
A Novel Criticality Computation Method in
Statistical Timing Analysis

Feng Wang, Yuan Xie Hai Ju
The Pennsylvania State University, IBM China Research Laboratory,

University Park, PA, USA China
{fenwang, yuanxie}@cse.psu.edu juhai@cn.ibm.com

Abstract— The impact of process variations increases as tech-
nology scales to nanometer region. Under large process vari-
ations, the path and arc/node criticality [18] provide effective
metrics in guiding circuit optimization. To facilitate the criticality
computation considering the correlation, we define the critical
region for the path and arc/node in a timing graph, and
propose an efficient method to compute the criticality for paths
and arcs/nodes simultaneously by a single breadth-first graph
traversal during the backward propagation. Instead of choosing
a set of paths for analysis prematurely, we develop a new
property of the path criticality to prune those paths with low
criticality at very earlier stages, so that our path criticality
computation method has linear complexity with respect of the
timing edges in a timing graph. To improve the computation
accuracy, cutset and path criticality properties are exploited to
calibrate the computation results. The experimental results on
ISCAS benchmark circuits show that our criticality computation
method can achieve high accuracy with fast speed.

I. INTRODUCTION

As technology scales to nanometer region, it becomes a
great challenge to control the process variation [4]. The vari-
ations in the device and interconnect parameters continuously
increase as the feature size approaches to the optical resolution
limit [13] [3]. The increasing fluctuations in manufacturing
process parameters make it extremely difficult for designers
to predict the circuit performance and verify the timing.
Traditional corner based static timing analysis becomes too
pessimistic if worst case timing analysis is performed. Further-
more, analyzing all possible process corners is computationally
prohibitive since the computation complexity increases dra-
matically with the increase of the number of process corners.
Many researches have been done in statistical timing analysis
to address these problems [18] [5] [15] [1] [2] [12] [8] [17]
[14] [11] [9] [7].

Statistical timing analysis approaches can be categorized
into two major types: path-based approaches and block-
based approaches [18]. Path-based approaches perform timing
analysis with a depth first traversal of a timing graph, by
choosing a set of paths with high probability being critical
for analysis. The correlation due to the path sharing and
global sources of variation can be easily captured using path-
based approaches [10] [18]. However, the set of the paths
selected for statistical timing analysis is hard to determine.
Existing approaches choose the set of paths based on the
results of static timing analysis, which might miss some
important paths. In comparison, the block-based approaches
perform timing analysis by traversing the timing graph in a

levelized ”breadth-first” manner [18]. In such approaches, the
parameterized delay model approximates the timing quantities
as normal distributions. With this approximation, the block-
based approaches can effectively handle the correlation due to
the path sharing and the variation of global parameters [10]
[18] .

After the statistical timing analysis, the statistical delay
information of the circuits is available. The slack is not a
deterministic value and many paths could be critical in some
process subspaces. Thus, slack and critical path metrics used
in the deterministic static timing analysis become less effective
in guiding the circuit optimization. Visweswariah et al. [18]
first defined the concepts of the criticality of the path and
the arc/node. The criticality of the path is defined as the
probability of the path being critical. The criticality of the
node/arc is defined as the probability of the node/arc on the
critical path.

Visweswariah et al. proposed a very simple fast method
to compute the criticality for the path and the node/arc [18].
However, this approach is valid under the assumption of
independence among the paths, which is not true due to the
path convergence and the variation of global parameters [10]
[20] [19]. Li et al. [10] and Zhan et al. [20] first pointed
out the limitations of that approach. Li et al. [10] proposed
a sensitivity based criticality computation method for arcs
in the timing graph. Path sensitivity and arc sensitivity are
defined as the mean value of the maximal circuit delay over the
individual path delay and arc delay, respectively. The criticality
of node/arc is computed based on sensitivity propagation using
chain rule through a timing graph. Xiong et al. [19] computed
the criticality as the probability of the edge slack being larger
than its complement edge slack. Binary partition tree was
used to speed up the criticality computation. Zhan et al. [20]
proposed two techniques to compute the path criticality based
on max operations and Monte Carlo integration. In his method,
paths are chosen from a preselected path set for criticality
computation. However, similar to the path-based statistical
timing analysis, it is not clear how to determine the preselected
path set. If the paths are chosen based on the static timing
analysis, important paths could be missed.

