

Abstract

Multiple Input - Multiple Output (MIMO) wireless

technology involves highly complex vectors and matrix
computations which are directly related to increased
power and area consumption. This paper proposes an
area and power efficient VLSI architecture that can
serve the dual purpose of minimum norm sorting of
rows as well as upper/lower block tri-angularization of
matrices. The resources inside the architecture are
shared among both operations and only primitive
computations are used. Results indicate saving in
silicon real estate as well as power consumption
compared to previous architecture without degrading
performance.

1. Introduction

Multiple Input - Multiple Output (MIMO) wireless

communication promises to remove the limits of wireless
networks by providing spectral efficiency near Shannon’s
bound [1]. Because of its benefits, MIMO is entering into
almost every wireless standard such as 802.11n for Wi-Fi
and 802.16 for WiMax application. MIMO involves
complex signal processing which is directly related to high
power consumption and more cost in silicon [2][3].

VBLAST is a MIMO detection algorithm [4] that
provides a good trade-off between BER (bit error rate)
performance and computational complexity compared to
its counter parts. Zero Forcing (ZF) and Minimum Mean
Square Error (MMSE) detectors [5] are computationally
less expensive than VBLAST; however, they provide
inferior BER performance compared to VBLAST. The
optimal solution, maximum likelihood (ML) [5] detection,
provides best BER performance. However, it is highly
expensive regarding computational complexity. This
increases exponentially with the number of antennas and is
prohibitively high for antennas more than 4. Therefore, the
ML algorithm cannot be implemented on mobile platforms
for to its high overhead of area and power [3].

In VBLAST itself, the bottlenecks are repeated pseudo

inverse, sorting and nulling vector calculation. This
repeated computation is a power hungry process. It also
leads to numerical instability in hardware implementation
which can be reduced using alternative algorithms such as
the square root algorithm [6] to compute the pseudo
inverse and sorting of the rows of the inverted channel
matrix. Even with the square root algorithm [6], it is
necessary to optimize the design for power and area.

This research work presents a novel VLSI architecture
that performs minimum norm sorting and block upper
tri-angularization of matrices by employing a series of
unitary transformations known as Jacobi rotation [7]. The
architecture is also compared with the only available
architecture in the literature [8], where CORDIC algorithm
is used for Jacobi transformation.

The rest of the paper is organized such that section 2
describes MIMO system model and detection algorithm,
section 3 proposes a novel architecture for minimum norm
sorting and block upper tri-angularization, while section 4
presents results and section 5 concludes the paper.

2. MIMO System Model and Square Root

Algorithm for VBLAST

 In MIMO communication systems, more than one
antenna is used to transmit symbols and more than one
antenna is used to receive them. In the diagram of Figure
1, spatial multiplexing is used in which M transmit
antennas transmit M different symbols simultaneously
while each symbol is received by the N receive antennas.
Each symbol transmitted is received by all the receiving
antennas thus making multiple channel paths. These paths,
if combined, make a matrix of NxM channel elements.

If
T

Mssssss].....,4,3,2,1[=
denotes the symbol vector

transmitted, H denotes the NxM channel matrix between
the receive and transmit antenna array, and v denotes the
AWGN noise vector, then the corresponding received
vector r is given by

(1)

To recover the transmitted

A New Pipelined Implementation for Minimum Norm Sorting used in Square
Root Algorithm for MIMO-VBLAST Systems

Zahid Khan, Tughrul Arslan, John S. Thompson, Ahmet T. Erdogan
School of Engineering and Electronics,

The University of Edinburgh, Mayfield Road, Scotland, UK
z.khan@ed.ac.uk

vHsr +=

978-3-9810801-2-4/DATE07 © 2007 EDAA

symbol vector s, it is necessary to invert the channel
matrix. The inversion can be done depending upon the
detection method. For MMSE, the channel matrix is
augmented by the noise variance (α) and the detector
output is (2)

rHH)HI(s *1* −+= α (2)

where * represents complex conjugate transpose.

 Figure 1:(MIMO System Model)

In VBLAST, successive nulling and cancellation is

used to detect the transmitted symbols. The channel matrix
is first inverted and then sorted to detect that symbol first
which has the highest post detection Signal to Noise ratio
(SNR). This corresponds to the row of the inverted channel
matrix having minimum norm distance. The detected
symbol is subtracted from the received symbol vector. The
corresponding column of the H matrix is zeroed down and
the process is repeated with the deflated channel matrix
until all the symbols are detected.

