
Use of Statistical Timing Analysis on Real Designs

A. Nardi, E. Tuncer, S. Naidu, A. Antonau, S. Gradinaru, T. Lin, J. Song
Magma Design Automation - Santa Clara, California

anardi,emre,srinath,aantonau,sgradina,tao,jhsong@magma-da.com

Abstract

A vast literature has been published on Statistical Static
Timing Analysis (SSTA), its motivations, its different imple-
mentations and their runtime/accuracy trade-offs. However,
very limited literature exists ([1]) on the applicability and
the usage models of this new technology on real designs.

This work focuses on the use of SSTA in real designs and
its practical benefits and limitations over the traditional de-
sign flow. We introduce two new metrics to drive the opti-
mization: skew criticality and aggregate sensitivity.

Practical benefits of SSTA are demonstrated for clock
tree analysis, and correct modeling of on-chip-variations.
The use of SSTA to cover the traditional corner analysis and
to drive optimization is also discussed. Results are reported
on three designs implemented on a 90nm technology.

1 Introduction
Figure 1 describes a generic SSTA flow. The intent here

is to describe the basic components (inputs, analysis engine,
and outputs) of SSTA, and provide practical considerations.

1.1 Inputs
In addition to the traditional information required for

deterministic timing analysis, the following information is
needed for SSTA.

Process variations are provided by the foundry and rep-
resents the process parameters to be considered as statistical
rather than deterministic. Process variations affect device
parameters and interconnect dimensions, such as width,
thickness, interlayer dielectric thicknesses, etc. The pro-
cess information is usually provided in the form of a Sta-
tistical Spice model. Process variations are usually catego-
rized as Global and local variations. The former includes
die-to-die, wafer-to-wafer and lot-to-lot variations, while
the latter addresses within-die variations (gate-to-gate and
transistor-to-transistor). Additionally, for local variations,
different parameters have different behaviors, e.g.: oxide
thickness mostly has systematic variations, while the num-
ber of dopants may have a completely random behavior.
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Figure 1. Generic SSTA flow

Both global and local variations need to be accounted for
by SSTA.

Gate and Interconnect Models capture the sensitivity
of devices and interconnects to process variations. Differ-
ent models can be used: the trade-off is, as usual, between
accuracy and runtime/memory.

1.2 SSTA Engine

Several approaches have been presented to implement
the SSTA engine. They can be categorized into path based
and block based approaches [6, 2]. A complete discus-
sion on the pros and cons for the two approaches is beyond
the scope of this paper. For all the approaches, however,
choices have to be made on how to deal with correlations,
Gaussian distribution assumptions, statistical min/max op-
erations, slew/capacitance variation effects and environ-
mental variations.

1.3 Outputs

The SSTA engine computes the delay/slack probability
density function for all design components (paths, nodes)
and for the design itself. This information can be used to ex-
plore the performance/yield trade-off during circuit design.
Additionally, new criteria are needed to define the critical-
ity of paths in a statistical world [6, 5]. We show how to
combine path criticality and delay sensitivity to determine
variability bottlenecks and drive statistical optimization (see
Section 6).

1.4 Usage of SSTA in the design flow

In the traditional design flow, local variations are ac-
counted for by adding margins for guardbanding. Not only
can these margins be unrealistic (either too pessimistic or
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even optimistic), this approach also does not help in im-
proving the design robustness to variations since the real
distribution (and hence the sensitivity to variations) is not
available. SSTA has the potential for improving the design
robustness to variations, thus reducing wasted design effort
due to unrealistic guardbanding while guaranteeing all vio-
lations are correctly captured.

Global variations instead are traditionally taken into ac-
count by performing timing analysis in different process
and environmental (PVT) corners, which are usually de-
scribed by different libraries for standard cells and different
parasitic rules for interconnect. The number of corners to
be considered can be quite large: the design has to meet the
performance constraints in all combinations of PVT and RC
corners. The number of corners in turn is often compounded
to the number of design modes thus reaching hundreds of
unique scenarios to consider. This can be problematic be-
cause corners have to be analyzed and optimized concur-
rently to avoid many iterations in the fixing flow. SSTA
offers at least a partial solution to this problem.

In summary, SSTA facilitates design closure by reducing
pessimism wrt guardbanding, and provides new metrics for
assessing robustness of designs. Furthermore, it eliminates
or reduces the need of analyzing and optimizing a large set
of design corners.

In this paper we test some of these concepts of SSTA on
real designs, and propose new uses.

