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Abstract 
Forward-Error Correction (FEC) is of key importance 

to the robustness of optical communication networks. In 
particular, Inband-FEC is an attractive option, because it 
improves channel-performance without requiring an 
increase of the transmission bandwidth. We have devised 
and implemented a novel inband FEC method, dubbed 
FOCUS, for the electronic-mitigation of physical 
impairments in SDH/SONET optical networks. It is an 
inherently low-cost approach for both the metro and 
backbone network regions, scalable to any SDH/SONET 
rate and capable to significantly increase optical channel 
performance. This paper analyzes the most sophisticated 
ones from the plethora of optimizations that were 
employed to minimize the architectural complexity of 
FOCUS, falling in: a) Arithmetic operator design, b) 
Resource sharing and c) Redundant logic elimination. 
These optimizations were necessary to obtain a prototype, 
which eventually permitted the first fully successful 
laboratory evaluation of the FOCUS Inband-FEC method. 
 
 
1. Introduction 
 

Due to impairments that are inherent in optical channels 
(noise, dispersion, non-linearities, switching penalties, etc), 
some form of signal-regeneration must take place 
periodically in order to restore the signal quality. However, 
conventional 3R-regeneration schemes involve opto-
electronic conversions (O-E-O), which quickly render the 
overall cost of optical networks prohibitive and therefore, 
retard their expansion and proliferation. Ideally, O-E-O 
conversions should be replaced by all-optical 
compensation and/or regeneration, but this technology is 
not yet sufficiently mature, it has therefore considerable 
limitations and remains expensive as well. Nevertheless, 
optical transparency (i.e. no O-E-O conversions) has 
established itself as a primary objective, enabling a higher 
degree of upgradeability and flexibility. 

In this direction, a promising solution is based on the 
inclusion of advanced electronic-processing mechanisms 
only at the end nodes of optical links, capable to offer 
improved transmission efficiency characteristics and thus, 

to significantly increase the distance, over which the signal 
can be transparently transmitted. This solution is 
particularly desirable in metro networks, where the initial-
investment cost is of vital importance.  

The majority of today’s metro networks are based on 
SDH/SONET technology, whereupon forward error 
correction (FEC) is employed to upgrade channel 
performance and assure Quality of Service (QoS). In the 
case of outband-FEC (oFEC), the parity (redundant) bits, 
introduced by the encoder at the transmitting end, can be 
used to detect and possibly correct channel-errors by the 
FEC decoder at the receiving end. This is however at the 
expense of an increased line-rate (bandwidth), in order to 
preserve the client bit-rate (SDH/SONET-signal) fixed. 

Inband FEC (iFEC) can be used alternatively, to avoid 
the necessity for additional (external) parity-bits, leaving 
the line-rates unchanged. This interesting property can be 
obtained by utilising parts (octets) of the SDH/SONET 
frame-overhead (OH) sections that are defined by the 
widely adopted SDH/SONET standards, but remain 
unused in practice. From the early days of those standards, 
many researchers have elaborated on the idea of iFEC 
coding [1]. Notably, ITU-T rec. G.707 includes an iFEC 
method too. Backbone networks can be benefited by iFEC 
through its property to seamlessly integrate with oFEC, 
offering an increased combined coding-gain and enhanced 
immunity to channel impairments. 

The proposed iFEC method, FOCUS, was initially 
introduced in [2]. It applies to the Regenerator (RS) and 
Multiplex-Section (MS) functionality of SDH (equally, 
SONET), utilising the shortened Reed-Solomon code 
RS(244,240) operating over Galois-Field GF(29). Coding 
can be switched (on-the-fly) between a ‘strong’-mode 
(redundancy: 1.67%) and a ‘weak’-mode (redundancy: 
0.83%). The option of ‘weak’-mode decoding is important 
for applications that require a moderate coding-gain; these 
should benefit from the significantly reduced 
implementation-complexity of this mode. 