In VBLAST detection, square root algorithm [6] is
used for pseudo inversion and minimum norm sorting. The
square root algorithm computes QR decomposition of the
augmented channel matrix given by (3) in a series of
unitary transformations.

MxM
NxM
a

NxM

NxM

R
x

Q
QR

I
H

==

α
 (3)

The algorithm first decomposes the channel matrix into

QR and then computes P1/2=R-1 and BN =Qa from which
pseudo inverse P1/2 Q*a can be computed. The sorting part
of the algorithm is explained below [6]:

1. Find the minimum length row of P1/2 and permute it

to be the last (Mth) row. Permute s accordingly.
2. Find a unitary ∑ such that P1/2 ∑ is block upper

triangular:

=Σ

−−

2/1

2/)1(2/)1(
2/1

0 M

M
M

M

p
PP

P

3. Update Qa to Qa∑.
4. The nulling vector for the M-th signal is given by

*
,

2/1
MM qp α , where Mq ,α is the M-th row of Qa

5. Go back to step 1 but now with P(M-1)/2 and
)1(−M

aQ (the first M-1 rows of Qa)

3. Proposed Pipelined VLSI Architecture

The block diagram of the novel pipelined VLSI

architecture is shown in Figure 2 (last page). This
architecture serves two purposes

1. Minimum Norm Sorting
2. Block Upper tri-angularization of square matrices

The proposed architecture is designed to share resources
between these two processes in a time multiplexed fashion.
The architecture first sorts rows of P1/2 for minimum norm
row and then uses Jacobi transformation to make all but
the last element of that row zero. Before sorting to start,
P1/2 and Qa are taken from the pseudo inverse process and
stored in the two dual port rams (duram1 and duram2) as
shown in Figure 3 (last page)

 Figure 4: (L-Infinity Calculation Module)

3.1 Minimum Norm Sorting

The architecture first computes the L-infinity norm of
all the M rows of P1/2 using the equation given below:

()ii
xmax=

∞
x [10] (4)

The L-Infinity norm module (shown in Figure 4)
consists of two combinational comparators, register and a
controller. Norm1 from block1 and Norm2 from block2 of
Figure 2 are input to Norm Comparator1 which selects the
maximum of the two values and assigns it to Max_Norm.
This value is taken by Norm Comparator2 which compares

it with the already stored value QMax_Norm. Initially at
the first clock cycle, QMax_Norm is zero and, therefore,
Max_Norm1 is assigned the value of Max_Norm.
Max_Norm1 is stored in the register. At the second clock
cycle, the Norm Compartor1 provides the maximum of the
remaining two values. This value is then compared with
the previous maximum value stored in the Register and in
two clock cycles the maximum of the four norms is
calculated which is the required L-Infinity norm.
Controller is used to reset the Register for the next
L-Infinity norm calculation. The Controller takes two
inputs, one is the global reset signal and the other counter
that counts the number of cycles and its value is used for
synchronizing different tasks and operations during sorting
and triangularization. This circuit generates L-Infinity
norm at every second clock cycle and therefore, takes 8
cycles to compute four norms.

Figure 5: (Minimum Norm Search Module)

This L-Infinity module is used in Minimum Norm Search

Module of Figure 5 for calculating the index of the
minimum norm row. The iteration counter counts the
number of iterations by taking the counter as input. A
iteration is the duration in time during which the first
nulling vector is calculated. It is expressed in the form of
number of clock cycles. A specific value of the counter
increments the iteration counter that is used to set one of
the three flags named flag1, flag2 and flag3. Flag1, flag2
and flag3 are asserted only during iteration 1, 2 and 3
respectively. The flags are also de-asserted if a new
process is started or global reset is asserted. The flags are
used as enable inputs to control the storage of the indexes
of the previous minimum rows searched by the module.
This storage is necessary because in every iteration, the
L-infinity norm module provides norms for all the four
rows of P1/2 regardless of the previously computed
minimum norms.

This is done in order to simplify the hardware architecture
for computing L-infinity norm.