Section 2 gives a very brief overview of the new met-
rics used in SSTA, mentions the challenges of implementa-
tion and categorizes possible approaches. Section 3 extends
the concept of criticality to statistical skew reporting for ro-
bustness analysis of clock trees. Section 4 analyzes how
SSTA can model properly on-chip-variations, while Section
5 briefly overviews the advantages and limitations of SSTA
to handle multiple design corners. Section 6 introduces a
new metric (aggregate sensitivity) to combine criticality and
sensitivity information and drives statistical optimization.

2 SSTA Basics
Before reviewing the different categories of SSTA algo-

rithms and the new metrics, we first discuss the main chal-
lenges. These include considering correlations properly and
propagation of distributions under min/max operations.
Delay/Slack correlation can be due to correlation between
process parameters, or to path sharing. Statistical min/max
operation is not straightforward and might be runtime ex-
pensive or require approximations. The trade-offs between
analytical and numerical solution have been amply dis-
cussed in [3, 4, 2].

2.1 Algorithms
SSTA implementations can be categorized into two main

groups, block based ([6]) and path based ([2]). In the block

Table 1. Statistical clock skew reporting for
RISC OR1200 on 90nm technology.

Pair Mean Skew Skew

Skew Std. Dev. Criticality

1 51.273 15.722 34.7

2 51.334 12.554 25.6

3 24.338 16.898 7.9

4 43.479 4.358 4.7

5 43.378 8.759 4.5

6 38.684 14.081 4.3

7 34.733 15.964 3.9

8 34.666 13.523 3.1

9 25.95 13.396 2.3

10 22.834 17.619 2

11 20.525 15.726 2

12 33.202 14.888 1.3

Pair Mean Skew Skew

Skew Std. Dev. Criticality

13 28.222 11.846 1.2

14 19.439 14.455 0.7

15 18.917 14.222 0.4

16 26.535 18.316 0.4

17 20.824 15.885 0.2

18 20.706 12.131 0.2

19 21.107 15.712 0.2

20 33.246 24.379 0.1

21 20.834 15.762 0.1

22 17.328 12.665 0.1

23 22.495 14.138 0.1

based SSTA, arrival time distributions are calculated at each
node as the min or max of the incident arrival times. Usu-
ally, normal distributions are assumed for complexity rea-
sons. Both parameter based and path sharing based correla-
tions are expensive to handle in this approach and therefore
simplifications are introduces at the expense of accuracy.

In the path based approach, the analysis is performed
on selected paths. The main advantage is the accuracy and
the flexibility of trading accuracy for runtime/memory. The
main drawback instead is that the number of paths required
for accurate results can be theoretically very large. In prac-
tice, it is observed that at most 100,000 paths are need to
capture circuit behavior and give accurate results.

A further classification can be done into numerical and
analytical approaches. For example, Monte Carlo analysis
allows accurate numerical estimation of the min/max out-
put distribution but is more runtime expensive than a com-
pletely analytical calculation.

This paper does not further discuss the comparison be-
tween these approaches. In fact, the goal of this work is to
propose examples of applications for SSTA, regardless of
the choice and details of implementation.

2.2 Metrics

Traditionally, optimization targets the most critical
paths/gates. The path with the most negative slack is the
most critical one. When performing SSTA, the slacks are
random variables and the definition of worst slack is not in-
tuitive anymore.

Many mathematical formulations have beed published to
define criticality and sensitivity ([6, 5]). Although there is
certainly overlap in the concepts involved, we present our
own definitions for the sole purpose of intuitive understand-
ing of the concepts to drive the applications.

Criticality of a path represents the probability that the
specific path will be the one limiting the circuit performance
(that is, the one with the most negative slack). To clarify the
concept, if using Monte Carlo analysis for example, the crit-
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Figure 2. Standard deviation of the arrival
time for five critical clock sinks in OR1200.

icality of a path can be calculated by counting the number
of samples for which the specific path has the worst slack
divided by the total number of samples.

Sensitivity of a path/gate performance represents the
amount of performance variation due to a given amount of
process variations.

While the sensitivity of a path is a property of the path
in isolation, criticality of a path is a property of the whole
design (or set of paths): it cannot be defined for the path
in isolation. Both metrics are computed by SSTA and are
required to drive optimization. Examples are in Section 6.

3 Clock Tree Analysis

The construction of a well-balanced clock tree is a key
step in the design of an integrated circuit. Process varia-
tions complicate the problems: results in this Section show
that a clock tree well-balanced in the nominal corner is not
necessarily a clock tree robust to variations. Clock skew
distribution and skew criticality can be used to optimize ro-
bustness to process variations.