In designing FOCUS, particular attention has been paid 
to the prevention of error-multiplication [3]. This 
phenomenon is common to all forms of FEC, making its 
appearance when the channel is impaired above the code’s 
corrective reach. It results from FEC decoding-errors and 
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failures, which cause wrongful, damaging corrections on 
client data. The choice of the shortened code RS(244,240) 
for FOCUS, which features less than 50% data capacity 
(240/507 = 47.33%) – in comparison with the 
corresponding full code RS(511,507) – significantly 
reduces error-multiplication from decoding-errors, because 
any wrongful correction in the null-space of the shortened 
code is implicitly skipped. With regard to error-
multiplication from decoding-failures, FOCUS ‘strong’-
mode decoding applies the ‘root-multiplicity’ criterion on 
the error-locator polynomial for the timely termination of 
wrongful corrections; notably, this criterion is degenerated 
in the case of ‘weak’-mode and cannot be of use. 

FOCUS has been modelled in VHDL and implemented 
in a large Xilinx® Virtex-II™ FPGA (XC2V-3000-4), 
situated on ‘10g-Tester’, a PCB card designed for 
operation in excess of 10Gb/s [2]. At the transmitting card, 
an Intel® LXT16717 MUX is used to serialize the SDH 
frames, while at the receiving card an Intel® LXT16716 
DEMUX parallelizes the frames again to allow for bulk 
processing at lower speed. A micro-controller, local to 
each card, enables Fast-Ethernet connection with a 
supervising PC, which configures the cards and collects 
the signal-integrity statistics from FOCUS. The main 
micro-controller functions are: switching between the 
‘weak’ and the ‘strong’-mode of FEC, SDH scrambling 
activation and deactivation, frame- and bit-error count. 

The present paper analyzes the optimizations that were 
necessary to obtain an efficient implementation of FOCUS. 
They can be grossly classified in the following categories: 
a) Arithmetic operator design, b) Resource sharing and c) 
Redundant logic elimination. Fitting the FOCUS FPGA-
implementation netlist into the target device, allowed for 
its first laboratory evaluation against optical impairments 
(at 10Gbps) [3]. This achievement is attributable to the 
high-degree of optimization. In the following section, 
these optimizations are introduced and analyzed in detail. 
 
2. Optimizations 
 

This section is an analytical survey of the optimizations 
that were applied to the VHDL-implementation of FOCUS.  
 
2.1. Arithmetic operator design 
 

Galois-Field arithmetic over GF(29) underlies the 
FOCUS iFEC coding [4], [5]. By prudently selecting the 
Field Generator Polynomial (FGP) of GF(29), substantial 
area savings can be achieved, attributable to the impact of 
FGP-choice on the cost of the multiplication-operator over 
the GF(29), henceforth called ‘GF-mult’. 

More specifically, the complexity of this iFEC design is 
dominated by the GF-mult operations in the FOCUS 
decoder. The full-scale decoder for SDH STM-64 consists 
of 192 identical, partial, STM-0-level decoders. Assuming 

a brute-force implementation (no optimizations), then 
every partial decoder (‘strong’-mode) would involve: 

• 5 GF-mult for the computation of syndrome-values. 
• 3 GF-mult for the calculation of the coefficients of 

the error-locator polynomial (λ). 
• 6 GF-mult for the ‘Chien-Search’ and the 

computation of error-values (Forney’s formula). 
In total, FOCUS decoder’s cost in GF-mult for 10Gbps 

STM-64 operation (i.e. 192 STM-0 subframes) amounts to: 
192 * (5 + 3 + 6) = 2688 GF-mult 

This cost is evidently prohibitive. Even by applying 
extensive resource-sharing (see 2.2), the above cost was 
eventually reduced by a factor of 12 to: 

2688 / 12 = 224 GF-mult 
Nonetheless, the above cost remains unaffordable, 

especially with regard to FPGA implementations. 
Another important consideration is the contribution to 

the total complexity from the division-operators over GF 
(henceforth called ‘GF-div’). Notably, GF-div operators 
turn out to be approx. 8 times more costly than GF-mult. 
Taking, again, resource sharing into account, 32 GF-div 
operations are required in total by the FOCUS decoder for 
STM-64. The cost of these operations is equivalent to: 

32 GF-div * 8 = 256 GF-mult 
Finally, apart from the decoder, all iFEC 

implementations must include the RS- and MS-layer 
functionality of an essential SDH STM-64 deframer. The 
above points obviate that dropping the cost of operators to 
a minimum is imperative, especially for GF-mult. 