The two least significant bits of the read address rd_addr
are used as index to the rows of P1/2. They are stored in s1.
The s1 is basically two cascaded registers to produce a
delay of two clock cycles in order to synchronize the index
value with its corresponding L-infinity norm value. The
‘Selection module for the index of minimum norm row’
compares the current indexed value ‘qrd_addr’ with the
indexes stored in ‘storage for qrd_addr’ and activates the
select signal only if the qrd_addr does not match with the
already stored indexes. The ‘Minimum Norm Comparator’
compares the output of ‘L-infinity norm’ with the previous
minimum value stored in ‘Reg2’. ‘Mux3’ selects
depending upon the ‘select’ signal either ‘qmin_norm’ or
‘min_norm’. ‘Mux1’ selects either the output of Mux3 or a
constant value to be stored in ‘Reg2’. This value is initially
stored at the start of every iteration and is kept in ‘Reg2’
for some time to be replaced by a valid minimum value
from minimum norm search modules. ‘Mux2’ selects the
correct value of the index corresponding to the minimum
norm and stores it in ‘Reg1’.

The sequence of operation is such that at the start of
every iteration, Reg2 is loaded with the constant value and
is kept in the register for a few clock cycles until it is
replaced by minimum norm value coming through Mux3.
L-infinity norm calculates the four norm values and pass
them to ‘Minimum Norm Comparator’ module every other
clk_2. This clock is the half of the original system clock.
The ‘Minimum Norm Comparator’ computes the minimum
value. The index corresponding to the minimum norm row
is selected by ‘Mux2’ taking decision inputs from the
‘Minimum Norm Comparator’ and index compare
modules. The index thus selected is sent to the main
controller for generating corresponding read, write and
control signals.

3.2 Block upper tri-angularization

This section describes zeroing the elements of the

minimum length row using Jacobi transformation. Since
the architecture uses a number of multipliers and a divider,
the following algorithm is used to perform the Jacobi
transformation.

Given nRxε [7] and indices i and k that satisfy 1 ≤ i < k
≤ n, the following algorithm computes c=cos(θ) and
s=sin(θ) such that the k-th component of J(i, k, θ)x is zero.

 If xk = 0 then c = 1 and s = 0
(5)
 else if ik xx ≥ then

 stcsxxt tki === + :,:,/: 2/12)1(
1 (6)

else ctscxxt tik === + :,:,/: 2/12)1(
1 (7)

In channel estimation or pseudo inverse computation, it
is highly unlikely that t=1, t will have a value less than 1.
This implies that values of ‘s’ or ‘c’ can be approximated
using the Taylor’s series given by

() 212/12 211: tts −−
−=+= (8)

This shows the values of ‘s’ or ‘c’ can be computed

using multipliers, shifters and adders. The contribution of
the higher terms is insignificant and ignored.

The steps in tri-angularizaiton are explained below:

Step 1:

The first step in tri-angularization is to convert the four
elements in the minimum norm row of P1/2 matrix from
complex to real by zeroing their imaginary parts [9]. In this
step, the four complex elements in the minimum lengtht
row of both durams are converted to real. To convert them
into real, we need ‘t’ to calculate ‘c’ and ‘s’ and then treat
the real and imaginary parts as two real elements.

a- Calculate ‘t’ using divider for each of the complex

element (say p11, p12, p13 and p14).
b-Use ‘t’ to compute ‘s or c’ by applying ‘t’ to

multipliers (block1) and adders in module1. Store ‘s
or c’. Compute ‘c or s’ using ‘t’ and previously stored
‘s’ or ‘c’ values.

c- Use the values of ‘c’ and ‘s’ to rotate the imaginary
parts of the corresponding channel elements to zero
using block1 together with module1 for p11 and p13
and block2 together with module2 for p12 an p14
respectively.

A ‘t’ value is computed by reading a complex element
from memory and applying it to the divider, the output of
which is the corresponding ‘t’ value which is not only
stored but also applied to the multipliers in block1 to
compute either ‘s’ or ‘c’. For example, if ‘t’ is calculated
using equation 6 then ‘s’ is computed using equation 8 by
applying ‘t’ to block1 to form ‘t2’ which is then applied
to module1 to compute ‘-2-1t2’. The ‘s’ value so obtained is
used to compute ‘c’ value using equation c = s*t. The ‘s’
and ‘c’ values are obtained for all four elements in
pipeline.
 The imaginary parts are rotated to zero by applying
both the real and imaginary parts of the complex elements
together with their corresponding ‘c’ and ‘s’ values to the
two blocks of multipliers and adder modules in Jacobi
rotation. The Jacobi rotation affects the entire column,
therefore, if we want to zero the imaginary part of p11 , the
entire column is involved in rotation. The effect of this
rotation on p11 is to zero its imaginary part while the effect
of the same rotation on all other elements of the same
column is to change the phase angle by the phase angle of
p11. Since it is inherent in Jacobi rotation, all other columns
will be modified in a similar manner.

