
Optimization of the “FOCUS” Inband-FEC Architecture for
10-Gbps SDH/SONET Optical Communication Channels

Afxendios Tychopoulos Odysseas Koufopavlou
Department of Electrical and Computer Engineering,

Polytechnic School of the University of Patras, Rio Patras, Greece 26500
atychopoulos,odysseas@ee.upatras.gr

Abstract
Forward-Error Correction (FEC) is of key importance

to the robustness of optical communication networks. In
particular, Inband-FEC is an attractive option, because it
improves channel-performance without requiring an
increase of the transmission bandwidth. We have devised
and implemented a novel inband FEC method, dubbed
FOCUS, for the electronic-mitigation of physical
impairments in SDH/SONET optical networks. It is an
inherently low-cost approach for both the metro and
backbone network regions, scalable to any SDH/SONET
rate and capable to significantly increase optical channel
performance. This paper analyzes the most sophisticated
ones from the plethora of optimizations that were
employed to minimize the architectural complexity of
FOCUS, falling in: a) Arithmetic operator design, b)
Resource sharing and c) Redundant logic elimination.
These optimizations were necessary to obtain a prototype,
which eventually permitted the first fully successful
laboratory evaluation of the FOCUS Inband-FEC method.

1. Introduction

Due to impairments that are inherent in optical channels
(noise, dispersion, non-linearities, switching penalties, etc),
some form of signal-regeneration must take place
periodically in order to restore the signal quality. However,
conventional 3R-regeneration schemes involve opto-
electronic conversions (O-E-O), which quickly render the
overall cost of optical networks prohibitive and therefore,
retard their expansion and proliferation. Ideally, O-E-O
conversions should be replaced by all-optical
compensation and/or regeneration, but this technology is
not yet sufficiently mature, it has therefore considerable
limitations and remains expensive as well. Nevertheless,
optical transparency (i.e. no O-E-O conversions) has
established itself as a primary objective, enabling a higher
degree of upgradeability and flexibility.

In this direction, a promising solution is based on the
inclusion of advanced electronic-processing mechanisms
only at the end nodes of optical links, capable to offer
improved transmission efficiency characteristics and thus,

to significantly increase the distance, over which the signal
can be transparently transmitted. This solution is
particularly desirable in metro networks, where the initial-
investment cost is of vital importance.

The majority of today’s metro networks are based on
SDH/SONET technology, whereupon forward error
correction (FEC) is employed to upgrade channel
performance and assure Quality of Service (QoS). In the
case of outband-FEC (oFEC), the parity (redundant) bits,
introduced by the encoder at the transmitting end, can be
used to detect and possibly correct channel-errors by the
FEC decoder at the receiving end. This is however at the
expense of an increased line-rate (bandwidth), in order to
preserve the client bit-rate (SDH/SONET-signal) fixed.

Inband FEC (iFEC) can be used alternatively, to avoid
the necessity for additional (external) parity-bits, leaving
the line-rates unchanged. This interesting property can be
obtained by utilising parts (octets) of the SDH/SONET
frame-overhead (OH) sections that are defined by the
widely adopted SDH/SONET standards, but remain
unused in practice. From the early days of those standards,
many researchers have elaborated on the idea of iFEC
coding [1]. Notably, ITU-T rec. G.707 includes an iFEC
method too. Backbone networks can be benefited by iFEC
through its property to seamlessly integrate with oFEC,
offering an increased combined coding-gain and enhanced
immunity to channel impairments.

The proposed iFEC method, FOCUS, was initially
introduced in [2]. It applies to the Regenerator (RS) and
Multiplex-Section (MS) functionality of SDH (equally,
SONET), utilising the shortened Reed-Solomon code
RS(244,240) operating over Galois-Field GF(29). Coding
can be switched (on-the-fly) between a ‘strong’-mode
(redundancy: 1.67%) and a ‘weak’-mode (redundancy:
0.83%). The option of ‘weak’-mode decoding is important
for applications that require a moderate coding-gain; these
should benefit from the significantly reduced
implementation-complexity of this mode.