 

 
Figure 1: Stages in parallel GF-multiplication 

 
Bit-serial operator-architectures are, in general, the least 

demanding in terms of area [4], [5]. However, a bit-serial 
architecture for the GF-mult operator would incur a delay 
that is unacceptable, due to the real-time character of the 
SDH protocol. On the contrary, only a fully parallel 
architecture of the GF-mult operator can meet the design-
constraints for processing-speed. Such a parallel 



architecture for GF-mult can be split in two stages, as 
shown in Figure 1. 

The 1st stage is a usual polynomial multiplication over 
GF(2) between the operands of GF-mult (treated here as 
polynomials with bit-coefficients). With FOCUS operating 
over GF(29), operands are 9-bit wide and the output 
product is 17-bits wide. The 2nd stage normalizes the 
product back to 9-bits to ensure that the algebraic field 
GF(29) is closed under the operation of multiplication. 
Normalization is achieved by dividing the product with a 
constant polynomial, which is said to ‘generate’ the field, 
hence its name: Field Generator Polynomial (FGP) [5]. 

The 1st stage is a vector of variable length 
[(A•B)+(C•D)+…] operations, with + and • denoting 
addition and multiplication over GF(2) respectively. 
Evidently, the choice of FGP does not have an impact on 
the complexity of the 1st stage, rather only on the 2nd stage. 
More specifically, during the modulation of the 1st stage-
output by the FGP in the 2nd stage, the non-zero FGP 
coefficients – apart from the most significant bit (MSB) – 
infer • operators, which have the cost of 1 XOR gate each. 
Therefore, the less non-zero coefficients the FGP contains, 
the simpler is the corresponding normalization-circuitry.  
 

 
Figure 2: Minimum circuit for GF(29)-normalization 

 
In examining the Hamming-sense weight of all possible 

FGP for GF(29), only one was found to have the minimum 
weight, which equals 3. In fact, this is the absolute 
minimum, because the most- and the least-significant bits 
of an algebraically primitive polynomial (FGP) must equal 
1 and the number of non-zero coefficients must be odd. 
We therefore selected 

3 W1,   x  x f(x) H
f(x)

49 =++=  
for FGP, resulting in the low implementation cost of 50 
Look-Up Tables (LUT) per GF-mult. This result is readily 
achievable by automated digital-synthesis with 
commercial tools, such as Mentor Graphics® Leonardo 
Spectrum™ and Precision Synthesis™ i.e. without custom 

design of the GF-mult. The optimized normalization 
circuit is depicted in Figure 2. 

The above architecture will be henceforth called ‘GF-
mult architecture A’. Although an achievement in its own 
right, the total area-cost in LUT of the above parallel GF-
mult architecture remained unaffordable: 

(224 + 256) GF-mult * 50 LUT/GF-mult = 24000 LUT 
This is particularly true, bearing in mind that the target 

FPGA device (Xilinx XC2V-3000-4) contains 28672 LUT 
in total and that many are consumed for routing purposes. 

Consequently, other architectures had to be examined 
as well, aiming at the exploitation of additional FPGA 
resources, such as the embedded RAM & embedded 
multipliers. 

 

 
 

Figure 3: (a) using embedded multipliers as 1st stage 
of parallel GF-mult, (b) most efficient parallel GF-mult 

& GF-div architecture, using embedded RAM 

 
Remarkably, there is one primitive element already in 

the target device that partially implements the 1st stage of 
the parallel GF-mult: the embedded multiplier. The device 
contains 96 embedded multipliers (mult18x18s), each with 
18-bit long operands, for signed fixed-point multiplication. 
There is however one important distinction between an 
embedded multiplier and a GF-mult: the former 
incorporates carry-propagation. To exploit this pool of 
mult18x18s, the carry propagation must be disabled and 
this can be done by grounding the 2 subsequent input bits 
for every usable input bit, as shown in Figure 3 (part a). 
Accordingly, the 2 subsequent output bits for every usable 
output bit are to be ignored. 

