
A Tiny and Efficient Wireless Ad-hoc Protocol for Low-cost Sensor Networks

Pawel Gburzynski
University of Alberta

Department of Computing Science
Edmonton, Alberta, Canada T6G 2E8

pawel@cs.ualberta.ca

Bozena Kaminska
Simon Fraser University

School of Engineering Science
Burnaby, BC, Canada V5A 1S6

kaminska@sfu.ca

Wlodek Olesinski
Olsonet Communications Corporation

51 Wycliffe Street
Ottawa, Ontario, Canada K2G 5L9

wlodek@olsonet.com

Abstract

We introduce a simple ad-hoc routing scheme that oper-
ates in the true spirit of ad-hoc networking, i.e., in a mode-
less fashion, without neighborhood discovery or explicit
point-to-point forwarding, while offering a high (and tun-
able) degree of reliability, fault-tolerance and robustness.
Being aimed at truly tiny devices (e.g., with 1KB of RAM),
our scheme can automatically take advantage of extra mem-
ory resources to improve the quality of routes for critical
nodes. In contrast to some popular low-cost solutions, like
ZigBee,TM our approach involves a single node type and ex-
hibits lower resource requirements. The presented scheme
has been verified in an industrial deployment with stringent
quality of service requirements.

1. Introduction

The prevailing wisdom regarding the organization of ad-
hoc wireless networks assumes point-to-point (or hop-by-
hop) communication, whereby each node forwarding the
packet on its way to the destination sends it to a specific
neighbor. Popular ad-hoc routing protocols can be broadly
divided into two groups. Proactive protocols try to main-
tain up-to-date routing information at every node in antici-
pation of demand [11, 3, 9], while reactive protocols collect
the necessary information only when it is explicitly needed
to sustain an actual session [12, 8, 7, 10, 14, 6]. In this
context, AODV [12] (which constitutes the basis of Zig-
Bee) is a reactive scheme. Regardless of the paradigm, one
can always see at least two separate modes: route discov-

ery/maintenance and the actual forwarding of application
packets, with the first mode involving special traffic that
does not directly originate at the network’s application.

1.1. A critique

This “traditional” view on ad-hoc networking appears to
us as a flawed relic of wired routing, where a forwarding
node would insist on knowing the exact identity of the next-
hop neighbor. While perfectly normal in a situation where
the node is directly and selectively linked to its neighbors by
well-behaved wired channels, this insistence loses is merit
in the wireless environment where all the one-hop neighbors
of the forwarding node are capable of receiving the packet,
regardless of its formal destination. Owing to the rather
capricious nature of that inherent broadcast interconnec-
tion of neighbors, it has been viewed as a drawback rather
than advantage: it has brought about the notorious hid-
den/exposed terminal problems and triggered lots of effort
aimed at their nullification. Consequently, the most popu-
lar medium access control schemes employed in forward-
ing, i.e., derivatives of IEEE 802.11, strongly favor point-
to-point communication: the 4-way RTS/CTS/DATA/ACK
handshake only works if the packet is intended for one spe-
cific neighbor.

In a nutshell, a “traditional” wireless routing protocol
works like this. Every node keeps track of other nodes
present in its neighborhood. To this end, the nodes peri-
odically broadcast HELLO messages, which, in addition to
the node identity, may include extra information related to
routes (e.g., as in OLSR [4]). Either proactively or reac-
tively, depending on the assumed paradigm, nodes deter-
mine best routes between source-destination pairs and store

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



information about those routes either in a distributed fash-
ion (as in AODV) or at the source (as in DSR [7]). Note that
during the neighborhood discovery phase, the nodes neces-
sarily resort to broadcasting. Also, in some protocols (e.g.,
DSR and AODV), a node is allowed to overhear routing in-
formation exchanged by other nodes, thus capitalizing on
the broadcast properties of the medium. However, while
forwarding an application packet, the sender addresses it
explicitly to a specific next-hop neighbor according to the
precomputed notion of best route.

The primary difference between the broadcast and uni-
cast transmission is its implied reliability. While a unicast
transmission can take advantage of the 4-way handshake
with provision for reliable delivery, a broadcast transmis-
sion does not even have a well-defined notion of reliability.
The role of the latter, which is unavoidable in the face of
dynamic and unknown a priori neighborhoods, is thus sub-
servient to the former, which is amenable to the reliability-
enhancing MAC-level techniques.