In designing FOCUS, particular attention has been paid
to the prevention of error-multiplication [3]. This
phenomenon is common to all forms of FEC, making its
appearance when the channel is impaired above the code’s
corrective reach. It results from FEC decoding-errors and

978-3-9810801-2-4/DATE07 © 2007 EDAA

failures, which cause wrongful, damaging corrections on
client data. The choice of the shortened code RS(244,240)
for FOCUS, which features less than 50% data capacity
(240/507 = 47.33%) – in comparison with the
corresponding full code RS(511,507) – significantly
reduces error-multiplication from decoding-errors, because
any wrongful correction in the null-space of the shortened
code is implicitly skipped. With regard to error-
multiplication from decoding-failures, FOCUS ‘strong’-
mode decoding applies the ‘root-multiplicity’ criterion on
the error-locator polynomial for the timely termination of
wrongful corrections; notably, this criterion is degenerated
in the case of ‘weak’-mode and cannot be of use.

FOCUS has been modelled in VHDL and implemented
in a large Xilinx® Virtex-II™ FPGA (XC2V-3000-4),
situated on ‘10g-Tester’, a PCB card designed for
operation in excess of 10Gb/s [2]. At the transmitting card,
an Intel® LXT16717 MUX is used to serialize the SDH
frames, while at the receiving card an Intel® LXT16716
DEMUX parallelizes the frames again to allow for bulk
processing at lower speed. A micro-controller, local to
each card, enables Fast-Ethernet connection with a
supervising PC, which configures the cards and collects
the signal-integrity statistics from FOCUS. The main
micro-controller functions are: switching between the
‘weak’ and the ‘strong’-mode of FEC, SDH scrambling
activation and deactivation, frame- and bit-error count.

The present paper analyzes the optimizations that were
necessary to obtain an efficient implementation of FOCUS.
They can be grossly classified in the following categories:
a) Arithmetic operator design, b) Resource sharing and c)
Redundant logic elimination. Fitting the FOCUS FPGA-
implementation netlist into the target device, allowed for
its first laboratory evaluation against optical impairments
(at 10Gbps) [3]. This achievement is attributable to the
high-degree of optimization. In the following section,
these optimizations are introduced and analyzed in detail.

2. Optimizations

This section is an analytical survey of the optimizations
that were applied to the VHDL-implementation of FOCUS.

2.1. Arithmetic operator design

Galois-Field arithmetic over GF(29) underlies the
FOCUS iFEC coding [4], [5]. By prudently selecting the
Field Generator Polynomial (FGP) of GF(29), substantial
area savings can be achieved, attributable to the impact of
FGP-choice on the cost of the multiplication-operator over
the GF(29), henceforth called ‘GF-mult’.

More specifically, the complexity of this iFEC design is
dominated by the GF-mult operations in the FOCUS
decoder. The full-scale decoder for SDH STM-64 consists
of 192 identical, partial, STM-0-level decoders. Assuming

a brute-force implementation (no optimizations), then
every partial decoder (‘strong’-mode) would involve:

• 5 GF-mult for the computation of syndrome-values.
• 3 GF-mult for the calculation of the coefficients of

the error-locator polynomial (λ).
• 6 GF-mult for the ‘Chien-Search’ and the

computation of error-values (Forney’s formula).
In total, FOCUS decoder’s cost in GF-mult for 10Gbps

STM-64 operation (i.e. 192 STM-0 subframes) amounts to:
192 * (5 + 3 + 6) = 2688 GF-mult

This cost is evidently prohibitive. Even by applying
extensive resource-sharing (see 2.2), the above cost was
eventually reduced by a factor of 12 to:

2688 / 12 = 224 GF-mult
Nonetheless, the above cost remains unaffordable,

especially with regard to FPGA implementations.
Another important consideration is the contribution to

the total complexity from the division-operators over GF
(henceforth called ‘GF-div’). Notably, GF-div operators
turn out to be approx. 8 times more costly than GF-mult.
Taking, again, resource sharing into account, 32 GF-div
operations are required in total by the FOCUS decoder for
STM-64. The cost of these operations is equivalent to:

32 GF-div * 8 = 256 GF-mult
Finally, apart from the decoder, all iFEC

implementations must include the RS- and MS-layer
functionality of an essential SDH STM-64 deframer. The
above points obviate that dropping the cost of operators to
a minimum is imperative, especially for GF-mult.