In this paper, we propose a new approach to compute
the path and arc/node criticality simultaneously by a single
breadth-first graph traversal based on the concept of the critical
region (will be defined in Section III). Instead of selecting
the paths using static timing information as [20], we develop

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



a new path criticality property to prune the paths with low
criticality at very earlier stages. Pruning paths based on the
statistical information significantly reduces the computation
costs without sacrificing the accuracy. Existing cutset and path
criticality properties are exploited to improve the accuracy of
the criticality computation.

The rest of the paper is organized as follows: Section II re-
views the background for the statistical timing analysis method
and introduces the concept of criticality for the node/arc and
the path; Section III presents a concept of critical region
and the criticality computation methods for the path and the
arc/node; Section IV shows experimental results on the ISCAS
benchmark circuits. Finally, the conclusions are provided in
Section V.

II. BACKGROUND

In this section, we first give a brief introduction on the
first order parameterized statistical timing analysis (SSTA). We
then introduce the concept of statistical criticality. Finally we
present the methods to determine the criticality of the node/arc
without the simple independence assumption.

A. Canonical Model

In first order SSTA, the timing quantity (such as delay,
arrival/required time and slew) is approximated as a linear
function of random variables. In Visweswariah’s paper [18],
the first order approximation of the timing quantity is ex-
pressed as a canonical form:

a0 +
n∑

i=1

ai∆Yi + an+1∆Ra (1)

where a0 is the nominal delay computed at the nominal values
of the process parameters. ∆Yi represents the correlated vari-
ation, and ∆Ra represents the independent random variation.
∆Yi and Ra are independent and normally distributed random
variables with zero mean and unit variance. ai and an+1 are
the sensitivities to their corresponding sources of the variation.

B. Timing Graph

g

j

k
l

i

h

r_1

r_2

a
b

c
e

a1

b1
c1

Fig. 1. Circuit diagram

In statistical timing analysis, the circuit is modeled as a
timing graph G=(V,E). Fig. 1 and Fig. 2 depict a circuit
diagram and the corresponding timing graph. The node, vi

∈ V , in the timing graph represent the gate, primary input,
primary output or the interconnects. The edge, e(i, j) =
(vi, vj) ∈ E, represents the arc between the node vi and vj .
The weight associated with the arc e(i, j) in a graph represents
the delay of that arc. Virtual source node and virtual sink

v

r_1

r_2

a

b

c

e

i

h

j

k

l

b1

g

a1

c1 Virtual Sink Node

Fig. 2. The circuit timing graph.

node are connected to the primary inputs and primary outputs,
respectively.

C. Atomic Operations

In statistical timing analysis, the distribution of the timing
quantity is computed using two atomic functions max and
sum. Assume that we have three timing quantities, A, B,
and C in canonical forms (equation 2-4). The result of sum
operation sum(A,B) or max operation max(A,B) for the
timing quantities is denoted as C.

A = a0 +
n∑

i=1

ai∆Yi + an+1∆Ra (2)

B = b0 +
n∑

i=1

bi∆Yi + bn+1∆Rb (3)

C = c0 +
n∑

i=1

ci∆Yi + cn+1∆Rc (4)

• Sum operation.
The sum operation is simple. C = sum(A,B) can be
computed as ci = ai + bi, where i ∈ [0, n] and cn+1 =√

a2
n+1 + b2

n+1.
• Max operation.

The max operation is quite complex. The maximum C of
A and B is approximated as a normally distributed ran-
dom variable with the same canonical form as shown in
equation (4). Tightness probability and moment matching
techniques [6] can be used to determine the corresponding
sensitives to the process parameters. Tightness probability
is defined as the probability of a random variable being
larger than another. Clark’s paper [6] provide an analyti-
cal equation to compute the tightness probability.
We first give the definition of the terms, which are used
in the calculation of the max(A,B) .