Note, however, that the benefits of those techniques tend
to be questionable [13], and much more so in sensor net-
works, where packets tend to be very short. First, the action
of announcing the (proper) transmission with the RTS/CTS
handshake may take more bandwidth than the actual trans-
mission; thus, the likelihood of damage to an unannounced
transmission is in fact lower than the likelihood of damage
to the announcement. Second, the neighbor identifier re-
quires room in the packet header and thus incurs extra fram-
ing, which significantly inflates the otherwise short packet.

In summary, the traditionally viewed goal of route dis-
covery in ad-hoc wireless networks resembles laying virtual
wires where they do not fit very well. As we argue in the
rest of this paper, one can try instead to harness the inher-
ent broadcast nature of forwarding, which may compensate
for the (apparent) reduction in reliability and bring about
new qualities, viz. simplicity and fault tolerance. It is pos-
sible to eliminate the different modes of the overall routing
scheme and attain scalability, flexibility and uniformity so
much needed in low-cost practicable solutions.

1.2. The idea and related work

We would like to carry out efficient forwarding in a truly
ad-hoc environment without first probing that environment
for the momentary layout of virtual wires. We postulate no
neighborhood identification and no extra traffic beyond the
application packets. As a forwarding node does not care
about the identity of the next hop neighbor that will pick
up the packet, there is no need to re-address the packet and
encapsulate it for the data-link layer. This also means that
a purely internal node, i.e., one that is never a source nor a
destination, needs no address!

Note that there exists a trivial scheme with the above

properties, save for efficiency: flooding. In pure flooding, a
node receiving a packet, always rebroadcast it, unless some
trivial criteria (duplicate, time to live) instruct it otherwise.
Our idea is to tame flooding and make it behave similar to a
scheme in which the nodes have explicitly learned about the
good paths to the destinations. This knowledge is acquired
while the nodes carry out their forwarding duties.

A node receiving a packet decides to rebroadcast it or
drop based on some notion of the node’s “relevance” in the
joint communal task of bringing the packet to the destina-
tion. This notion of relevance is based on information dy-
namically acquired by the node and stored in a cache and
is driven by a set or rules. These rules are applied in turn
to every received packet for which the node is not the des-
tination (in that case the packet is simply absorbed and not
forwarded). The first rule that succeeds results in the packet
being dropped. If a rule fails, the next rule in the chain is
evaluated until either one of them succeeds or all the rules
have been examined. If all the rules fail, the packet is re-
broadcast.

The way the rules are implemented makes them fail if
no information is available in the cache to make an author-
itative decision. This way, a node with limited RAM (and
small cache) will behave conservatively, according to the
principle primum non nocere, possibly forwarding the pack-
ets that a better-equipped node would drop. This scalability
of behavior to memory size is completely automatic.

Notably, this kind of approach has received little atten-
tion in ad-hoc wireless networking. The closest work to
our scheme is [15], where a broadcast forwarding protocol
is proposed based on the notion of gradient understood as
the node’s perceived cost of forwarding the packet towards
the sink. That solution is not mode-less, however, because
the operation of acquiring the requisite metrics requires spe-
cial (extra) messages. Moreover, it appears geared towards
immobile systems with a single sink (destination), which
property simplifies the acquisition and maintenance of the
necessary knowledge. What it shares with our scheme is
the intentional fuzziness of routes, which is deemed advan-
tageous from the viewpoint of reliability and robustness.

2. TARP: the Tiny Ad-hoc Routing Protocol

Consider the following generic flooding scheme. A node
willing to send a packet to some destination simply broad-
casts it to the neighboring nodes. A node receiving a packet
checks its destination address. If the node happens to be
the intended recipient, the packet has reached the end of its
path. Otherwise, the node may decide to re-broadcast the
packet.

This scheme is generic because its essence is in the ex-
act meaning of the word “may.” Note that all forwarding
protocols for wireless ad-hoc networks, including the point-

2



to-point ones, implement a variant of this scheme. This is
because every transmitted packet is in fact broadcast: in
principle, it can be received (and creatively processed) by
all nodes within the transmitter’s range.

2.1. TARP rules

Even a most naive flooding protocol must take measures
to limit the extent of otherwise unlimited flooding. Among
the simplest of those measures is restricting the number of
hops that a single packet is allowed to travel. In addition to
this obvious idea, TARP evaluates a series of rules applied
to the received packet, as explained in Sec. 1.2.

