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Abstract

In this paper, a Spectral Stochastic Collocation Method
(SSCM) is proposed for the capacitance extraction of inter-
connects with stochastic geometric variations for nanome-
ter process technology. The proposed SSCM has several
advantages over the existing methods. Firstly, compared
with the PFA (Principal Factor Analysis) modeling of geo-
metric variations, the K-L (Karhunen-Loeve) expansion in-
volved in SSCM can be independent of the discretization of
conductors, thus significantly reduces the computation cost.
Secondly, compared with the perturbation method, the sto-
chastic spectral method based on Homogeneous Chaos ex-
pansion has optimal (exponential) convergence rate, which
makes SSCM applicable to most geometric variation cases.
Furthermore, Sparse Grid combined with a MST (Mini-
mum Spanning Tree) representation is proposed to reduce
the number of sampling points and the computation time
for capacitance extraction at each sampling point. Numeri-
cal experiments have demonstrated that SSCM can achieve
higher accuracy and faster convergence rate compared with
the perturbation method.

1. Introduction
When process technology scales down to nanometer

range and clock frequency goes beyond Multi-GHz, the
signal integrity problem caused by non-ideal interconnects
poses ever increasing challenges to today’s IC design.
Parasitic extraction, which extracts the parasitic parame-
ters of these non-ideal interconnects, is now facing with
the new challenges of geometric variations of intercon-
nects. These geometric variations include CD variations,
which are caused by lithography process, metal layer thick-
ness variations and ILD (Inter-Layer Dielectric) variations,
which are caused by CMP (Chemical Mechanical Polish-
ing) process. It is predicted that such variations can reach
as much as 35% at 70nm technology node [1]. A good
strategy is to quantify these variations as systematic vari-
ations and random variations [2]. The systematic variations
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are pattern-dependent that can be modeled by some closed-
form models, while the random variations, of which the
sources are often unpredictable, need a more sophisticated
modeling methodology to capture the random process vari-
ations effect within the parasitic extraction of interconnects.

Generally, the stochastic geometric variations can be
modeled as random processes [3], resulting in a stochas-
tic PDE problem for variation-aware capacitance extraction
of interconnects. A straightforward approach for solving
such a stochastic problem is Monte Carlo method, which is
often regarded as a benchmark approach but suffers from
hundreds of thousands of samplings. To reduce the compu-
tation cost, a non-sampling method named FastSies, which
aims to capture the off-chip rough surface effect within the
capacitance parameter, was proposed in [4] to solve stochas-
tic PDE problem. This method is based on the Taylor ex-
pansion of the inverse of potential coefficient matrix, and
computes the mean and variance of the capacitances.

However, mean and variance of the capacitances are only
accurate and efficient for a Gaussian statistic of the result-
ing capacitance parameters, which corresponds to a lin-
ear model for the approximation of capacitances. Large-
scale variations in nanometer process requires a high-order
model to represent the nonlinear dependency of parasitic
capacitances on multiple variation sources [1, 3], and limits
the extensional application of FastSies to geometric varia-
tions. Therefore, another non-sampling method based on
the perturbation method was proposed in [3] to generate a
quadratic model for the capacitances of on-chip intercon-
nects. This perturbation method first discretizes the sur-
faces of conductors by hierarchical panel refinement, and
models the fluctuation of each panel as a random variable.
The ensemble of these random variables is then reduced to
a much smaller number of random variables by a Princi-
ple Factor Analysis (PFA) method [3]. The coefficients of
the quadratic model are computed by the Taylor expansion
of potential coefficient matrix. However, the PFA method
in [3] depends on the number of panels of the discretized
conductor surfaces and will slow down the algorithm espe-
cially when the correlation length of geometric variations is
larger than the size of the conductor. Moreover, the con-
vergence of the Taylor expansion requires the geometric
variations to be small enough, which limits the perturbation
method to slight variation applications.

Besides Taylor expansion, a more promising approach to
approximate a stochastic function is Homogeneous Chaos
expansion. The term “Homogeneous Chaos” was first de-
fined by Wiener [5] as the span of Hermite polynomials of
a Gaussian process, and then extended to a more general
concept as polynomial chaos, which has been introduced to
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the circuit analysis first by J. Wang for solving a stochastic
ODE problem in interconnect analysis [6] and a stochastic
function approximation problem in delay modeling [7]. In
this paper, we propose a more efficient Spectral Stochastic
Collocation method based on Homogeneous Chaos to solve
the stochastic PDE problem in the variation-aware parasitic
extraction of on-chip interconnects.

Firstly, instead of PFA modeling of geometric variations,
we adopt a K-L expansion [5] to generate a minimal random
variable space to model the geometric variations. Compared
with PFA, the discretization of K-L expansion is based on
the correlation length of geometric variations, thus signifi-
cantly reduces the computation cost to model the geomet-
ric variations. Secondly, Homogeneous Chaos is applied
to model the capacitances of interconnects. To character-
ize the capacitance model parameters, a Stochastic Collo-
cation method is proposed. Compared with the perturba-
tion method, this spectral method consisting of Homoge-
neous Chaos expansion has optimal (exponential) conver-
gence rate, and is very promising for capacitance modeling
with geometric variations. Furthermore, a Sparse Grid tech-
nique, which is first proposed by Smolyak and serves as a
“Blessing of dimensionality” in multi-dimensional quadra-
ture and interpolation problems [8, 9], is used to reduce the
number of collocation points compared with Monte Carlo
method. To further reduce the computation cost at each
collocation point, we propose a MST (Minimum Spanning
Tree) representation of Sparse Grids to accelerate the con-
vergence of GMRES at collocation points.