From Figure 3 (part a) can be easily deduced that a 
single mult18x18s replaces only 6 out of the 9 bits that 
make one GF-mult operand (i.e. GF-symbol). Nonetheless, 
the introduction of 1 mult18x18s primitive in the parallel 
GF-mult operator architecture decreases the LUT-cost to 
40 (GF-mult architecture B1). The same cost drops to only 



25 LUT by dedicating 2 mult18x18s per GF-mult (GF-
mult architecture B2), one at 6 LSB & another at 6 MSB. 

In an effort to achieve further area-savings, taking also 
the embedded RAM of the target device into advantage, 
the GF-mult operation was analyzed in elementary 
operations, according to the following formula: 

( ) ( )[ ]baba loglogexp +=∗  
This analysis is reasonable, because the exponentiation 

(GF-exp) and logarithm (GF-log) operations act upon a 
single operand (symbol) and can be implemented by tables. 
Conveniently, the GF-symbol bit-width (9 bits) matches 
the dimensions of the embedded-RAM primitive element 
of the target-device (RAMB16), making the use of 
RAMB16 very attractive. 

More specifically, one RAMB16_S36_S36 fully 
implements 2 independent GF-log or 2 independent GF-
exp. Consequently, 3 RAMB16 plus 2 general-purpose 
adders can implement 2 parallel GF-mult, as depicted in 
Figure 3 (part b) i.e. the average cost of a parallel GF-
mult operator drops to as low as 1½ RAMB16 plus one 
adder. Adders have almost negligible cost. 

Analogously, the GF-div operation can be analyzed as: 
( ) ( )[ ]baba loglogexp/ −=  

Due to the close similarity of the above formulas, a GF-
mult architecture (that relies on RAM16) can be easily 
extended to encompass the GF-div operation. The only 
modification required for this purpose is optionally 
negating the second operand of the adder. In conclusion, 
the architecture shown in Figure 3 (part b) can very 
efficiently implement either 2 GF-mult or 2 GF-div 
operators and will be henceforth called ‘GF-mult/div 
architecture C’. The target device contains 96 RAMB16 
primitive elements. Consequently, 64 GF-mult can be 
readily implemented using the above architecture. 
 
2.2. Resource sharing 
 

Since each STM-0 requires a dedicated, partial FOCUS 
encoder-decoder pair, 192 such pairs are presumably 
required to protect STM-64 signals against channel-errors. 
In the previous subsection, it was evidenced that the 
resources for a brute-force implementation of such an 
iFEC method are huge. Fortunately, the internal operations 
of FOCUS can be parallelized, giving rise to substantial 
area-savings through resource sharing. 

Bulk-processing, such as iFEC-coding and SDH 
functionality, has to take place at significantly lower 
clock-speed, in comparison with the very high rates of 
serial transmission. In particular, the prototype of FOCUS 
processes data in 128-bit parallel-form to have the internal 
bulk-processing speed reduced to 77.76 MHz accordingly. 
16 STM-0 (out of 192 in STM-64) are processed in 
parallel, each with one data-octet (16 * 8 = 128) at a time. 
Processing one data-octet from all 192 STM-0 within 
STM-64 lasts therefore 12 clock-cycles (192 / 16 = 12).  