3.1 Skew Criticality

Traditionally, the quality of a clock tree is measured by
the maximum skew. Given a pair of registers (a skew pair),
their clock skew is the difference of the clock signal arrival
time at their clock pins. The maximum clock skew among
all skew pairs defines the quality of the clock tree (like the
minimum slack defines the quality of the design).

Note that also for the clock tree analysis, a statistical max
operation has to be performed.

In this paper, we extend the definition of critical path to
the definition of critical skew pair: it is the one with the
highest probability of having the largest skew.

As for the delay and the slack, in addition to the mean
value, SSTA also provides the standard deviation for the
specific path (or skew pair).

Table 1 reports the statistical skew analysis on the clock
tree of the OR1200 RISC core mapped onto a 90nm tech-
nology considering only interconnect variations. In particu-

lar, metal width and thickness are random variables for three
of the metal layers. Skew pairs are listed in decreasing order
of skew criticality until the zero value is reached.

There are a few interesting observations from these data:

• Traditionally, STA lists only the worst skew pair in the
design (for each clock). In fact, reporting all the skew
pairs can be very expensive. However, SSTA can ef-
ficiently report all the skew pairs with non-zero skew
criticality.

• Two pairs having the same nominal or mean skew, may
show a significant difference in their standard devia-
tion. For example, Pair 4 and Pair 5, show that a well
balanced clock in the deterministic case may not be
robust to variations which can make the clock poorly
balanced.

Note that SSTA has reported a skew pair that would be
neglected by STA: Pair 3 has a 7.9% probablity of being
critical, although its mean value (24.338) is smaller than
other skew pairs (most notably Pair 20 with mean value
33.246 but with criticality 0.1%).

3.2 Sensitivity Analysis

SSTA also calculates the contributions due to different
parameters: for example device versus interconnect, or for
interconnects, the sensitivity to different metal layers. In
Figure 2 each bar represents the standard deviation of the in-
sertion delay for five clock sinks among the critical ones in
the OR1200 design. The sources of variations are the width
(W) and thickness (T), on three metal layers: M2, M6, and
M7: the standard deviations are decomposed in the contri-
bution of the different sources of variations. For example,
Sink 2 and Sink 4 track each other very well: not only their
mean value is comparable but also their sensitivity to the
various parameters is very similar. That is, the paths to these
two clock sinks are highly correlated and therefore they are
very well balanced both in the deterministic and in the sta-
tistical analysis (the mean and sigma for their skew are very
small). On the contrary, although Sink 3 and Sink 4 have
similar mean value, their sensitivity to the various parame-
ters is quite different: the sink pair is well-balanced in STA
but SSTA identifies a large skew distribution.

Different optimization strategies can then be used for
clock tree robustness: for example, balancing the variation
due to device and to interconnect parameters, or balancing
routing of the clock nets among metal layers. While the ex-
haustive coverage and discussion of clock tree optimization
strategies is beyond the scope of the paper, it is evident that
SSTA is a powerful enabler for designing robust clock trees.

4 Guard-Banding vs SSTA

SSTA is the correct way of modeling effects that have
been traditionally dealt with by using guard-banding.
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Figure 3. OCV approach for a setup check.

4.1 Guard-Banding
Before the introduction of SSTA, different approaches

have been used to guard-band the circuit performance vari-
ations due to intra-die process variations.

Figure 3 illustrates a common approximation to account
for intra-die variations when performing a setup analysis:
• Gates and wires along the launching clock and the data

path (dotted line) are assumed to exhibit the slowest
possible delay

• Gates and wires along the capturing clock (dash-dotted
line) are assumed to exhibit the fastest possible delay

• To reduce pessimism, the difference between slow and
fast delays is removed for the gates and wires shared
by the launching and capturing clocks.

• Commonly the slowest (and the fastest) possible delay
values are computed with a derating factor wrt a com-
mon operation point.

In commercially available tools, this guard-banding so-
lution is usually referred to as OCV (On-Chip-Variation),
actually confusing the problem with the solution.

Clearly, the above approximation does not properly
model neither random nor systematic intra-die variations:
• Gates along the launching path are assumed to be com-

pletely correlated (and similarly for the capturing path)
thus ignoring the stochastic cancellations that might
take place when modeling random variations

• Perfect negative correlation is assumed between the
launching path and the the capturing path, thus over-
estimating the effect of spatial correlation

• The same derating factor is used for all
cells/arcs/transitions/slew-load scenarios. In real-
ity, the delay/slew sensitivity to process variations
depends on all the above conditions. Using just
one derating factor can be very pessimistic or even
miss some real violations. Usually the derating
factor is chosen to guard-band conservatively pro-
cess variations and most often leads to significant
pessimism.

