
 

 

Abstract 
 
Multiple Input - Multiple Output (MIMO) wireless 

technology involves highly complex vectors and matrix 
computations which are directly related to increased 
power and area consumption. This paper proposes an 
area and power efficient VLSI architecture that can 
serve the dual purpose of minimum norm sorting of 
rows as well as upper/lower block tri-angularization of 
matrices. The resources inside the architecture are 
shared among both operations and only primitive 
computations are used. Results indicate saving in 
silicon real estate as well as power consumption 
compared to previous architecture without degrading 
performance. 
 
1. Introduction 

 
Multiple Input - Multiple Output (MIMO) wireless 

communication promises to remove the limits of wireless 
networks by providing spectral efficiency near Shannon’s 
bound [1]. Because of its benefits, MIMO is entering into 
almost every wireless standard such as 802.11n for Wi-Fi 
and 802.16 for WiMax application. MIMO involves 
complex signal processing which is directly related to high 
power consumption and more cost in silicon [2][3]. 

VBLAST is a MIMO detection algorithm [4] that 
provides a good trade-off between BER (bit error rate) 
performance and computational complexity compared to 
its counter parts. Zero Forcing (ZF) and Minimum Mean 
Square Error (MMSE) detectors [5] are computationally 
less expensive than VBLAST; however, they provide 
inferior BER performance compared to VBLAST. The 
optimal solution, maximum likelihood (ML) [5] detection, 
provides best BER performance. However, it is highly 
expensive regarding computational complexity. This 
increases exponentially with the number of antennas and is 
prohibitively high for antennas more than 4. Therefore, the 
ML algorithm cannot be implemented on mobile platforms 
for to its high overhead of area and power [3].   

In VBLAST itself, the bottlenecks are repeated pseudo  

 

inverse, sorting and nulling vector calculation. This 
repeated computation is a power hungry process. It also 
leads to numerical instability in hardware implementation 
which can be reduced using alternative algorithms such as 
the square root algorithm [6] to compute the pseudo 
inverse and sorting of the rows of the inverted channel 
matrix. Even with the square root algorithm [6], it is 
necessary to optimize the design for power and area.   

This research work presents a novel VLSI architecture 
that performs minimum norm sorting and block upper 
tri-angularization of matrices by employing a series of 
unitary transformations known as Jacobi rotation [7]. The 
architecture is also compared with the only available 
architecture in the literature [8], where CORDIC algorithm 
is used for Jacobi transformation.  

The rest of the paper is organized such that section 2 
describes MIMO system model and detection algorithm, 
section 3 proposes a novel architecture for minimum norm 
sorting and block upper tri-angularization, while section 4 
presents results and section 5 concludes the paper. 

 
2. MIMO System Model and Square Root 

Algorithm for VBLAST 
 

 In MIMO communication systems, more than one 
antenna is used to transmit symbols and more than one 
antenna is used to receive them.  In the diagram of Figure 
1, spatial multiplexing is used in which M transmit 
antennas transmit M different symbols simultaneously 
while each symbol is received by the N receive antennas. 
Each symbol transmitted is received by all the receiving 
antennas thus making multiple channel paths. These paths, 
if combined, make a matrix of NxM channel elements. 

If 
T

Mssssss ].....,4,3,2,1[=
denotes the symbol vector 

transmitted, H denotes the NxM channel matrix between 
the receive and transmit antenna array, and v denotes the 
AWGN noise vector, then the corresponding received 
vector r is given by 

           
(1)                                 

To recover the transmitted 
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symbol vector s, it is necessary to invert the channel 
matrix. The inversion can be done depending upon the 
detection method. For MMSE, the channel matrix is 
augmented by the noise variance (α) and the detector 
output is (2)  

 
rHH)HI(s *1* −+= α            (2) 

 
where * represents complex conjugate transpose. 