For illustration, consider the obvious rule named DD (for
Duplicate Discard). The rule compares the signature of a
received packet against a list of signatures of recently for-
warded packets (stored in a cache). If the signature is found
in the cache, the rule succeeds (and the packet is dropped).
Otherwise, the rule fails and the packet may be rebroad-
cast (if all the subsequent rules fail). Most rules, including
DD, are naturally parameterized by i) the amount of cache
storage assigned to the rule, ii) the replacement policy for
the cache, iii) some rule-specific parameters. For example,
the DD rule assigns a shorter expiration time to the signa-
tures of packets that appear to be closer to their destina-
tions (based on the metrics described in Sec. 2.3). Gener-
ally, the parameters of a rule determine its focus. A less fo-
cused rule may allow for some fuzziness by exploring more
(alternative) paths at the same time. While this approach
will use more network resources, it will also provide for a
higher reliability and better responsiveness to the dynami-
cally changing configuration of the possibly mobile nodes.

2.2. Packet header

In addition to the obvious source/destination address
pair <S, D>, the TARP-specific components of the packet
header include: the session identifier (s) unique for a given
<S, D> pair, the sequence number of the packet within its
session (n), the retransmission count of the packet (k), the
maximum length of the path that the packet is allowed to
travel expressed as the number of hops (r), the number of
hops traveled by the packet so far (hf ), the total number
of hops traveled by the last packet on the reverse path (hb),
the slack parameter (m) and the Boolean optimal path flag
denoted by opf .

Except for opf , the sizes of those fields are generally
flexible and may depend on the application, but most of
them can be very short. For example, in the present com-
mercial deployment of TARP, both s and k use 4 bits each,
n, r, hf , hb, fit into 5 bits each (note that the range of the
packet sequence number depends on the ARQ scheme used
by the transport layer and shouldn’t be too large in a wire-

less environment), and m is stored on 3 bits. Together with
the opf flag, the TARP-specific header takes 32 bits, with
the packet sequence number being in fact shared with the
application (transport layer). The tuple <S, D, s, n, k> is
called the packet’s signature. It uniquely identifies a single
packet within a certain time frame.

The role of k is to tell apart the application’s (transport-
layer) retransmissions of the same packet and, in particular,
avoid dropping them as duplicates of the previously seen
original. The application may resort to retransmissions in
its attempts to overcome the perceived failures of the for-
warding mechanism. To honor those attempts, that mecha-
nism should give each of the retransmitted copies the same
amount of attention that it extends to every separate packet.

Note that in contrast to the traditional approach to im-
plementing a hop number limit, whereby the remaining hop
count of a packet is decremented towards zero, TARP uses
two fields: the bound set by the source remains constant,
while a separate field stores the increasing number of hops
traveled by the packet. This is because both values are
needed by some rules.

2.3. The SPD rule

The most powerful rule of TARP is called SPD for Sub-
optimal Path Discard. Its objective is to avoid forwarding a
packet via a route that takes it too far from the shortest path
between source and destination. The rule uses its own cache
(the SPD cache) storing triplets <N, hNK , CNK> indexed
by nodes N interpreted as destinations, where K is the node
caching the triplet (see Fig. 1). Whenever K receives a
packet sent by node N , it extracts hf from the packet’s
header and stores it (as hNK ) in the (updated) cache en-
try for N . As this operation does not concern duplicates
discarded by the DD rule, hf will tend to reflect the current
best (shortest) path from N to K .

Figure 1. The SPD rule.

Suppose that K in Fig. 1 receives a packet traveling from
S to D. When S dispatches such a packet, it inserts into
its header hb, the total number of hops made by the last
packet received from D. Again, by the virtue of rule DD,
this tends to be the minimum number of hops in which S

3



can be currently reached from D. Thus, K evaluates hb −
hf , which is the expected number of remaining hops to be
covered by the packet before it reaches D, assuming that it
will follow the same (best) path as a previous packet from
S that reached D a while ago. If hb − hf < hDK , K can
suspect that there is a better path from S to D than any path
passing through K . Thus K may consider itself irrelevant
for the forwarding task in this case and drop the packet.