Step 2:

Rotate the second and third elements in the minimum
length row of P1/2 to zero. (p11, p12, p13, and p14 used in this
section carry different values from step 2 and they are all real).

a- Calculate ‘t’ for the pair of p11, p12, and for p13, p14
b- Compute ‘c’ and ‘s’ for the corresponding ‘t’
c- Rotate p12 and p13 to zero

For this, p11 is rotated against p12 while p13 is rotated

against p14. The calculation of ‘t’, ‘c’ and ‘s’ are as
explained above. These ‘s’ and ‘c’ values are then applied
to the two blocks of 4 multipliers to rotate the entire
column of p11 against the entire column of p12. The eight
multipliers are needed for the rotation of two complex
numbers. This can be explained by assuming h11=r1+jim1
and h12=r2+jim2 , then

−

+

−

=

+
+

− 2

1

2

1

22

11

im
im

cs
sc

j
r
r

cs
sc

jimr
jimr

cs
sc (10)

From the above expression, it is clear that 8 multipliers

are used to compute real and imaginary values of the two
columns that are involved in rotation. Though p11 and p12
are real but all other elements in the same columns have
real and imaginary parts. After rotating p12 to zero, p13 and
p14 are applied which rotate p13 to zero.

Step 3:

Rotate the first element p11 to zero

a- Calculate ‘t’ ,’c’, and ‘s’ values for p11 and p14
b- Rotate p11 to zero

The values ‘t’, ‘c’ and ‘s’ are calculated in a similar way

as explained in step 1 and using ‘c’ and ‘s’ values p11 is
rotated to zero against p14. At the end of step 3, all but the
last element of the indexed row are zeroed.

3.3 Minimum Sort Algorithm Implementation

The index of the minimum norm row is computed using
the steps in section 3.1. The index is applied to the control
unit which generates the necessary read/write addresses
and other signals necessary for zeroing all but the last
element of the indexed row (see Figure 2). For zeroing the
elements, steps explained in section 3.2 have been used.
There is no need to permute the minimum norm row to be
the last row as only the indexes of the rows are permutated.
The NULL vector is obtained as the product of the last
element of the indexed row with the complex conjugate
transpose of the Mth row of Q. After calculating the first
NULL vector, the Mth row of Q and P1/2 are discarded.
The process is repeated with M-1 rows for P1/2 and Q. For

the second NULL vector calculation, the remaining (M-1)
rows of P1/2 are searched to find the next minimum norm
row. The index of that row is applied to the control section
in a similar way that is done for the first index. Proper
control signals are generated to zero all but the last element
of the indexed row. The second NULL vector is obtained
by multiplying the last element of the indexed row with the
(M-1)th row of Q. The process is repeated until all M
NULL vectors are calculated.

4. Low Power strategies, Simulation and
Synthesis results

Power reduction with our module can be achieved by

gating the clock to those portions that remain inactive for
some period during the entire execution time of the sorting
operation. The divider is consuming 17.8% of power
which can be reduced since the divider is active only
during 5% of total processing time. During the time the
divider is not active, its inputs can be gated to bar it from
switching. The use of latch based ram can also result in
further power reduction. Al l of these have been
incorporated into the architecture.

The low power architecture has been synthesized using
Synopsys Design Compiler and mapped to 0.18µm CMOS
technology. The area breakdown of the proposed module is
given in Table 1. The control logic is taking about 29.7%
of the entire area. This is due to the use of appreciable
number of registers for read and write address generators
as well as for storing values of ‘t’, ‘c’, and ‘s’. Latch based
dual port rams take 20% of the area. The rest are taken by
8 multipliers and a divider. The CORDIC based SORTING
module has not been synthesized. However, from the
literature [10], the area of the pipelined CORDIC can be
obtained. If SORTING module is developed based on
CORDIC, there will be three CORDICs with one (called θ
CORDIC) used for angle calculation while the other two
(called Φ CORDICs) will be used for rotation. The area of
the three CORDICs from [10] is about 767960 µm2. There
will also be control unit for sequencing the operation of
these modules. Therefore, the combined area will be much
more than the area occupied by multiplier based
SORTING module given in Table 1.