φ(x) = exp(−x2

2
) (5)

Φ(x) =
∫ y

−∞
exp(−x2

2
) (6)

θ = (σ2
a + σ2

b − 2ρσaσb) (7)

α =
a0 − b0

θ
(8)



v2 = (a2
0 +σ2

a)Φ(α)+(b2
0 +σ2

b )(1−Φ(α))+θφ(α) (9)

We then show the calculation of the sensitivity values of
C. c0 is used to match the first order moment.

c0 = a0Φ(α) + b0(1 − Φ(α)) + θφ(α) (10)

The sensitivity to the correlated random variables can be
obtained as a weighted sum of the ai and bi regarding to
the tightness probability.

ci = aiΦ(α) + bi(1 − Φ(α)) ∀ i ∈ 1, 2, ..., n (11)

Finally, the sensitivity to the independent random variable
is calculated to match the variance, v2, which is given by
Clark [6].

cn+1 = (v2 −
n∑

i=0

(c2
i ))

1
2 (12)

With the atomic operations defined, the timing quantities
of the arrival time and the required time can be computed in
forward and backward operations respectively. Our criticality
computation is based on the results of the arrival time in
SSTA, but it is not restricted to the first order SSTA. Note
that our criticality computation method is NOT limited to first
order SSTA, and using a higher order SSTA can improve its
accuracy.

D. Concept of the Criticality

Visweswariah [18] proposed the following concepts of the
criticality of the path and the criticality of arc/node.

• The criticality of the path is defined as the probability of
the path being critical.

• The criticality of the node/arc is defined as the probability
of the node/arc on the critical path.

These concepts can be used to guide the designer to identify
the critical arc/node to perform the optimization. The gates
with high criticality on the critical path can be sized up
to improve the performance, while the arc/node with lower
criticality can be sized down to save the power. In performance
optimization, it is also very important for the circuit designer
to identify the most important paths, which have highest
probability being critical [20].

E. Criticality of Arc/Node

In this section, we show the arc/node criticality compu-
tation method, which is NOT restricted to the independence
assumptions [18]. In Section III, we will show the criticality
computation for paths, which is based on the critical region
computation for the node/arc.

For arc (h, ri) in a timing graph, its criticality is expressed
as:

Prob((AT (h) + d(h, ri) > maxg �=h(AT (g) + d(g, ri)))|
ri critical) × Prob(ri critical) (13)

where:

• g represent all the other fan-in nodes of node ri;

• d(h, ri) is the delay of the arc from node h to node ri;
• ri (i ∈ [1,m]) represents the set of the fan-out nodes of

node h;
• Prob(ri critical) represents the probability of ri being

critical.
According to the lemma in [18], for node h in a timing

graph, the criticality of node h can be calculated as the
summation of the criticality of arcs originating from node h.

m∑
i=1

{Prob(arc(h, ri) is critical)} (14)

III. CRITICALITY COMPUTATION METHOD

In the previous section, the criticality is expressed as the
form of P (A|B)P (B). According to probabilities theory [16],
P (A|B)P (B) is equal to P (A ∩ B). With the help of Venn
diagrams, P (A ∩ B) can be represented as the intersection
of the two sets A and B [16]. To facilitate the criticality
computation considering the correlations, we introduce the
concept of the critical region for nodes/arcs and paths. We
define the critical region of a node/arc as the process subspace
where the node/arc is on the critical path. The critical region
of a path is defined as the process subspace where the path
becomes critical. The critical region is computed when we
perform the backward operation on a timing graph. With the
critical regions determined, the criticality can be calculated
using tightness function [18] and the equations in Section II.
We classify the nodes in a timing graph into two types: 1)
the nodes with a single fan-out 2) the nodes with multiple
fan-outs. We first show the critical region computation for
these two types of nodes and their corresponding arcs. We
then introduce a Lemma to determine the critical regions of
paths in a timing graph and presents a path criticality property.
Finally, we shows our criticality computation method based on
the concept of the critical region.

A. Critical Region Computation for Arc/Node

From Section II, the criticality of the arc can be expressed
as equation (13). Then, the critical region of the arc is the
intersection of the critical region of its fan-out node and the
region where the arrival time (AT) of that arc determines that
of the fan-out node. So the critical region of arc (h, ri) is the
intersection of the following two regions:

• The region where the arrival time of the arc (h, ri) deter-
mines the arrival time of fan-out node ri, i.e., (AT (h) +
d(h, ri) > maxg �=h(AT (g) + d(g, ri))). We rewrite this
condition as (AT (h) + d(h, ri) − maxg �=h(AT (g) +
d(g, ri))) > 0 and it is denoted as F (h, ri) > 0

• The region where fan-out node ri is critical, and it is
denoted as F (ri) > 0

So the critical region for arc (h, ri) can be expressed as
min(F (ri), F (h, ri)) > 0. With the critical region available,
we use the tightness function [18] to compute the criticality
of arc (h, ri) as the probability of min(F (ri), F (h, ri)) > 0.