This approach has two minor flaws. First, it appears to
assume that paths in the S to D direction look the same
as the ones from D to S, i.e., the symmetry of radio links,
which need not always hold in real life. Second, if the rule
always strictly follows the inequality hb − hf < hDK , i.e.,
it succeeds whenever the inequality holds, sessions may not
be able to recover from node failures or mobility. Therefore,
there are two ways to relax the rule. By adding m > 0 to
the left-hand side (see Fig. 1) the rule will allow paths that
appear worse than the best one by a certain margin. This
way, the population of nodes involved in sustaining the ses-
sion between S and D will be larger than strictly needed to
follow the shortest paths in the network. Second, each time
the rule succeeds for a given destination N (i.e, the packet
is dropped), it increments CNK . When the counter reaches
a certain threshold (which is a parameter of the protocol),
the rule forcibly fails. This way, every once in a while, any
node perceiving the session at all is given a chance to con-
tribute to the community’s effort of finding the best route.

2.4. The MAC layer

No handshake of the kind available in IEEE 802.11 is
possible in TARP because 1) the recipient’s identity, be-
sides being unknown, is unimportant, 2) there can be multi-
ple legitimate recipients that do not know about each other,
3) even if some neighbors do not receive the packet, the ones
that have picked it up may still be able to push it forward on
the way to the destination. Note that even a two-way hand-
shake, DATA/ACK, is not possible, as a single broadcast
might legitimately trigger multiple (colliding) acknowledg-
ments.

A forwarding node in TARP would like to know whether
the packet has been picked up by one or more nodes in
the neighborhood, which will bona-fide try to forward it
towards the destination. The identity of those nodes is of
no direct importance to the forwarding node. The approach
used in our first implementation of TARP was to listen for
a copy of the transmitted packet (forwarded by one of the
neighbors) and interpret it as an indication of success—in
addition to timers and counters used to diagnose failures.
There are two problems with this solution. First, depend-
ing on the load at the forwarding node, there can be a sig-
nificant delay between packet reception and retransmission.
Second, to make this idea work, the destination itself has

to “forward” (i.e., retransmit) all received packets, which
creates unnecessary noise in its neighborhood. A better so-
lution employs the idea of fuzzy acknowledgments.

When a node receives a packet, it first evaluates the rules
and then, if all of them fail (i.e., the packet will be for-
warded), the node responds with a short burst of RF activity
(a simple unstructured packet) of a definite duration. This
activity, if present, will tend to occur after a very short pe-
riod of silence (analogous to SIFS in IEEE 802.11) needed
by the node to evaluate the rules. When multiple recipients
send their acknowledgments at (almost) the same time, the
sender will not be able to recognize (all of) them as valid
packets. However, the sender can interpret any activity (of
a certain bounded duration) that follows the end of its last
transmitted packet as an indication that the packet has been
successfully forwarded. Although the value of this indica-
tion is inferior to that of a “true” acknowledgment, it does
provide the kind of feedback needed by the data-link layer
to assume that its responsibility for handling the packet has
been fulfilled.

Any “normal” packet transmission in TARP is preceded
by a short LBT (listen before transmit period) whose du-
ration guarantees that fuzzy acknowledgments (if perceiv-
able at all) are not interfered with by packets. Note that
the implementation of fuzzy acknowledgments violates the
layering principles. This is because the acknowledgment
can only be sent after the rules have been evaluated, i.e.,
the node concludes that its reception of the packet is going
to contribute to its delivery. This is not the only place in
TARP where layering gets in the way. Some rules operate
best if their evaluation is postponed until the packet is about
to be retransmitted, i.e., past the queuing in the data-link
layer. Consequently, our implementation of TARP’s “pro-
tocol stack” has no layers at all.

2.5. Avoiding multiple paths with the same cost

One redundancy problem that SPD is unable to solve is
caused by possible multiple paths with the same smallest
number oh hops. Consider the situation depicted in Fig. 2.
Even with the most restrictive setting of the slack parame-
ter, m = 0, both paths <K1, K2, K3> and <L1, L2, L3>
will be occupied by the packets traveling between S and D.
The duplicates will be eliminated at A (for the D–S direc-
tion) and B (for the direction from S to D); however, each
of the K and L nodes will be consistently forwarding them
because, according to SPD, each of those nodes is located
on the shortest path between S and D. The problem is par-
ticularly nasty if the two rows of nodes can hear each other
because then the redundant traffic contributes to the noise
in their neighborhood and feeds into congestion.