This methodology has severe accuracy limitations and
also can be very computationally expensive due to the cal-
culation of the common point between the launching and the
capturing clock. OCV use a derating factor to model delay
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Figure 4. Guard-Banding (OCV) versus SSTA
on a set of paths from the OR1200 design (a)
and b)), an industrial design of approx 40k
cells (c) and d)) and the ARM core (e) and f)).

sensitivity to process variations. For SSTA such sensitivity
can either:

• represent a deration as well: the values are chosen such
that, for example, the 3σ point of the delay distribution
corresponds to the derating factor for OCV

• be derived from library characterization and depend on
the gate, arc, transition and slew-load condition

Section 4.2 shows that, using the first approach, OCV is
always pessimistic with respect to SSTA and derives a for-
mula to model such phenomenon. Section 4.3 instead uses
the second approach and shows how the choice of a single
derating factor for OCV can be either overly pessimistic or
too optimistic (and therefore miss timing violations).

4.2 Pessimism Reduction

For both SSTA and Guard-banding analysis, the net ef-
fect of intra-die variations is an additional delay ∆D to the
nominal delay Dnom:

∆DSSTA = DSSTA − Dnom (1)

∆DOCV = DOCV − Dnom (2)
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Figure 5. SSTA vs OCV using a) 10% and b)
5% deration. While 10% OCV is overly pes-
simistic, 5% OCV can miss some violations.

For Gaussian distributions, ∆DSSTA is typically calcu-
lated as the 3σ point.

For the simple case in Figure 3, it can be shown that
the reduction of pessimism expected when using SSTA to
model random variations with respect to using OCV is:

∆DSSTA

∆DOCV
=

1√
N

(3)

where N = NDC + ND + NRC is the number of all
gates not belonging to the common path. The meaning of
NDC , ND, NRC is illustrated in Figure 3.

The formula has been derived in a very simple case,
where all delays are identical and process variations are a
percentage of the nominal delay. However, it gives an indi-
cation of the expected behavior also in real testcases.

Results from three testcases mapped on a 90nm technol-
ogy are reported in Figures 4.

Figures 4.a, 4.c and 4.e report the slack calculated with
SSTA (crosses) and with OCV (dots) versus the nominal
slack (x-axis and solid line for reference): the slack gets
smaller due to process variations, and OCV calculation is
much more pessimistic than SSTA values.

Figures 4.b , 4.d and 4.f represent ∆DSST A

∆DOCV
: the smaller

the ratio the larger the advantage of using SSTA vs OCV.
The design in the first row of Figure 4 clearly shows the
behavior predicted by Equation (3): the paths with ratio ap-
prox. 0.12 have a very large number of gates not in the
common path (approx. 60) and a predicted ratio of 0.129.
Those correspond to the points in Figure 4.a for which the
difference between ∆DSSTA and ∆DOCV is more evident.
Conversely, the paths for with ratio approx. 0.65 have a very
small number of gates not in the common path (approx. 3)
and a predicted ratio of 0.577.

Different heuristics have been devised to reduce the pes-
simism implied by OCV. However, these heuristics just
struggle to get closer to what is very naturally captured by
SSTA. Even when accuracy is improved by using smarter
variants, the computational complexity (or the memory) re-
mains a bottleneck for OCV. Although the discussion fo-
cused on the random local variations, similar observations
apply to modeling systematic variations.

4.3 Guard-Banding Inaccuracy

Using library characterization to model the slew and de-
lay sensitivity to process variations it becomes evident that
this sensitivity is not just a derating factor. Not only it varies
according to the gate type, but it also depends on the tim-
ing arc, on which transition (rising or falling) and which
input slew and output load are applied. Moreover, usually
more than one statistical parameter is defined to model pro-
cess variations and different gates, arcs, transitions, etc have
different sensitivity to each parameter, therefore, the single
derating factor chosen for OCV analysis could be too pes-
simistic for some gates and too optimistic for others.

Results have been collected from an ARM core mapped
onto a 90nm technology. Process variations are represented
by four parameters and library characterization has been run
to collect the sensitivity data. OCV for comparison uses a
derating factor of 10% (Figure 5.a)) and 5% (Figure 5.b)).
The graphs show the ratio between the slack calculated with
SSTA and the slack calculated with OCV versus the nom-
inal slack. For this design, OCV at 10% is always overly
pessimistic wrt SSTA. However, if 5% is used as derating
factor, OCV becomes less pessimistic for some paths, but
for other paths is too optimistic and does not report a viola-
tion that is instead caught by SSTA.