From equation (14), the criticality of the node can be
expressed as the summation of those of its fan-out arcs. Thus,



F(r_1)

F(r_2)

F(b)

F(c) b

c

Y1

Y2

Y1

Y2

Fig. 3. The critical regions.

the combination of the critical regions of the arcs originating
from that node is the critical region of the node. For example,
in Fig. 2, assuming the critical regions for the fan-out nodes
r1 and r2 are known, we show how to determine the critical
region for node h. In Fig. 3, the dark areas, F (r1) and
F (r2), represent the critical region of node r1 and node r2

respectively. Assuming that the process subspace where arc
(h, r1) determines the delay of the node r1 is denoted as
the region above dashed line b, the intersection of these two
regions is the critical region of arc (h, r1). We denote this
intersection as F (b). Similarly we obtain the critical region
F (c) for arc (h, r2). For node h, its critical region is simply
the combination of these two regions, F (b) and F (c).

Thus, for the internal node with multiple fan-outs, we
first compute the critical regions of the arcs from that node
to its corresponding fan-outs individually and then calculate
the criticality over those regions for all its fan-out arcs. We
then compute the criticality of the node by simply summing
up the criticality of each arc originating from that node.
For the internal node with a single fan-out, its the critical
region/criticality is the same as that of the arc originating from
the node to its fan-out.

B. Critical Region Computation for Path

To compute the path criticality, we first identify the critical
regions of the paths, and Lemma 1 helps determine these
critical regions. Then, we show that the critical regions of
the paths are computed after a breadth first traversal of
a levelized timing graph. Finally we develop a new path
criticality property to prune the paths with low criticality to
improve the efficiency of path criticality computation.

Lemma 1: A path’s critical region is the intersection of all
the critical regions of the arcs along the path.

Proof: We prove the statement with proof by contradiction.
We can assume that 1) there exists at least one subspace in
the process space other than the intersection where the path
is critical or 2) there exists at least one subspace within the
intersection where the path is NOT critical. An arc is critical if
the arc is on a critical path. All arcs along the path are critical
when that path is critical, so that any subspace where a path
is critical is part of the intersection of critical regions of all
arcs along that path. Thus it contradicts the assumption 1).
Since all the arcs on the path are critical, the slack of the path
is equal to the slack of the arc. Thus the path has minimum
slack, which means the path must be critical. It contradicts the
assumption 2). Therefore, the path’s critical region is simply

source

a(1)

a(2)

a(m-1) a(m)

sink

a(3) Whole path

Segment of the path

Fig. 4. The example of the segment of the path in a timing graph.

the intersection of the critical regions of the arcs along that
path.

To compute the critical regions of the paths, we perform
the critical region analysis for nodes/arcs in a breadth first
traversal of a levelized timing graph. After this BFS traversal,
the critical region of each PI contains the combinations of the
critical regions of all the paths originating from the PI in the
timing graph.

We show the correctness of the above statement with a
stronger statement as the follows. We perform a breadth-first
search for a levelized timing graph and compute the critical
region for node/arc from the highest level, m, to level 1, which
consists of all the PIs. The nodes in this graph are levelized
according to its distance to the primary inputs. We prove that:
at each level, the critical region of the node is the combination
of all the critical regions of the paths originating from that
node to the primary outputs. We prove this statement with
proof by induction.

Proof: Initially, at level m, the critical regions of the arcs
from the primary outputs to the virtual sink node is computed.
The statement is certainly true for level m.