Recall the opf flag in the packet header (Sec. 2.2). This
flag is set by a forwarding node when it knows that the

4



Figure 2. Multiple paths with the same mini-
mum cost.

packet is being forwarded on one of the best paths, i.e.,
the SPD rule fails non-forcibly. This means that the packet
should normally reach the destination, unless some nodes
have moved away or failed. Consider nodes K1 and L1 in
Fig. 2 receiving a packet from node A. Owing to the colli-
sion avoidance mechanism involving LBT and randomized
retransmission delays (akin to IEEE 802.11), one of these
nodes, say K1 will be first to re-broadcast the packet. The
other node, L1 will yield to this transmission and overhear
(receive) the packet re-broadcast by K1. Normally, that
packet would be diagnosed as a duplicate and promptly dis-
carded by DD. However, if opf is set in the packet header,
DD yields to another rule, which compares the signature
of the received packet against the signatures of all packets
currently queued for transmission. If a matching packet is
found at L1 and its hf is not less than hf − 1 in the re-
ceived duplicate, then the packet at L1 is dropped. In plain
words, this means that by forwarding its copy of the packet,
L1 would not improve upon the forwarding opportunities
already extended by K1.

This mechanism will not help if the paths are disjoint,
but it will kick in wherever they cross. Note that while long
disjoint paths of the same length need not be rare in a real-
istic network, the ones for which the length is the shortest
possible definitely are.

3. Concluding remarks

3.1. Performance

A meaningful performance comparison of wireless ad-
hoc protocols is not a grateful task, especially when those
protocols are so drastically different as, say DSDV and
TARP. Even if we agree on common standards of the chan-
nel and mobility models, the multitude of idiosyncratic pa-
rameters of the routing algorithms (e.g., HELLO message
intervals, cache expiration times, various damping factors
for route update triggers, to mention just a few attributes of
the most popular variant of DSDV) must be combined with
the (not always quantifiable) parameters of the completely

incompatible MAC schemes. Thus we cannot really com-
pare the routing protocols as such, but only complete solu-
tions, and, to be of value, the study must be comprehensive
and account for the application context.

Figure 3. Performance comparison of TARP
with other protocols under mobility.

Fig. 3 illustrates the performance of TARP in terms of
the packet delivery fraction (PDF) and compares it with the
performance of three popular ad-hoc routing schemes. The
limited reliability of the network structure is captured by
the mobility of nodes. The network consists of 50 stations
moving within a 670m× 670m square. Each node remains
stationary for Pause Time seconds, then it selects a random
destination within the square and moves there at a uniformly
distributed speed between 0 and 10m/s. Upon reaching the
destination, the node pauses again, selects another destina-
tion, and so on, until the end of simulation. A single experi-
ment continues for 500 seconds; thus, the pause time of 500
implies “no mobility.” The radio model assumes the bit rate
of 2 Mbps and the nominal range of 150m. IEEE 802.11
is used in the MAC layer of all the point-to-point routing
protocols. The broadcast packets needed for route discov-
ery (in AODV, DSR, DSDV) are sent using physical carrier
sensing and are not acknowledged. The traffic sources are
CBR (continuous bit-rate), with the source-destination pairs
spread randomly over all nodes. The amount of cache stor-
age at every node allows it to store ca. 40 entries in the SPD
cache and about 80 entries in the DD cache. The packet size
is 128 bytes.

TARP-F is the basic protocol with the most simplistic
MAC layer, which roughly corresponds to IEEE 802.11
with no handshake. As the MAC layer is assumed to be her-
metic, no elimination of parallel paths (Sec. 2.5) is imple-
mented. TARP-P is a version with fuzzy acknowledgments
but still without the elimination of parallel paths. Finally,
TARP denotes the full version of the protocol.

5



3.2. Applications

The target class of applications of our TARP-based sen-
sor networks are monitoring and event-processing systems
deployed in environments where human life is at risk. One
such effort is our involvement in the Advanced Mobile
Emergency Communications Prototype Project with a spe-
cialized vehicle capable of rapidly deploying emergency
communications throughout regions of Brithish Columbia
accessible by road. The vehicle is equipped with a range
of facilities including terrestrial radio and satellite com-
munications, telephone, video, Internet gateway and other
systems to turn it into a field relay. Among the available
communication facilities are cohorts of self-organizing ad-
hoc wireless sensor nodes enabling rapid deployments of
distributed (and not necessarily stationary) area monitors.
The standart assortment of sensing capabilities of a node
includes temperature, pressure, humidity and acceleration.
It is possible to describe complex and distributed conditions
to be used as alert triggers and/or data collection patterns.