 

 
     Figure 1:(MIMO System Model) 

 
In VBLAST, successive nulling and cancellation is 

used to detect the transmitted symbols. The channel matrix 
is first inverted and then sorted to detect that symbol first 
which has the highest post detection Signal to Noise ratio 
(SNR). This corresponds to the row of the inverted channel 
matrix having minimum norm distance. The detected 
symbol is subtracted from the received symbol vector. The 
corresponding column of the H matrix is zeroed down and 
the process is repeated with the deflated channel matrix 
until all the symbols are detected.  

In VBLAST detection, square root algorithm [6] is 
used for pseudo inversion and minimum norm sorting. The 
square root algorithm computes QR decomposition of the 
augmented channel matrix given by (3) in a series of 
unitary transformations. 
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The algorithm first decomposes the channel matrix into 

QR and then computes P1/2=R-1 and BN =Qa from which 
pseudo inverse P1/2 Q*a can be computed. The sorting part 
of the algorithm is explained below [6]: 

 
1. Find the minimum length row of P1/2 and permute it 

to be the last (Mth) row. Permute s accordingly. 
2. Find  a unitary ∑ such that P1/2 ∑ is block upper 

triangular: 
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3. Update Qa to Qa∑. 
4. The nulling vector for the M-th signal is given by 

*
,

2/1
MM qp α , where Mq ,α is the M-th row of Qa 

5. Go back to step 1 but now with P(M-1)/2 and  
)1( −M

aQ (the first M-1 rows of Qa) 
 
3.  Proposed Pipelined VLSI Architecture 

 
The block diagram of the novel pipelined VLSI 

architecture is shown in Figure 2 (last page). This 
architecture serves two purposes 

 
1. Minimum Norm Sorting 
2. Block Upper tri-angularization of square matrices 
 

The proposed architecture is designed to share resources 
between these two processes in a time multiplexed fashion. 
The architecture first sorts rows of P1/2 for minimum norm 
row and then uses Jacobi transformation to make all but 
the last element of that row zero. Before sorting to start, 
P1/2 and Qa are taken from the pseudo inverse process and 
stored in the two dual port rams (duram1 and duram2) as 
shown in Figure 3 (last page) 

       Figure 4: (L-Infinity Calculation Module) 
 

3.1 Minimum Norm Sorting 
 

The architecture first computes the L-infinity norm of 
all the M rows of P1/2 using the equation given below:  

 

( )ii
xmax=

∞
x  [10]       (4) 

The L-Infinity norm module (shown in Figure 4) 
consists of two combinational comparators, register and a 
controller. Norm1 from block1 and Norm2 from block2 of 
Figure 2 are input to Norm Comparator1 which selects the 
maximum of the two values and assigns it to Max_Norm. 
This value is taken by Norm Comparator2 which compares 



 

it with the already stored value QMax_Norm. Initially at 
the first clock cycle, QMax_Norm is zero and, therefore, 
Max_Norm1 is assigned the value of Max_Norm. 
Max_Norm1 is stored in the register. At the second clock 
cycle, the Norm Compartor1 provides the maximum of the 
remaining two values. This value is then compared with 
the previous maximum value stored in the Register and in 
two clock cycles the maximum of the four norms is 
calculated which is the required L-Infinity norm. 
Controller is used to reset the Register for the next 
L-Infinity norm calculation. The Controller takes two 
inputs, one is the global reset signal and the other counter 
that counts the number of cycles and its value is used for 
synchronizing different tasks and operations during sorting 
and triangularization. This circuit generates L-Infinity 
norm at every second clock cycle and therefore, takes 8 
cycles to compute four norms. 

 

Figure 5: (Minimum Norm Search Module) 
 
This L-Infinity module is used in Minimum Norm Search 

Module of Figure 5 for calculating the index of the 
minimum norm row. The iteration counter counts the 
number of iterations by taking the counter as input. A 
iteration is the duration in time during which the first 
nulling vector is calculated. It is expressed in the form of 
number of clock cycles. A specific value of the counter 
increments the iteration counter that is used to set one of 
the three flags named flag1, flag2 and flag3. Flag1, flag2 
and flag3 are asserted only during iteration 1, 2 and 3 
respectively. The flags are also de-asserted if a new 
process is started or global reset is asserted. The flags are 
used as enable inputs to control the storage of the indexes 
of the previous minimum rows searched by the module. 
This storage is necessary because in every iteration, the 
L-infinity norm module provides norms for all the four 
rows of P1/2 regardless of the previously computed 
minimum norms.  