 The maximum operating frequency of our synthesized
module is 50MHz due to the combinational divider
module. However, with a two-stage pipelined divider
module, the maximum frequency of operation can be
increased to 100MHz. The proposed module is simulated
at 40MHz and the power figures of individual modules are
given in Table 2. From [10], it is evident that the CORDIC
based module consumes more power compared to the
proposed module if simulated at the same clock frequency.
The only advantage of the CORDIC based module is that
its frequency of operation is above 100MHz while with the

proposed architecture a 100MHz can be obtained if a two
stage pipelined divider is used.

5. Conclusion

The authors have presented an area and power efficient
pipelind VLSI architecture that performs the dual function
of both sorting as well as block upper triangularization of
matrices used in MIMO wireless systems. The architecture
is based on primitive computational blocks and more area
and power efficient compared to a CORDIC based
architecture. The architecture exploits the parallelism
inherent in Jacobi rotation.

6. References

[1] G. J. Foschini, “Layered Space-Time architecture for

wireless communication in fading environments when using
multiple antennas,” Bell Labs Tech. J., vol 2, Autumn 1996

[2] G. Lawton, “Is MIMO the future of wireless
communications?”, computer, vol: 37, issue 7, July 2004
Pages 20-22

[3] D. Garrett, L. Davis, St. Brink, B. Hochwald, G. Knagge,
“Silicon complexity for maximum likelihood MIMO
detection using spherical decoding”, Solid-State Circuits,
IEEE Journal, vol. 39, Issue 9, Sept. 2004, Pp(s):1544-52

[4] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A.
Valenzuela, “V-BLAST: an architecture for realizing very
high data rates over the rich-scattering wireless channel”,
Proc. ISSSE’98, Sept. 1998

[5] A. Adjoudani, E.C. Beck, A.P. Burg, G.M. Djuknic, T.G.
Gvoth, D. Haessig, S. Manji, M.A. Milbrodt, M. Rupp, D.
Samardzija,” Prototype experience for MIMO BLAST over
third-generation wireless system”, Selected Areas in
Communications, IEEE Journal on Vol. 21, Issue 3, April
2003 Page(s):440 – 451

[6] B. Hassibi, “An efficient square-root algorithm for BLAST”,
Acoustics, Speech, and Signal Processing, 2000. ICASSP
'00. Proceedings. 2000 IEEE International Conference on,
Volume 2, 5-9 June 2000 Page(s):II737 - II740 vol.2

[7] Gene. H. Golub, Charless F. Van Loan, “Matrix
Computation”

[8] Z.Guo, P.Nilsson, “A VLSI implementation of MIMO
detection for future wireless communications”, Personal,
Indoor and Mobile Radio Communications, 2003. PIMRC
2003. 14th IEEE Proceedings on, vol. 3, 7-10 Sept. 2003
Pages:29-49

[9] C.M. Rader, “VLSI systolic arrays for adaptive
 nulling”, (radar) Signal Processing Magazine, IEEE , vol. 13
, Issue: 4 , July 1996, Pages:29 – 49

[10] Zahid Khan, Tughrul Arslan, John S. Thompson and Ahmet
T. Erdogan, “Enhanced Dual Strategy based VLSI
Architecture for Computing Pseudo Inverse of Channel
Matrix in a MIMO Wireless System”, IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2006),
Karlsruhe, Germany, March 2-3, 2006.

Figure 2: (Block diagram of Pipelined Architecture for Minimum Norm Sorting

and Block upper tri-angularization of square matrices)

Figure 3: (Memory Management)

Table 1: Area breakdown of SORTING Module
 Quantity

used
Area in

µm2
% Area

distributio
n

Divider 1 60617 14.6
Multiplier 8 131784 31.8
Duram1 1 40633 9.8
Duram2 1 40832 9.8

Min Norm and
L-infinity module

1

17871 4.3

Control Unit and
glue logic

 122445 29.7

Total 414182 100

Table 2: Power breakdown of SORTING Module
 Quantit

y used
Power in

mw
% Power
distribution

Divider 1 1.168 6.0
Multiplier 8 8.460 43.3
Duram1 1 1.085 5.6
Duram2 1 1.062 5.5

Min Norm &
L-infinity
module

1

0.671 3.5

Control Unit and
glue logic

 6.983 36.1

Total 19.429 100

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