Our most serious industrial installation of a TARP net-
work (the details are classified) consists of several hundred
nodes forming a single mesh network covering the area of
ca. 4km2. The network demands non-trivial and reliable
mesh operation (meaning that the multi-hop functionality is
essential). Data collected at sensors are fed to a small num-
ber of sinks interfaced to infrastructure computers, which
manifest their presence to the nodes via periodic beacons.

3.3. Work in progress

Our present efforts are focused on the development of a
high-fidelity simulation (or rather emulation) environment
for mesh networks running custom protocols (with com-
plete modeling flexibility at all layers). As the program-
ming platform of our devices, i.e., PicOS, descends from
a network simulator [2, 5], this task turns out to be much
easier than it would seem at first sight. The operation of
transporting a PicOS application to a SMURPH model is
almost mechanical, which allows us to think of a compiler
to carry out this task with no or little guidance from the ex-
perimenter.

Our experiments with popular simulators, like ns-2 [1],
have been rather disappointing, mostly because they make
it difficult to adequately model phenomena occurring at the
MAC layer, especially if that layer is nonstandard and has
no ready built-in model. For example, the (randomized)
packet’s fate at the receiver is typically determined at the
moment of its transmission. This makes it impossible to
implement the timing of subtle events related to the partial
and interrupted reception of the packet, which is not without
impact on the exact behavior of the recipient and possibly
other nodes in the neighborhood influenced by the recipi-

ent’s subsequent activity.

References

[1] The Network Simulator: NS-2: notes and documentation.
http://www.isi.edu/nsnam/ns/.

[2] E. Akhmetshina, P. Gburzynski, and F. Vizeacoumar. Pi-
cos: A tiny operating system for extremely small embedded
platforms. In Proceedings of ESA’03, pages 116–122, Las
Vegas, jun 2003.

[3] T.-W. Chen and M. Gerla. Global state routing: a new rout-
ing scheme for ad-hoc wireless networks. In Proceedings of
ICC’98, June 1998.

[4] T. Clausen and P. Jacquet. Optimized Link State Rout-
ing protocol (OLSR). RFC 3626, IETF Network Working
Group, October 2003.

[5] W. Dobosiewicz and P. Gburzynski. Protocol design in
SMURPH. In J. Walrand and K. Bagchi, editors, State of the
art in Performance Modeling and Simulation, pages 255–
274. Gordon and Breach, 1997.

[6] M. Gunes, U. Sorges, and I. Bouazizi. ARA—the ant-colony
based routing algorithm for manets. In Proceedings of Inter-
national Workshop on Ad-hoc Networking (IWAHN), Van-
couver, British Columbia, Canada, August 2002.

[7] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in
ad hoc wireless networks. In Imielinski and Korth, editors,
Mobile Computing, volume 353. Kluwer Academic Publish-
ers, 1996.

[8] J. Li, J. Jannotti, D. D. Couto, D. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In
Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM’ 00), pages
120–130, 2000.

[9] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient rout-
ing protocol for wireless networks. ACM Mobile Networks
and Applications Journal, pages 183–197, October 1996.

[10] V. Park and M. Cors, on. A performance comparison of
TORA and ideal link state routing. In Proceedings of IEEE
Symposium on Computers and Communications ’98, June
1998.

[11] C. Perkins and P. Bhagwat. Highly dynamic Destination-
Sequenced Distance Vector routing (DSDV) for mobile
computers. In Proceedings of SIGCOMM’94, pages 234–
244, August 1993.

[12] C. Perkins, E. B. Royer, and S. Das. Ad-hoc On-demand
Distance Vector Routing (AODV), February 2003. Internet
Draft: draft-ietf-manet-aodv-13.txt.

[13] A. Rahman and P. Gburzynski. Hidden problems with the
hidden node problem. In Proceedings of 23rd Biennial Sym-
posium on Communications, pages 270–273, Kingston, On-
tario, Canada, May 29-June 1 2006.

[14] C.-K. Toh. A novel distributed routing protocol to support
ad-hoc mobile computing. In Proceedings of IEEE 15th
Annual International Phoenix Conf. on Comp. and Comm.,
pages 480–486, March 1996.

[15] F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: a
robust data delivery protocol for large scale sensor networks.
Wireless Networks, 11:285–298, 2005.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