This is done in order to simplify the hardware architecture 
for computing L-infinity norm. 

The two least significant bits of the read address rd_addr 
are used as index to the rows of P1/2. They are stored in s1. 
The s1 is basically two cascaded registers to produce a 
delay of two clock cycles in order to synchronize the index 
value with its corresponding L-infinity norm value. The 
‘Selection module for the index of minimum norm row’ 
compares the current indexed value ‘qrd_addr’ with the 
indexes stored in ‘storage for qrd_addr’ and activates the 
select signal only if the qrd_addr does not match with the 
already stored indexes. The ‘Minimum Norm Comparator’ 
compares the output of ‘L-infinity norm’ with the previous 
minimum value stored in ‘Reg2’. ‘Mux3’ selects 
depending upon the ‘select’ signal either ‘qmin_norm’ or 
‘min_norm’. ‘Mux1’ selects either the output of Mux3 or a 
constant value to be stored in ‘Reg2’. This value is initially 
stored at the start of every iteration and is kept in ‘Reg2’ 
for some time to be replaced by a valid minimum value 
from minimum norm search modules. ‘Mux2’ selects the 
correct value of the index corresponding to the minimum 
norm and stores it in ‘Reg1’. 

The sequence of operation is such that at the start of 
every iteration, Reg2 is loaded with the constant value and 
is kept in the register for a few clock cycles until it is 
replaced by minimum norm value coming through Mux3. 
L-infinity norm calculates the four norm values and pass 
them to ‘Minimum Norm Comparator’ module every other 
clk_2. This clock is the half of the original system clock. 
The ‘Minimum Norm Comparator’ computes the minimum 
value. The index corresponding to the minimum norm row 
is selected by ‘Mux2’ taking decision inputs from the 
‘Minimum Norm Comparator’ and index compare 
modules. The index thus selected is sent to the main 
controller for generating corresponding read, write and 
control signals. 

  
3.2 Block upper tri-angularization  

 
This section describes zeroing the elements of the 

minimum length row using Jacobi transformation. Since 
the architecture uses a number of multipliers and a divider, 
the following algorithm is used to perform the Jacobi 
transformation. 

Given nRxε [7] and indices i and k that satisfy 1 ≤ i < k 
≤ n, the following algorithm computes c=cos(θ) and 
s=sin(θ) such that the k-th component of J(i, k, θ)x is zero. 

 
   If   xk = 0   then  c = 1 and s = 0             
(5) 
        else    if  ik xx ≥  then   

  stcsxxt tki === + :,:,/: 2/12 )1(
1        (6) 

else    ctscxxt tik === + :,:,/: 2/12 )1(
1          (7) 

 



 

In channel estimation or pseudo inverse computation, it 
is highly unlikely that t=1, t will have a value less than 1. 
This implies that values of ‘s’ or ‘c’ can be approximated 
using the Taylor’s series given by 
 

( ) 212/12 211: tts −−
−=+=               (8)                      

 
This shows the values of ‘s’ or ‘c’ can be computed 

using multipliers, shifters and adders. The contribution of 
the higher terms is insignificant and ignored. 

The steps in tri-angularizaiton are explained below: 
 
Step 1:   
 
The first step in tri-angularization is to convert the four 
elements in the minimum norm row of P1/2 matrix from 
complex to real by zeroing their imaginary parts [9]. In this 
step, the four complex elements in the minimum lengtht 
row of both durams are converted to real. To convert them 
into real, we need ‘t’ to calculate ‘c’ and ‘s’ and then treat 
the real and imaginary parts as two real elements.  
 
a- Calculate ‘t’ using divider for each of the complex 

element (say p11, p12, p13 and p14). 
b-Use ‘t’ to compute ‘s or c’  by applying ‘t’ to 

multipliers (block1) and adders in module1. Store ‘s 
or c’. Compute ‘c or s’ using ‘t’ and previously stored 
‘s’ or ‘c’ values.        

c- Use the values of ‘c’ and ‘s’ to rotate the imaginary 
parts of the corresponding channel elements to zero 
using block1 together with module1 for p11 and p13 
and block2 together with module2 for p12 an p14 
respectively.     