Assume that the above statement is true for all level k,
n ≤ k ≤ m. We prove that the statement is also true for
level n−1. We classify the nodes into two types: 1) the nodes
without any fan-outs 2) the nodes with one fan-out or multiple
fan-outs. For the first type of the node, similar to the node at
level m, we compute the criticality for the arc from the fan-
out to the virtual sink node. Thus the statement is true. For
the node with one or more fan-outs, since we assume that the
statement is true for level k, where n < k < m, any fan-out of
the node at level n − 1 contains the critical regions of all the
paths from that fan-out node to the primary outputs. We denote
these regions as the set ci, where 1 ≤ i ≤ p, p is number of
the path from the fan-out to the primary outputs. As shown
in Section III-A, the critical region of the node’s fan-out edge
is computed as the intersection of the critical region of its
fan-out node and the region (denoted carc) where the AT of
that arc determines the AT of the fan-out node. Effectively, the
critical region of that fan-out edge is the combination of the
intersections of ci and carc for all the i, where 1 ≤ i ≤ p. From
Lemma 1, the intersection of ci and carc is the critical region
of the path from the node to the virtual sink node via its fan-
out, because the critical region of the node is the combination
of the critical regions of the arcs along the path. Any path
originating from the node is simply the path, from its fan-out
to the virtual sink node, concatenated with the arc from the



node to its fan-out. Thus, at level n− 1, the statement is true.
In conclusion, since the base case is true and the inductive

step is true, the statement is true for all the levels. Therefore,
the critical region of a PI is the combination of the critical
regions of all the paths originating from that PI to the virtual
sink node. Since any path in the timing graph is from the
PI to the virtual sink node, its critical region is determined
when we perform criticality computation in a BFS manner. In
addition, no path has been computed twice, since there is no
single path going through any two fan-out arcs of that node.

To speed up the path criticality computation, we develop a
new path criticality property. Assume that a path consists of
a set of arcs: ai, where i is from 1 to m, the segment of the
path can be defined as a set of arcs: aj , where j is from k
to p, and 1 <= k < p <= m. Fig. 4 shows an example of a
segment of the path. With this definition, we have property
1 as follows.

Property 1: The criticality of the path is not larger than the
criticality of any segment of that path.

Proof: From lemma 1, the criticality of the path is equal to
Prob((a1 critical)

⋂
(a2 critical)

⋂
...

⋂
(am critical)) and

the criticality of the segment of the path criticality is calculated
as Prob((ak critical)

⋂
(ak+1 critical)

⋂
...

⋂
(ap critical)).

So the critical region of the path is the subspace of that of the
segment. From the probabilities theory [16], the statement is
true.

C. Computation Algorithm

In this section we first show the algorithm to compute the
criticality of the paths and nodes in the timing graph. We
then show a heuristic to improve the speed of the criticality
computation. Finally we present a heuristic to improve the
accuracy of the computation.

Criticality (netlist){
1. Compute the critical regions of the primary outputs (POs);
2. Compute the critical regions of the nodes/arcs;
3. Prune the nodes/arc with the criticality less than the criticality threshold;
4. Repeat 2 and 3 until the primary inputs are visited;
5. Compute the path criticality at the primary inputs;
6. }

Fig. 5. The pseudo code of the criticality computation

Fig. 5 shows the criticality computation algorithm. It takes
the gate net-list as its input and compute the criticality for the
arc/node and path simultaneously. The criticality computation
involves a BFS traversal from the POs to the PIs. The critical
regions of the nodes/arcs are determined from the critical
regions of its fan-out arcs and nodes in the BFS traversal.
After the traversal reaches the PIs, each PI contains the
critical regions of all the paths starting from that PI. The path
criticality is then computed over its critical region.

A brute-force path criticality computation approach leads
to large computational overheads (its computation complexity
is linear with respect to the number of the paths in a timing
graph). To speed up the computation, we use a heuristic to
improve the performance of our algorithm. Property 1 enables
us to prune the path/node/arc with a small criticality value at

very earlier stages of path criticality computation. Since a
large portion of the paths in a timing graph has low criticality
value, the computational complexity can be greatly reduced
with the heuristic. As shown in Table II in Section IV, our
path criticality computation method has a linear computational
complexity with respect of the timing edges. Although the
reduction of the computation cost depends on the designs,
the experimental results demonstrate the effectiveness of our
path pruning technique across the ISCAS benchmark circuits.
In addition, we avoid the path selection problem in Zhan’s
approach [20]. We use the statistical timing information,
instead of static timing information, to remove paths that are
not important to the circuit designer.

The linear approximation of the gaussian distribution in
max or min operation is a major source of the computation
error in the criticality computation [18]. As the critical region
computation proceeds to the level close to the primary inputs,
the error due to the approximation accumulates. However, we
extend the properties developed by Visweswariah et al. [18]
and integrate them to calibrate the results.