Figure 1: Stages in parallel GF-multiplication

Bit-serial operator-architectures are, in general, the least

demanding in terms of area [4], [5]. However, a bit-serial
architecture for the GF-mult operator would incur a delay
that is unacceptable, due to the real-time character of the
SDH protocol. On the contrary, only a fully parallel
architecture of the GF-mult operator can meet the design-
constraints for processing-speed. Such a parallel

architecture for GF-mult can be split in two stages, as
shown in Figure 1.

The 1st stage is a usual polynomial multiplication over
GF(2) between the operands of GF-mult (treated here as
polynomials with bit-coefficients). With FOCUS operating
over GF(29), operands are 9-bit wide and the output
product is 17-bits wide. The 2nd stage normalizes the
product back to 9-bits to ensure that the algebraic field
GF(29) is closed under the operation of multiplication.
Normalization is achieved by dividing the product with a
constant polynomial, which is said to ‘generate’ the field,
hence its name: Field Generator Polynomial (FGP) [5].

The 1st stage is a vector of variable length
[(A•B)+(C•D)+…] operations, with + and • denoting
addition and multiplication over GF(2) respectively.
Evidently, the choice of FGP does not have an impact on
the complexity of the 1st stage, rather only on the 2nd stage.
More specifically, during the modulation of the 1st stage-
output by the FGP in the 2nd stage, the non-zero FGP
coefficients – apart from the most significant bit (MSB) –
infer • operators, which have the cost of 1 XOR gate each.
Therefore, the less non-zero coefficients the FGP contains,
the simpler is the corresponding normalization-circuitry.

Figure 2: Minimum circuit for GF(29)-normalization

In examining the Hamming-sense weight of all possible

FGP for GF(29), only one was found to have the minimum
weight, which equals 3. In fact, this is the absolute
minimum, because the most- and the least-significant bits
of an algebraically primitive polynomial (FGP) must equal
1 and the number of non-zero coefficients must be odd.
We therefore selected

3 W1, x x f(x) H
f(x)

49 =++=
for FGP, resulting in the low implementation cost of 50
Look-Up Tables (LUT) per GF-mult. This result is readily
achievable by automated digital-synthesis with
commercial tools, such as Mentor Graphics® Leonardo
Spectrum™ and Precision Synthesis™ i.e. without custom

design of the GF-mult. The optimized normalization
circuit is depicted in Figure 2.

The above architecture will be henceforth called ‘GF-
mult architecture A’. Although an achievement in its own
right, the total area-cost in LUT of the above parallel GF-
mult architecture remained unaffordable:

(224 + 256) GF-mult * 50 LUT/GF-mult = 24000 LUT
This is particularly true, bearing in mind that the target

FPGA device (Xilinx XC2V-3000-4) contains 28672 LUT
in total and that many are consumed for routing purposes.

Consequently, other architectures had to be examined
as well, aiming at the exploitation of additional FPGA
resources, such as the embedded RAM & embedded
multipliers.

Figure 3: (a) using embedded multipliers as 1st stage
of parallel GF-mult, (b) most efficient parallel GF-mult

& GF-div architecture, using embedded RAM

Remarkably, there is one primitive element already in

the target device that partially implements the 1st stage of
the parallel GF-mult: the embedded multiplier. The device
contains 96 embedded multipliers (mult18x18s), each with
18-bit long operands, for signed fixed-point multiplication.
There is however one important distinction between an
embedded multiplier and a GF-mult: the former
incorporates carry-propagation. To exploit this pool of
mult18x18s, the carry propagation must be disabled and
this can be done by grounding the 2 subsequent input bits
for every usable input bit, as shown in Figure 3 (part a).
Accordingly, the 2 subsequent output bits for every usable
output bit are to be ignored.