In summary, within-die variations can be elegantly mod-
eled using SSTA and this technology will replace the cur-
rent guard-banding approaches: both runtime/memory and
accuracy are greatly improved.

5 Corner vs SSTA

Standard cell libraries are traditionally characterized at
different process and environmental conditions (PVT cor-
ners) to capture the effect of global variations and different
operating conditions. Similary, wire variations are modeled
by preparing rules for parasitics extraction in different pro-
cess corners (RC corners).

The design has to be anlyzed and optimized in all com-
binations of PVT and RC corners. If the optimization is
performed sequentially, fixing one corner poses the risk of
creating violations in another corner. This can be a very
lengthy process and solutions are being pursued to perform
the optimization concurrently in all corners.

Furthermore, although the design corners are supposed
to represent the worst conditions for the design, they might
not provide exhaustive coverage of the variation space.

SSTA inherently builds a parametric model of process
variations and thus guarantees to cover exhaustively the
variation space. All the process corners can be analyzed
at once, while the environmental corners are still analyzed
separately: the number of corners to be considered has been
greatly reduced.

The SSTA framework can be extended to also support
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Figure 6. Circuit to illustrate the metrics for
optimization.

environmental variations: the topic is not discussed here in
the interest of space.

6 Optimization
In this Section we use a very simple example to show

how to combine criticality and sensitivity (see Section 2.2)
into a new concept of aggregate sensitivity to drive the sta-
tistical optimization, whose goal is to improve the probabil-
ity that the circuit slack is positive.

For a given cell and process parameter, we define the Ag-
gregate Sensitivity AS =

∑
arcs s · c where s is the sensi-

tivity for the arc and c is the criticality for the path to which
the arc belongs. If the arc belongs to more than one path,
the criticality is properly added for all the paths.

Intuitively, the idea is that a path/gate with a large spread
(that is, a large sensitivity) does not need to be optimized
for robustness if it is not a critical path/gate. Conversely, if
a gate has a small sensitivity but it belongs to a large number
of critical paths, then it should be optimized.

Table 2.a shows the SSTA report for the circuit in Fig-
ure 6. The values inside each gate are the delay D and the
sensitivity S. Note that the path from i3 to o has the largest
standard deviation (and sensitivity), but its criticality mea-
sure is zero.

Table 2. SSTA a) and aggregate sensitivity b)
report for circuit in Figure 6.

Start Mean Std. Crit.

End Dev

i2 - o / FF -160 15.0 51.3

i1 - o / FF -160 15.0 48.7

i2 - o / RR -160 15.0 0.0

i1 - o / RR -160 15.0 0.0

i3 - o / FF -20 20.6 0.0

i3 - o / RR -20 20.6 0.0

Cell Agg. Slack Max

Sens. Sens.

G4 10.0 -160 10.0

G2 5.1 -160 10.0

G5 5.0 -160 5.0

G1 4.9 -160 10.0

G3 0.0 -20 20.0

a) b)

Table 2.b reports the aggregate sensitivity metric for the
circuit in Figure 6. Traditionally, gates would be listed for
optimization according to their worst negative slack: SSTA
can instead pass the gates to the optimizer according to their
aggregate sensitivity value. Cells with a high aggregate sen-
sitivity should have a higher priority for optimization. For
the simple example in Figure 6, the cell to be optimised first
would be G4, since all of the critical paths in the design pass
through that cell, and G4 has a non-negligible sensitivity.

7 Conclusions

The main focus of this work is to present some of the
possible uses of Statistical Static Timing Analysis (indepen-
dently of its implementation) in a design flow, using data
from real designs when possible. Two new metrics are also
introduced: skew criticality and aggregate sensitivity. The
former is used during the statistical clock tree analysis. Our
case study shows that a clock-tree well balanced in the nom-
inal or mean case is not necessarily robust to process vari-
ations. Interestingly, the statistical clock tree analysis has
reported a critical sink pair that would be neglected by the
STA. Aggregate sensitivity encompasses the information of
both criticality and sensitivity to drive the statistical opti-
mization. Furthermore, for the three designs, it has been
shown that SSTA can be significantly more accurate than
approaches based on a single derating OCV factor (guard-
banding). In fact, a single derating OCV factor can be either
very pessimistic on some paths, or too optimistic on others,
thus missing timing violations that are reported by SSTA.
A simple model to estimate the pessimism reduction has
also been reported and compared to the case study data. In
summary, this work presents some of the benefits and limi-
tations of SSTA when applyed to real designs, and demon-
strates new uses for the SSTA engines. We will report on
new findings as we keep applying this new technology to
more designs.
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