Property 2: The sum of the criticality of the unpruned paths
in a timing graph is 1.0-the sum of the criticality of the pruned
paths.

Property 3: The sum of the unpruned edge criticality of any
cutset in a timing graph that separates the source from the sink
node is 1.0-the sum of the criticality of the pruned edges of
that cutset.

From the properties in [18], the sum of the criticality of all
the paths in a timing graph has to be 1.0. We record the sum of
the criticality of the pruned paths as prunedpath. The sum of
the unpruned path criticality denoted as unprunedpath can be
computed after the BFS traversal. We normalize the criticality
value of each path by multiplying a scaling factor 1

pathtotal ,
where pathtotal = prunedpath + unprunedpath. Similarly,
we compute the sum of the arc criticality of any cutset as
cutsettotal, we normalize the criticality value of each arc
belonging to that cutset with a factor 1

cutsettotal .

IV. ANALYSIS RESULTS

In this section, we present the analysis results and show our
method can accurately compute the criticality with fast speed.

We implement our criticality computation method in C++
and integrate it into our statistical timing analysis tools.
We conduct the criticality analysis on ISCAS 85 benchmark
circuits to show the efficiency and accuracy of our method.

To demonstrate the accuracy of our method, we compare the
simulation results against Monte Carlo simulation with 10,000
samples. We perform the statistical timing analysis and collect
the statistical information of the critical path/node/arc for each
sample. Table I shows the results of our method against the
Monte Carlo techniques. In the second and third columns, we
show the results of maximal and average criticality errors of
the arcs with our methods. We also show the results of Li
et al.’s [10] method in the fourth and fifth columns. In our
method, the maximal and average criticality errors for arcs are
less than 1.17% and 0.05% respectively. The maximal error



TABLE I

ACCURACY OF OUR CRITICALITY COMPUTATION METHODS

Circuit
critical node/arc critical node/arc [10] critical path
max avg max avg max

c880 0.12% 0.010 % 1.3% 0.9 % 0.010 %
c1908 0.31% 0.006 % 3.4% 0.4 % 0.260 %
c2670 1.17% 0.043 % 2.6% 0.3 % 0.820 %
c5315 0.44% 0.016% 2.8% 1.8 % 0.340%
c6288 0.19% 0.047% 1.9% 0.6 % 0.100 %
c7552 0.43% 0.042 % 3.5% 1.1 % 0.400 %

TABLE II

RUN TIME OF OUR CRITICALITY COMPUTATION METHODS

Circuit Size SSTA (sec) Criticality Computation (sec) Overhead
c880 0.50k 0.0052 0.0041 0.78

c1908 0.60k 0.010 0.007 0.7
c2670 0.78k 0.013 0.012 0.99
c5315 1.7k 0.026 0.016 0.62
c6288 3.8k 0.049 0.027 0.55
c7552 2.2k 0.042 0.015 0.38

of the path criticality against Monte Carlo techniques is less
than 0.82% as shown in sixth column.

Table II shows the run time of our method against the
basic statistical timing analysis. The circuit size in terms
of the number of gates is given in column two. The run
time of basic statistical timing analysis, the run time of
criticality computation, and the relative overhead of criticality
computation over statistical timing analysis are reported in
column three, four and five, respectively. From column five
in Table II, we can see that the run time of the criticality
computation for both paths and nodes/arcs is less than that
of the corresponding SSTA. The run time overhead of our
criticality computation over the basic statistical timing analysis
tends to decrease as the size of the circuit increases. These
results indicate that our path pruning technique reduces the
computational complexity of path criticality computation to
linear complexity with respect of the timing edges.

Compared to the previous work [10] [19] [20], our criticality
computation method computes criticality for both paths and
nodes/arcs. Our method has the same run time complexity
as that of existing methods solely for the arc criticality
computation [10] [19]. The results on the same benchmarks
demonstrate that our method is more accurate in computing arc
criticality compared to Li’s approach [10]. In Zhan’s approach
[20], the path criticality computation is performed on a pre-
selected set of paths, which might lead to missing some
important paths. Our method avoid this problem by pruning
the paths based on the statistical information.