In other words, the STM-0’s with serial-numbers that 
are equal modulo 16 will be assigned to the same 
processing sub-channel. There are 16 sub-channels and 
each one of them processes 12 STM-0 in a circular fashion. 
Processing within each sub-channel can be classified in: 

• Operations (e.g. arithmetic, logical, etc) 
• Updating of state-variables. 
Clearly, STM-0 cannot share their state-variables, but 

sharing the operations is fully legitimate, since processing 
is identical for each and every STM-0 subframe within 
STM-64. Furthermore, no two STM-0 within a sub-
channel can have their state simultaneously updated. 
Therefore, partial (STM-0) FOCUS decoder state can be 
conveniently stored in RAM, rather than flip-flops (FF). 
Moreover, RAM can be organized in rows and columns, 
with each row corresponding to a single STM-0 within this 
sub-channel. Notably, the target device contains an 
abundance of LUT-RAM with depth 16 > 12 i.e. a single 
primitive LUT-RAM element suffices for a 1-bit state-
variable for all 12 STM-0 within a sub-channel. Resource 
sharing is crucial for the feasibility of FOCUS, because it 
allows a reduction of complexity by a factor of 12. 

Another crucial observation is that some costly 
operators in the FOCUS decoder are not used concurrently. 
More specifically, FOCUS decoding cycles continuously 
between the following steps, once for each codeword [5]: 
1. (S) : Syndrome values computations 
2. (L) : Error-Locator polynomial (λ) formation 
3. (C) : ‘Chien’-Search determination of the roots of the 

‘λ’-polynomial and application of required corrections 
The 1st step (S) can be split further in two parts: S1) the 

computation of syndrome values over the message-portion 
of codewords and S2) the computation of syndrome values 
over the parity-portion of codewords. The former (S1) 
requires 4 dedicated GF-mult operators that are 
continuously busy. The later (S2) requires 1 GF-mult 
operator, which is however occupied only for 16 clock-
cycles after all relative parity-symbols are extracted from 
the SDH overhead and become available to the unit for 
computations. On the other hand, the 2nd and 3rd steps (L, 
C) are executed in succession, requiring 1 GF-div each. 

Figure 4 displays the timing-relationships between 
busy-periods of the aforementioned GF-mult and GF-div 
operations, using codeword (row-triplet) No 1 as an 
example. More specifically, point [1] signifies the 
beginning of syndrome-values computations over parity-
data (S2), which is also the deadline for error corrections of 
the previous codeword (i.e. row-triplet No 3). At point [2], 
the syndrome-values are available to the 2nd step (L) for 
the formation of λ(x). Label [3] points at the beginning of 
the 3rd step (C) during which all necessary corrections are 
applied. Finally, point (4) indicates the time-slot, when the 
last error-correction within this codeword takes place. 

This timing diagram obviates that the GF-arithmetic 
operators involved in steps S2, L and C are used 
consecutively, not concurrently. It is sensible therefore 



that a GF-arithmetic unit is shared between these three 
steps, in order to minimize area-requirements. A parallel 
GF-mult/div architecture (of type ‘C’) can switch at will 
between the role of multiplier and divider, as explained in 
the previous subsection. By employing this architecture, 
the area-cost of 1 GF-mult and 2 GF-div is reduced to the 
cost of just 1 GF-mult. The importance of the above 
optimization can be further appreciated by noting that 
these savings extend over all 16 parallel-processing 
subchannels i.e. the benefit scales by a factor of 16. 

 

 
Figure 4: Timing chart for the shared GF-arith. unit 

 
A subtle aspect of the above optimization is that 

normally, decoding step (S2) requires as many GF-mult as 
(S1) i.e. 4. However, only 1 GF-mult operator was 
mentioned in the preceding paragraphs for S2 and this is 
precisely what made possible the sharing of this arithmetic 
unit with decoding-steps L & C, which involve 1 GF-div 
operator each. The cost-reduction within (S2) from 4 GF-
mult to 1 was achieved by serializing the computation of 
syndrome-values at the expense of a quadruple (4x) 
computational time delay (‘strong’-mode). In other words, 
the dedicated GF-mult operator is not only shared between 
12 STM-0’s in the same subchannel, but also between 4 
syndromes in the same partial decoder i.e. same STM-0. 