From Figure 3 (part a) can be easily deduced that a
single mult18x18s replaces only 6 out of the 9 bits that
make one GF-mult operand (i.e. GF-symbol). Nonetheless,
the introduction of 1 mult18x18s primitive in the parallel
GF-mult operator architecture decreases the LUT-cost to
40 (GF-mult architecture B1). The same cost drops to only

25 LUT by dedicating 2 mult18x18s per GF-mult (GF-
mult architecture B2), one at 6 LSB & another at 6 MSB.

In an effort to achieve further area-savings, taking also
the embedded RAM of the target device into advantage,
the GF-mult operation was analyzed in elementary
operations, according to the following formula:

() ()[]baba loglogexp +=∗
This analysis is reasonable, because the exponentiation

(GF-exp) and logarithm (GF-log) operations act upon a
single operand (symbol) and can be implemented by tables.
Conveniently, the GF-symbol bit-width (9 bits) matches
the dimensions of the embedded-RAM primitive element
of the target-device (RAMB16), making the use of
RAMB16 very attractive.

More specifically, one RAMB16_S36_S36 fully
implements 2 independent GF-log or 2 independent GF-
exp. Consequently, 3 RAMB16 plus 2 general-purpose
adders can implement 2 parallel GF-mult, as depicted in
Figure 3 (part b) i.e. the average cost of a parallel GF-
mult operator drops to as low as 1½ RAMB16 plus one
adder. Adders have almost negligible cost.

Analogously, the GF-div operation can be analyzed as:
() ()[]baba loglogexp/ −=

Due to the close similarity of the above formulas, a GF-
mult architecture (that relies on RAM16) can be easily
extended to encompass the GF-div operation. The only
modification required for this purpose is optionally
negating the second operand of the adder. In conclusion,
the architecture shown in Figure 3 (part b) can very
efficiently implement either 2 GF-mult or 2 GF-div
operators and will be henceforth called ‘GF-mult/div
architecture C’. The target device contains 96 RAMB16
primitive elements. Consequently, 64 GF-mult can be
readily implemented using the above architecture.

2.2. Resource sharing

Since each STM-0 requires a dedicated, partial FOCUS
encoder-decoder pair, 192 such pairs are presumably
required to protect STM-64 signals against channel-errors.
In the previous subsection, it was evidenced that the
resources for a brute-force implementation of such an
iFEC method are huge. Fortunately, the internal operations
of FOCUS can be parallelized, giving rise to substantial
area-savings through resource sharing.

Bulk-processing, such as iFEC-coding and SDH
functionality, has to take place at significantly lower
clock-speed, in comparison with the very high rates of
serial transmission. In particular, the prototype of FOCUS
processes data in 128-bit parallel-form to have the internal
bulk-processing speed reduced to 77.76 MHz accordingly.
16 STM-0 (out of 192 in STM-64) are processed in
parallel, each with one data-octet (16 * 8 = 128) at a time.
Processing one data-octet from all 192 STM-0 within
STM-64 lasts therefore 12 clock-cycles (192 / 16 = 12).

In other words, the STM-0’s with serial-numbers that
are equal modulo 16 will be assigned to the same
processing sub-channel. There are 16 sub-channels and
each one of them processes 12 STM-0 in a circular fashion.
Processing within each sub-channel can be classified in:

• Operations (e.g. arithmetic, logical, etc)
• Updating of state-variables.
Clearly, STM-0 cannot share their state-variables, but

sharing the operations is fully legitimate, since processing
is identical for each and every STM-0 subframe within
STM-64. Furthermore, no two STM-0 within a sub-
channel can have their state simultaneously updated.
Therefore, partial (STM-0) FOCUS decoder state can be
conveniently stored in RAM, rather than flip-flops (FF).
Moreover, RAM can be organized in rows and columns,
with each row corresponding to a single STM-0 within this
sub-channel. Notably, the target device contains an
abundance of LUT-RAM with depth 16 > 12 i.e. a single
primitive LUT-RAM element suffices for a 1-bit state-
variable for all 12 STM-0 within a sub-channel. Resource
sharing is crucial for the feasibility of FOCUS, because it
allows a reduction of complexity by a factor of 12.