V. CONCLUSIONS

In this paper, we define the critical region for paths and
nodes/arcs in a timing graph. With this definition, we develop
an efficient method to compute the criticality for paths and
the arcs/nodes simultaneously. A new property of the path
criticality is used to prune the low criticality node/arc at the
very early stages of computation to avoid the selection of the
paths based on the static timing information. Cutset and path
criticality prosperities are used to improve the accuracy in the

criticality computation. Simulation results show our criticality
computation method is very accurate and fast.

VI. ACKNOWLEGEMENT

The authors would like to express their appreciation to Keith
A. Bowman of Intel for his helpful advice. This work was
supported in parts by grants from MARCO/DARPA-GSRC.

REFERENCES

[1] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis
for intra-die process variations with spatial correlations. IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages
900–907, November 2003.

[2] A. Agarwal, V. Zolotov, and D. Blaauw. Statistical timing analysis using
bounds and selective enumeration. IEEE Trans. CAD, (9):1243–1260,
September 2003.

[3] V. Axelrad and J. Kibarian. Statistical aspects of modern IC designs.
Proceedings of the 28th European Solid-State Device Research Confer-
ence, pages 309–321, September 1998.

[4] K. A. Bowman, S. G. Duvall, and J. D. Meindl. Impact of Die-to-Die and
Within Die Parameter Fluctuations on the Maximum Clock Frequency
Distribution for Gigascale Integration. Journal of Solid-State Circuits,
pages 183–190, February 2002.

[5] H. Chang and S. Sapatnekar. Statistical timing analysis considering
spatial correlations using a single PERT-like traversal. IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages
621–625, November 2003.

[6] C. Clark. The greatest of a finite set of random variables. Operations
Research, pages 145–162, 1961.

[7] Liang Deng and Martin D. F. Wong. An exact algorithm for the statistical
shortest path problem. Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 965–970, 2006.

[8] A. Devgan and C. Kashyap. Block-based static timing analysis with
uncertainty. IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pages 607–614, November 2003.

[9] J. Jess, K. Kalafala, S. Naidu, R. Otten, and C. Visweswariah. Statistical
timing for parametric yield prediction of digital integrated circuits.
IEEE/ACM DAC, pages 932–937, 2003.

[10] X. Li, J. Le, M. Celik, and L. Pileggi. Defining statistical sensitivity
for timing optimization of logic circuits with largescale process and
environmental variations. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 422–429, November 2005.

[11] J. Liou, K. Chen, S. Kundu, and A. Krstic. Fast statistical timing analysis
by probabilistic event propagation. IEEE/ACM DAC, pages 661–666,
2001.

[12] F. N. Najm. On the need for statistical timing analysis. IEEE/ACM
DAC, pages 764–765, 2005.

[13] S. Nassif. Design for variability in DSM technologies. IEEE Inter-
national Symposium on Quality of Electronic Design, pages 451–454,
March 2000.

[14] A. Gattiker, S. Nassif, R. Dinakar, and C. Long. Timing yield estimation
from static timing analysis. IEEE International Symposium on Quality
Electronic Design, pages 437–442, 2001.

[15] M. Orshansky and K. Keutzer. A general probabilistic framework for
worst case timing analysis. IEEE/ACM DAC, pages 556–561, 2002.

[16] A. Papoulis and S. Pillai. Probability, Random Variables and Stochastic
Processes. McGraw-Hill, 2001.

[17] D. Sinha and H. Zhou. A Unified Framework for Statistical Timing
Analysis with Coupling and Multiple Input Switching. IEEE/ACM In-
ternational Conference on Computer Aided Design (ICCAD), November
2005.

[18] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan. First-order incremental block-based statistical timing
analysis. Design Automation Conference (DAC), pages 331–336, June
2004.

[19] J. Xiong, V. Zolotov, C. Visweswariah, and N. Venkateswaran. Criticality
Computation in Parameterized Statistical Timing. ACM/IEEE interna-
tional workshop on timing issues in the specification and synthesis of
digital systems (TAU), pages 119–124, February 2006.

[20] Y. Zhan, A. J. Strojwas, M. Sharma, and D. Newmark. Statistical Crit-
ical Path Analysis Considering Correlations. IEEE/ACM International
Conference on Computer Aided Design (ICCAD), November 2005.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