A ‘t’ value is computed by reading a complex element 
from memory and applying it to the divider, the output of 
which is the corresponding ‘t’ value which is not only 
stored but also applied to the multipliers in block1 to 
compute either ‘s’ or ‘c’. For example, if ‘t’ is calculated 
using equation 6 then ‘s’ is computed using equation 8 by 
applying ‘t’ to block1 to form ‘t2’ which is then  applied 
to module1 to compute ‘-2-1t2’. The ‘s’ value so obtained is 
used to compute ‘c’ value using equation c = s*t. The ‘s’ 
and ‘c’ values are obtained for all four elements in 
pipeline.  
    The imaginary  parts are rotated to zero by applying 
both the real and imaginary parts of the complex elements 
together with their corresponding ‘c’ and ‘s’ values to the 
two blocks of multipliers and adder modules in Jacobi 
rotation. The Jacobi rotation affects the entire column, 
therefore, if we want to zero the imaginary part of p11 , the 
entire column is involved in rotation. The effect of this 
rotation on p11 is to zero its imaginary part while the effect 
of the same rotation on all other elements of the same 
column is to change the phase angle by the phase angle of 
p11. Since it is inherent in Jacobi rotation, all other columns 
will be modified in a similar manner.  
 

Step 2:  
 
Rotate the second and third elements in the minimum 
length row of P1/2 to zero. (p11, p12, p13, and p14 used in this 
section carry different values from step 2 and they are all real). 
 
a- Calculate ‘t’ for the pair of p11, p12,  and for p13, p14  
b- Compute ‘c’ and ‘s’ for the corresponding ‘t’ 
c- Rotate p12  and p13 to zero 
 
For this, p11 is rotated against p12 while p13 is rotated 

against p14. The calculation of ‘t’, ‘c’ and ‘s’ are as 
explained above. These ‘s’ and ‘c’ values are then applied 
to the two blocks of 4 multipliers to rotate the entire 
column of p11 against the entire column of p12. The eight 
multipliers are needed for the rotation of two complex 
numbers. This can be explained by assuming h11=r1+jim1 
and h12=r2+jim2 , then 
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From the above expression, it is clear that 8 multipliers 

are used to compute real and imaginary values of the two 
columns that are involved in rotation. Though p11 and p12 
are real but all other elements in the same columns have 
real and imaginary parts. After rotating p12 to zero, p13 and 
p14 are applied which rotate p13 to zero.  
 
Step 3: 
 
Rotate the first element p11 to zero 
 
a- Calculate ‘t’ ,’c’, and ‘s’  values for p11  and p14 
b- Rotate p11  to zero 
 
The values ‘t’, ‘c’ and ‘s’ are calculated in a similar way 

as explained in step 1 and using ‘c’ and ‘s’ values p11  is 
rotated to zero against p14. At the end of step 3, all but the 
last element of the indexed row are zeroed.  
 

3.3 Minimum Sort Algorithm Implementation  
 

The index of the minimum norm row is computed using 
the steps in section 3.1. The index is applied to the control 
unit which generates the necessary read/write addresses 
and other signals necessary for zeroing all but the last 
element of the indexed row (see Figure 2). For zeroing the 
elements, steps explained in section 3.2 have been used. 
There is no need to permute the minimum norm row to be 
the last row as only the indexes of the rows are permutated. 
The NULL vector is obtained as the product of the last 
element of the indexed row with the complex conjugate 
transpose of the Mth row of Q. After calculating the first 
NULL vector, the Mth row of Q and P1/2 are discarded. 
The process is repeated with M-1 rows for P1/2 and Q. For 



 

the second NULL vector calculation, the remaining (M-1) 
rows of P1/2 are searched to find the next minimum norm 
row. The index of that row is applied to the control section 
in a similar way that is done for the first index. Proper 
control signals are generated to zero all but the last element 
of the indexed row. The second NULL vector is obtained 
by multiplying the last element of the indexed row with the 
(M-1)th row of Q. The process is repeated until all M 
NULL vectors are calculated. 