Another crucial observation is that some costly
operators in the FOCUS decoder are not used concurrently.
More specifically, FOCUS decoding cycles continuously
between the following steps, once for each codeword [5]:
1. (S) : Syndrome values computations
2. (L) : Error-Locator polynomial (λ) formation
3. (C) : ‘Chien’-Search determination of the roots of the

‘λ’-polynomial and application of required corrections
The 1st step (S) can be split further in two parts: S1) the

computation of syndrome values over the message-portion
of codewords and S2) the computation of syndrome values
over the parity-portion of codewords. The former (S1)
requires 4 dedicated GF-mult operators that are
continuously busy. The later (S2) requires 1 GF-mult
operator, which is however occupied only for 16 clock-
cycles after all relative parity-symbols are extracted from
the SDH overhead and become available to the unit for
computations. On the other hand, the 2nd and 3rd steps (L,
C) are executed in succession, requiring 1 GF-div each.

Figure 4 displays the timing-relationships between
busy-periods of the aforementioned GF-mult and GF-div
operations, using codeword (row-triplet) No 1 as an
example. More specifically, point [1] signifies the
beginning of syndrome-values computations over parity-
data (S2), which is also the deadline for error corrections of
the previous codeword (i.e. row-triplet No 3). At point [2],
the syndrome-values are available to the 2nd step (L) for
the formation of λ(x). Label [3] points at the beginning of
the 3rd step (C) during which all necessary corrections are
applied. Finally, point (4) indicates the time-slot, when the
last error-correction within this codeword takes place.

This timing diagram obviates that the GF-arithmetic
operators involved in steps S2, L and C are used
consecutively, not concurrently. It is sensible therefore

that a GF-arithmetic unit is shared between these three
steps, in order to minimize area-requirements. A parallel
GF-mult/div architecture (of type ‘C’) can switch at will
between the role of multiplier and divider, as explained in
the previous subsection. By employing this architecture,
the area-cost of 1 GF-mult and 2 GF-div is reduced to the
cost of just 1 GF-mult. The importance of the above
optimization can be further appreciated by noting that
these savings extend over all 16 parallel-processing
subchannels i.e. the benefit scales by a factor of 16.

Figure 4: Timing chart for the shared GF-arith. unit

A subtle aspect of the above optimization is that

normally, decoding step (S2) requires as many GF-mult as
(S1) i.e. 4. However, only 1 GF-mult operator was
mentioned in the preceding paragraphs for S2 and this is
precisely what made possible the sharing of this arithmetic
unit with decoding-steps L & C, which involve 1 GF-div
operator each. The cost-reduction within (S2) from 4 GF-
mult to 1 was achieved by serializing the computation of
syndrome-values at the expense of a quadruple (4x)
computational time delay (‘strong’-mode). In other words,
the dedicated GF-mult operator is not only shared between
12 STM-0’s in the same subchannel, but also between 4
syndromes in the same partial decoder i.e. same STM-0.

The challenge in this case was to assure that the
increased processing-time in decoding steps S2, L and C,
incurred by sharing the GF-mult in (S2) as explained above,
does not exceed the duration of one codeword (3 SDH
rows), which constitutes the ultimate deadline. As
indicated by point [4] in Figure 4, corrections are indeed
completed before the deadline, which for codeword No 1
is at SDH row 0 and column 3. This is achievable, because
FOCUS processes 9-bit GF-symbols, in contrast to the 8-
bit octets of the SDH protocol. More specifically, the
FOCUS decoder has been customized, such that when the
2nd decoding step (L) is completed, the 3rd one (C) initiates
a burst-correction at 9/8 the speed of SDH processing.

Although non-obvious, the timing-condition holds indeed
and the optimization is possible.