The challenge in this case was to assure that the 
increased processing-time in decoding steps S2, L and C, 
incurred by sharing the GF-mult in (S2) as explained above, 
does not exceed the duration of one codeword (3 SDH 
rows), which constitutes the ultimate deadline. As 
indicated by point [4] in Figure 4, corrections are indeed 
completed before the deadline, which for codeword No 1 
is at SDH row 0 and column 3. This is achievable, because 
FOCUS processes 9-bit GF-symbols, in contrast to the 8-
bit octets of the SDH protocol. More specifically, the 
FOCUS decoder has been customized, such that when the 
2nd decoding step (L) is completed, the 3rd one (C) initiates 
a burst-correction at 9/8 the speed of SDH processing. 

Although non-obvious, the timing-condition holds indeed 
and the optimization is possible. 

Another valuable optimization relates to the evaluation 
of polynomials over GF(29), as for instance in the case of 
the ‘ω’ polynomial [4] in Forney’s formula (3rd decoding 
step). A polynomial P(x) of degree d: 

( ) 0
1

1
1

1 cxcxcxcxP d
d

d
d +∗++∗+∗= −

−  
involves d GF-mult (*) operations between the coefficients 
ci and the powers of the independent variable xi, i=1,2,…,d. 
A parallel GF-mult architecture is assumed for each of the 
above multiplications; it can therefore be broken into a 
‘bit-polynomial multiplication’ 1st stage and a subsequent 
‘normalization’ 2nd stage, as of Figure 1. Normalization, 
however, turns out to be  distributive over addition and as 
such, can be shared among all GF-mult operations within 
the evaluation of P(x). Then: 

( ) 0
1

1
1

1 cxcxcxcxP d
d

d
d +•++•+•= −

−  

where (●) denotes ‘bit-polynomial multiplication’  (1st 
stage) and (||…||) denotes ‘normalization’ (2nd stage). 
 
2.3. Redundant logic elimination 
 

The nominal maximum degree of the error-corrector 
polynomial (ω) equals the number of syndrome values in 
use [5], which are 4 in the ‘strong’-mode of FOCUS and 2 
in the ‘weak’-mode.  This polynomial is in fact the one 
with the highest degree that needs to be evaluated as part 
of the FOCUS decoding. It has been verified by means of 
extensive digital-simulations that in the absence of 
decoding failures, the actual degree of ω(x) is half as much 
at most, the most-significant coefficients of ω(x) being 
zeroes. This observation relieves the implementation of 
FOCUS ‘strong’-mode from: 

• 2 GF-mult’ 1st stage (●) operators, and 
• 2 constant-exponent GF-exp (xi) operators  

per processing-subchannel, in total: 32 GF-mult and 32 
GF-exp needless operators.  

More redundant logic was found and eliminated in the 
backend component dealing with decoding failures. As 
stated already in the introductory section, decoding 
failures are a common property of all FEC methods. They 
manifest themselves, when the channel generates more 
errors than the FEC system is designed to handle. Their 
effect is to even further deteriorate the signal quality 
(error-multiplication) through damaging corrections. A 
major criterion to detect and possibly, avoid decoding 
failures is to disallow multiplicity of the roots of λ(x). 

Generally, the detection of decoding failures in Reed-
Solomon decoders takes place as part of the backend 
‘Chien-Search’ algorithm [5], which compares the roots’ 
count with the degree of λ(x). It is noteworthy however 
that a degree-2 polynomial over GF(29) with a single 
double-root (instead of 2 different ones) takes the form: 

( ) ( ) 2222 bxabxaxDF +∗=+∗=λ  



i.e. the middle power coefficient is null, which is in 
contrast with real-number arithmetic, where: 

( ) ( ) 2222 2 bxbaxabxaxp +⋅⋅⋅+⋅=+⋅=  
λDF(x) is the case of FOCUS ‘strong’-mode; decoding 

failures are therefore immediately recognizable by a zero 
1st power coefficient and a non-zero 2nd power coefficient. 
In the ‘weak’-mode of FOCUS, the λDF(x) polynomial is 
degenerated to degree-0, which does not have roots and 
cannot be of use anyway. 

