is
dependent on the tightness of those bounds. These bounds
are actually computed on the max between two or more
parametric formulas. Tighter bounds will potentially al-
low for larger regions of the search space to be pruned,
and therefore may have a significant impact in performance.
On the other hand, tighter bounds are usually much more
expensive to compute. In order to evaluate the impact of
tighter bounds on the performance of the proposed corner
finding approach, we describe the method for computing
loose and tight max bounds, for which experimental results
will be presented in the next section.

In the following, given two parametric formulas a and
b, we want to compute c, such that c is an upper bound on
the max between a and b, e.g. c ≥ max[a,b]. The simplest
and cheapest upper bound on the max can be computed by
just picking for each coefficient of c to be the max of the
coefficients of a and b. Formally,

ci = max[ai,bi] , i= 0,1, . . . , p (6)

This bound is very cheap to compute, but it is also loose.
The tightest upper bound on the max, with only one

bounding function (one plane) c, can be computed by solv-
ing the following LP,

min ε

s.t. ε≥ c(∆λ(q))−max[a(∆λ(q)),b(∆λ(q))], q= 1, . . . ,2p

c(∆λ(q))≥max[a(∆λ(q)),b(∆λ(q))]
0≤ ∆λl ≤ 1, l = 1, . . . , p

(7)
where ∆λ(q) is the q-th process corner. This bound is the
tightest (for one plane), but it is expensive to compute.

6 Experimental Results
A realistic circuit block was synthesized and mapped to

an industrial 90nm technology. As process parameters, we
considered the widths and thicknesses of the six metal lay-
ers needed to route the block. During parasitic extraction of
the design, we computed the nominal values and sensitivi-
ties of each parasitic element (resistors and grounded capac-
itors), relative to each one of the 12 parameters, and from
that we computed parametric interconnect delays. From the
circuit block we extracted 3 combinational circuits that we
used as benchmarks. Table 1 presents information about the
timing graph of each circuit, including the number of pro-
cess parameters considered.

Table 2 presents the CPU time and the search size for the
execution of the exhaustive (Exh) and branch-and-bound
versions of the WDC computation by searching in the path
and parameter spaces. The path space branch-and-bound
versions were executed using both loose (BnB-L) and tight
(BnB-T) max bounds, as detailed in Section 5.2.

By analyzing the experimental results it is easy to con-
clude that the proposed branch-and-bound technique is very
effective, since it reduces the CPU times and search sizes by
several orders of magnitude, both in parameter space and

Name #Vertex #Edge #PI #PO #Par
mult 2507 3324 20 19 12
add 679 890 41 22 12

share 375 493 26 13 12

Table 1. Benchmark information.
Name Parameter Path

Exh B-n-B Exh BnB-L BnB-T
CPU mult 356.52 10.94 2.68 0.02 141.20
Time add 27.54 0.2 0.01 <0.01 22.21

(s) shared 9.52 0.05 0.01 <0.01 11.69
Search mult 4096 125 3249498 1623 1170
Size add 4096 27 9144 595 466

shared 4096 19 3846 52 52

Table 2. Worstdelay corner computation.

path space. The parameter space search seems to be signifi-
cantly more expensive than path space search. Additionally,
as expected, when tighter bounds are used the amount of
search is slightly reduced, since more pruning should occur,
which indicates potential for some moderate improvement,
if tighter, but still cheap, bounds can be computed.

7 Conclusions
This paper proposes an efficient, branch-and-bound

based, automated methodology for computing the exact
worst-delay process corners of a digital integrated circuit,
given a linear parametric characterization of the gate and
interconnect delays. Experimental evidence shows that the
proposed approach is particularly effective, leading to re-
ductions in CPU time up to several orders of magnitude,
when computing circuit timing while accounting for param-
eter variability.

References
[1] S. Bhardwaj, S. B. K. Vrudhula, and D. Blaauw. Tau: Tim-

ing analysis under uncertainty. In Proceedings of The Inter-
national Conference on Computer Aided-Design, pages 615–
620, San Jose, CA, November 2003.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[3] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic. Fast Sta-
tistical Timing Analysis by Probabilistic Event Propagation.
In Proceedings of the ACM/IEEE Design Automation Confer-
ence, pages 661–666, Las Vegas, NV, June 2001.

[4] Luis Guerra e Silva and Zhenhai Zhu and Joel Phillips and L.
Miguel Silveira. Variation-Aware, Library Compatible De-
lay Modeling Strategy. In Proceedings of the IFIP VLSI-SoC
Conference, Nice, France, October 2006.

[5] F. N. Najm. On the Need for Statistical Timing Analysis.
In Proceedings of the ACM/IEEE Design Automation Confer-
ence, pages 764–765, Anaheim, CA, June 2005.

[6] S. Onaissi and F. N. Najm. A Linear-Time Approach for
Static Timing Analysis Covering All Process Corners. In
Proceedings of The International Conference on Computer
Aided-Design, San Jose, CA, November 2006.

[7] L. Scheffer. Explicit Computation of Performance as a Func-
tion of Process Variation. In International Workshop on Tim-
ing Issues in the Specification and Synthesis of Digital Sys-
tems, Monterey, CA, December 2002.

[8] J. Stolfi and L. H. de Figueiredo. Self-Validated Numeri-
cal Methods and Applications. In Operations Research, July
1997.

[9] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
and S. Narayan. First-order incremental block-based statis-
tical timing analysis. In Proceedings of the ACM/IEEE De-
sign Automation Conference, pages 331–336, San Diego, CA,
June 2004.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