 
4. Low Power strategies, Simulation and 
Synthesis results 

 
Power reduction with our module can be achieved by 

gating the clock to those portions that remain inactive for 
some period during the entire execution time of the sorting 
operation. The divider is consuming 17.8% of power 
which can be reduced since the divider is active only 
during 5% of total processing time. During the time the 
divider is not active, its inputs can be gated to bar it from 
switching. The use of latch based ram can also result in 
further power reduction. Al l of these have been 
incorporated into the architecture. 

The low power architecture has been synthesized using 
Synopsys Design Compiler and mapped to 0.18µm CMOS 
technology. The area breakdown of the proposed module is 
given in Table 1. The control logic is taking about 29.7% 
of the entire area. This is due to the use of appreciable 
number of registers for read and write address generators 
as well as for storing values of ‘t’, ‘c’, and ‘s’. Latch based 
dual port rams take 20% of the area. The rest are taken by 
8 multipliers and a divider. The CORDIC based SORTING 
module has not been synthesized. However, from the 
literature [10], the area of the pipelined CORDIC can be 
obtained. If SORTING module is developed based on 
CORDIC, there will be three CORDICs with one (called θ 
CORDIC) used for angle calculation while the other two 
(called Φ CORDICs) will be used for rotation. The area of 
the three CORDICs from [10] is about 767960 µm2. There 
will also be control unit for sequencing the operation of 
these modules. Therefore, the combined area will be much 
more than the area occupied by multiplier based 
SORTING module given in Table 1.    

 The maximum operating frequency of our synthesized 
module is 50MHz due to the combinational divider 
module. However, with a two-stage pipelined divider 
module, the maximum frequency of operation can be 
increased to 100MHz. The proposed module is simulated 
at 40MHz and the power figures of individual modules are 
given in Table 2. From [10], it is evident that the CORDIC 
based module consumes more power compared to the 
proposed module if simulated at the same clock frequency. 
The only advantage of the CORDIC based module is that 
its frequency of operation is above 100MHz while with the 

proposed architecture a 100MHz can be obtained if a two 
stage pipelined divider is used. 
 
5.  Conclusion  
 

The authors have presented an area and power efficient 
pipelind VLSI architecture that performs the dual function 
of both sorting as well as block upper triangularization of 
matrices used in MIMO wireless systems. The architecture 
is based on primitive computational blocks and more area 
and power efficient compared to a CORDIC based 
architecture. The architecture exploits the parallelism 
inherent in Jacobi rotation.  
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Figure 2: (Block diagram of Pipelined Architecture for Minimum Norm Sorting  

and Block upper tri-angularization of square matrices) 
 

 
Figure 3: (Memory Management) 
 

Table 1: Area breakdown of SORTING Module 
 Quantity 

used 
Area in 

µm2 
% Area 

distributio
n 

Divider 1 60617 14.6 
Multiplier 8 131784 31.8 
Duram1 1 40633 9.8 
Duram2 1 40832 9.8 

Min Norm and   
L-infinity module 

1 
 

17871 4.3 

Control Unit and 
glue logic 

 122445 29.7 

Total  414182 100 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Power breakdown of SORTING Module 
 Quantit

y used 
Power  in 

mw 
%  Power 
distribution 

Divider 1 1.168 6.0 
Multiplier 8 8.460 43.3 
Duram1 1 1.085 5.6 
Duram2 1 1.062 5.5 

Min Norm & 
L-infinity 
module 

1 
 
 

0.671 3.5 

Control Unit and 
glue logic 

 6.983 36.1 

Total  19.429 100 
 


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