By immediately identifying decoding-failures, the 
correction-algorithm is not initiated at all, sparing the 
damaging corrections. This is a distinctive feature of 
FOCUS ‘strong’-mode. On the contrary, general Reed-
Solomon decoders [6] have to dully count the roots of λ(x), 
while ‘Chien-Search’ is in progress, which implies that: 

• Either: damaging corrections are applied, before 
the criterion has a chance to indicate the failure 

• Or: the client-data must be subjected to double the 
ordinary delay, waiting for the criterion to decide 

FOCUS has been designed to avoid both of the above. 
A primary benefit in terms of complexity is the 

elimination of the middle 1st power coefficient in λDF(x), 
which translates to 1 redundant GF-mult operator (b=1 is 
assumed to be constant). Furthermore, the detection of 
decoding-failures reduces to simple comparisons with zero 
and lastly, a counter is no-more required for the roots. The 
benefit is for once again scaled by a factor of 16, due to 
the existence of 16 parallel-processing subchannels. 

Through the optimizations, listed and explained in the 
preceding sections and paragraphs, a prototype of FOCUS 
‘strong’-mode was eventually obtained, using a large 
FPGA as the target device. Nevertheless, provision has 
been made also for applications that cannot tolerate the 
complexity of FOCUS ‘strong’-mode. In such cases, a 
trade-off can be made between complexity and 
performance. More specifically, the corrective 
performance of FOCUS can be deliberately halved, by 
ignoring the upper half of the available syndrome-values. 
In return, the degree of all polynomials involved in 
FOCUS decoding is halved and the overall complexity is 
halved as well. This trade-off gives rise to the so-called 
‘weak’-mode of FOCUS operation [2], [3]. 
 
3. Conclusions 
 

The efforts to obtain a prototype for our inband-FEC, 
FOCUS, have yielded substantial complexity-reductions 
through numerous, sophisticated optimizations. This paper 
described in detail these optimizations. Firstly, particular 
attention has been paid to the design of arithmetic 
operators: Itself the underlying Galois-Field arithmetic has 
been carefully chosen as to minimize the cost of operators, 
primarily multiplication and division, and the primitive-
elements of the target-device have been exploited to the 
maximum possible extent. Additionally, resource-sharing 

has been heavily employed in many aspects of the design: 
For SDH STM-64 signals, every partial FOCUS decoder is 
shared between 12 constituent STM-0 subframes. Within 
each FOCUS decoder, operators are shared between the 
decoding-steps. In polynomial evaluations, parallel 
multipliers share their normalization stage. Finally, 
redundant logic was discovered and eliminated: Evaluation 
of the highest-degree polynomial (ω) has been drastically 
simplified. Detection of decoding-failures has been 
improved, bringing further benefits in terms of area. 

To the best of our knowledge, this is the first 
implementation of iFEC for SDH/SONET networks that 
investigates trade-offs on complexity. It is noteworthy that 
no evidence on implementations of the corresponding 
ITU-T G.707 rec. iFEC could be found, except of a brief 
mention in [6]. In addition, we could not find feedback on 
the implementation-cost of GF(29) arithmetic operators. 
We do not have, therefore, a suitable reference to compare 
our results with. Nevertheless, the efficiency of the final 
FOCUS design can be demonstrated through the results 
from the implementation-software, which is the Xilinx® 
ISE™ version 8.1.2 MAP-tool. The above cost represents 
not only the full-scale ‘strong’-mode FOCUS-decoder for 
SDH STM-64, but also an essential STM-64 deframer,  the 
micro-controller I/F and a 128-bit parallel verification unit 
for PRBS(231-1) test-sequences (in the payload). The final 
implementation-cost per partial FOCUS-decoder turns out 
to be impressive (Table 1, 4th column): 
 

Table 1: Implementation cost of the FOCUS Inband-
FEC decoder for SDH STM-64 / SONET OC-192 

primitive total utilization / 192 
LUT 20832 72% 108.50 
B-RAM 96 100% 0.50 
Mult18x18s 84 87% 0.44 
T-BUF 1282 17% 6.68 
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