Another valuable optimization relates to the evaluation
of polynomials over GF(29), as for instance in the case of
the ‘ω’ polynomial [4] in Forney’s formula (3rd decoding
step). A polynomial P(x) of degree d:

() 0
1

1
1

1 cxcxcxcxP d
d

d
d +∗++∗+∗= −

−
involves d GF-mult (*) operations between the coefficients
ci and the powers of the independent variable xi, i=1,2,…,d.
A parallel GF-mult architecture is assumed for each of the
above multiplications; it can therefore be broken into a
‘bit-polynomial multiplication’ 1st stage and a subsequent
‘normalization’ 2nd stage, as of Figure 1. Normalization,
however, turns out to be distributive over addition and as
such, can be shared among all GF-mult operations within
the evaluation of P(x). Then:

() 0
1

1
1

1 cxcxcxcxP d
d

d
d +•++•+•= −

−

where (●) denotes ‘bit-polynomial multiplication’ (1st
stage) and (||…||) denotes ‘normalization’ (2nd stage).

2.3. Redundant logic elimination

The nominal maximum degree of the error-corrector
polynomial (ω) equals the number of syndrome values in
use [5], which are 4 in the ‘strong’-mode of FOCUS and 2
in the ‘weak’-mode. This polynomial is in fact the one
with the highest degree that needs to be evaluated as part
of the FOCUS decoding. It has been verified by means of
extensive digital-simulations that in the absence of
decoding failures, the actual degree of ω(x) is half as much
at most, the most-significant coefficients of ω(x) being
zeroes. This observation relieves the implementation of
FOCUS ‘strong’-mode from:

• 2 GF-mult’ 1st stage (●) operators, and
• 2 constant-exponent GF-exp (xi) operators

per processing-subchannel, in total: 32 GF-mult and 32
GF-exp needless operators.

More redundant logic was found and eliminated in the
backend component dealing with decoding failures. As
stated already in the introductory section, decoding
failures are a common property of all FEC methods. They
manifest themselves, when the channel generates more
errors than the FEC system is designed to handle. Their
effect is to even further deteriorate the signal quality
(error-multiplication) through damaging corrections. A
major criterion to detect and possibly, avoid decoding
failures is to disallow multiplicity of the roots of λ(x).

Generally, the detection of decoding failures in Reed-
Solomon decoders takes place as part of the backend
‘Chien-Search’ algorithm [5], which compares the roots’
count with the degree of λ(x). It is noteworthy however
that a degree-2 polynomial over GF(29) with a single
double-root (instead of 2 different ones) takes the form:

() () 2222 bxabxaxDF +∗=+∗=λ

i.e. the middle power coefficient is null, which is in
contrast with real-number arithmetic, where:

() () 2222 2 bxbaxabxaxp +⋅⋅⋅+⋅=+⋅=
λDF(x) is the case of FOCUS ‘strong’-mode; decoding

failures are therefore immediately recognizable by a zero
1st power coefficient and a non-zero 2nd power coefficient.
In the ‘weak’-mode of FOCUS, the λDF(x) polynomial is
degenerated to degree-0, which does not have roots and
cannot be of use anyway.

By immediately identifying decoding-failures, the
correction-algorithm is not initiated at all, sparing the
damaging corrections. This is a distinctive feature of
FOCUS ‘strong’-mode. On the contrary, general Reed-
Solomon decoders [6] have to dully count the roots of λ(x),
while ‘Chien-Search’ is in progress, which implies that:

• Either: damaging corrections are applied, before
the criterion has a chance to indicate the failure

• Or: the client-data must be subjected to double the
ordinary delay, waiting for the criterion to decide

FOCUS has been designed to avoid both of the above.
A primary benefit in terms of complexity is the

elimination of the middle 1st power coefficient in λDF(x),
which translates to 1 redundant GF-mult operator (b=1 is
assumed to be constant). Furthermore, the detection of
decoding-failures reduces to simple comparisons with zero
and lastly, a counter is no-more required for the roots. The
benefit is for once again scaled by a factor of 16, due to
the existence of 16 parallel-processing subchannels.

Through the optimizations, listed and explained in the
preceding sections and paragraphs, a prototype of FOCUS
‘strong’-mode was eventually obtained, using a large
FPGA as the target device. Nevertheless, provision has
been made also for applications that cannot tolerate the
complexity of FOCUS ‘strong’-mode. In such cases, a
trade-off can be made between complexity and
performance. More specifically, the corrective
performance of FOCUS can be deliberately halved, by
ignoring the upper half of the available syndrome-values.
In return, the degree of all polynomials involved in
FOCUS decoding is halved and the overall complexity is
halved as well. This trade-off gives rise to the so-called
‘weak’-mode of FOCUS operation [2], [3].

3. Conclusions

The efforts to obtain a prototype for our inband-FEC,
FOCUS, have yielded substantial complexity-reductions
through numerous, sophisticated optimizations. This paper
described in detail these optimizations. Firstly, particular
attention has been paid to the design of arithmetic
operators: Itself the underlying Galois-Field arithmetic has
been carefully chosen as to minimize the cost of operators,
primarily multiplication and division, and the primitive-
elements of the target-device have been exploited to the
maximum possible extent. Additionally, resource-sharing

has been heavily employed in many aspects of the design:
For SDH STM-64 signals, every partial FOCUS decoder is
shared between 12 constituent STM-0 subframes. Within
each FOCUS decoder, operators are shared between the
decoding-steps. In polynomial evaluations, parallel
multipliers share their normalization stage. Finally,
redundant logic was discovered and eliminated: Evaluation
of the highest-degree polynomial (ω) has been drastically
simplified. Detection of decoding-failures has been
improved, bringing further benefits in terms of area.

To the best of our knowledge, this is the first
implementation of iFEC for SDH/SONET networks that
investigates trade-offs on complexity. It is noteworthy that
no evidence on implementations of the corresponding
ITU-T G.707 rec. iFEC could be found, except of a brief
mention in [6]. In addition, we could not find feedback on
the implementation-cost of GF(29) arithmetic operators.
We do not have, therefore, a suitable reference to compare
our results with. Nevertheless, the efficiency of the final
FOCUS design can be demonstrated through the results
from the implementation-software, which is the Xilinx®
ISE™ version 8.1.2 MAP-tool. The above cost represents
not only the full-scale ‘strong’-mode FOCUS-decoder for
SDH STM-64, but also an essential STM-64 deframer, the
micro-controller I/F and a 128-bit parallel verification unit
for PRBS(231-1) test-sequences (in the payload). The final
implementation-cost per partial FOCUS-decoder turns out
to be impressive (Table 1, 4th column):

Table 1: Implementation cost of the FOCUS Inband-
FEC decoder for SDH STM-64 / SONET OC-192

primitive total utilization / 192
LUT 20832 72% 108.50
B-RAM 96 100% 0.50
Mult18x18s 84 87% 0.44
T-BUF 1282 17% 6.68

4. References

[1] M. Tomizawa et Al. “Forward Error Correcting Codes in

Synchronous Fiber Optic Transmission Systems”. Journal of
Lightwave Technology, Vol. 15, Jan 1997, pp. 43-52.

[2] A. Tychopoulos, O. Koufopavlou, “In-Band Coding
Technique to Promptly Enhance SDH/SONET Fiber-Optic
Channels with FEC Capabilities”, European Trans.
Telecomm, Vol. 15, April 2004, pp. 117 – 133.

[3] A. Tychopoulos et Al, “Demonstration of a Low-cost
Inband FEC Scheme for STM-64 Transparent Metro
Networks”, in Proc. IEEE ICTON 2006, Tu.A3.4.

[4] Key-papers in the Development of Coding Theory, E. R.
Berlekamp, 1974, IEEE Press, New York.

[5] Algebraic Coding Theory, Elwyn R. Berlekamp, 1968,
McGraw-Hill, ISBN 07-004903-3.

[6] K. Azadet et Al, “Equalization and FEC Techniques for
Optical Transceivers”, IEEE Journal of Solid State Circuits,
Vol. 37, Mar 2002, pp 317-327.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