The rest of this paper is organized as follows. Back-
ground describing capacitance extraction problem with geo-
metric variations and perturbation method is presented in
Section 2. The main idea of the Spectral Stochastic Collo-
cation Method (SSCM) is proposed in Section 3. Numerical
results are provided in Section 4. Finally, the conclusions
are drawn in Section 5.

2 Background
In this section, we first formulate the problem of capaci-

tance extraction of interconnects with geometric variations,
and then briefly review the perturbation method [3]. Fi-
nally, the Homogeneous Chaos expansion, which is the fun-
damental of SSCM, is presented.

2.1 Formulation of capacitance extraction
For capacitance extraction of interconnects, a variety of

methods are based on a Boundary Element Method formu-
lation [10], which involves solving the following integral
equation,∫

surfaces

1
4πε0|�r − �r ′|ρ(�r ′)da′ = v(�r ), (1)

where ρ(�r ′) is the charge distribution on the interconnect
surfaces, v(�r ) is the potential and 1

4πε0|�r−�r ′| is the free
space Green’s function. Based on the fact that the charges
are restricted to the surfaces of conductors, the surfaces
of conductors are first discretized into m panels, and the
charge density, as well as the potential, is assumed to be
constant over each panel. Hence, the contribution of the
charge distributed on the jth panel to the potential of the
ith panel is in proportion to the potential coefficient Pij =

1
4πε0aj

∫
panel j

1
|�ri−�rj |dSj , where aj is the area of the jth

panel and �ri is the center of the ith panel [10]. Based on
equation (1), the ensemble of these contributions to all pan-
els results in a set of linear equations, which is the discrete
form of the Integral Equation (IE),

P · �q = �v, (2)

where P ∈ R
m×m is the potential coefficient matrix and

�q, �v ∈ R
m×1 are surface charge and potential vector, re-

spectively. The jth column of the capacitance matrix is
then computed by setting the voltage of jth conductor to 1,
grounding the other conductors and summing up the charge
of panels of the corresponding conductors.

When the geometric variations are taken into account,
the charges are distributed on the fluctuating surface. The
variation of the ith panel can be described by �ri + ∆�ri [3].
The term ∆�ri denotes the fluctuation of ith panel w.r.t. the
nominal smooth reference surface described by �ri, and is
modeled as a Gaussian random process h(�ri) [2, 3]. Such a
stationary Gaussian random process can be defined by two
functions, i.e. the probability density function in (3) and the
correlation function in (4).

f(h(�ri)) =
1√

2πσ2
exp(−h2(�ri)

2σ2
), (3)

Cov(�ri, �rj) = σ2exp(−|�ri − �rj |2
η2

), (4)

where σ is the standard variance and η is the correlation
length. Therefore, the resulting potential coefficient Pij be-
comes a function of random variables {∆�ri}m

i=1. Note that
the fluctuation of each panel is assumed to be uniform. So
altogether there are m random variables for m panels. As
a result, P and �q in (2) are functions of these m random
variables, and the IE in (2) becomes a Stochastic Integral
Equation (SIE) in discrete form,

P(∆�r1, · · · , ∆�rm) · �q(∆�r1, · · · , ∆�rm) = �v. (5)

A traditional approach for solving SIE is using Monte
Carlo method, which amounts to repeated solutions of (2)
for various samplings of the random space. On the other
hand, the convergence rate of Monte Carlo method is only
O(1/

√
M), where M is the number of the samplings of

the random variables. An efficient non-sampling approach
proposed in [3] is a combination of hierarchical method and
perturbation method as reviewed in the following.

2.2 A Perturbation method for SIE
In order to reduce the complexity of modeling geomet-

ric variations, the set of random variables {∆�ri}m
i=1 is first

reduced to a minimal random variables space {δi}N
i=1 by

PFA [3], where N will be much smaller than m. As a result,
{∆�ri}m

i=1 are linear combinations of these reduced random
variables {δi}N

i=1. A Taylor expansion of potential coeffi-
cient around |(�ri − �rj)| results in

Pij = P̃ij +
N∑

k=1

∆P k
ijδk +

N∑
k=1

N∑
l=1

∆P kl
ij δkδl + · · · , (6)

where P̃ij is the potential coefficient for smooth reference
surface and the convergence of Taylor expansion requires

that
∣∣∣ (∆�ri−∆�rj)

(�ri−�rj)

∣∣∣ � 1. A quadratic model for charge den-

sity is then used in [3],

�q = �q 0 +
N∑

k=1

∆�q kδk +
N∑

k=1

N∑
l=1

∆�q klδkδl. (7)

Substituting (6) and (7) into (5) and matching the coeffi-
cients up to the second order yield the recursion of the co-
efficients �q 0, ∆�q k and ∆�q kl [3]. Then the capacitance can
be computed accordingly.
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There are two limitations of this approach. One is re-
lated to the PFA method [3], which is in fact an eigen-
decomposition problem of the correlation matrix associated
with the discretization of the conductor surfaces. The eigen-
value problem of such a correlation matrix can result in an
O(m3) complexity, where m is the number of panels, and
becomes the bottleneck of the algorithm. The other lim-
itation is the convergence condition of Taylor expansion,∣∣∣ (∆�ri−∆�rj)

(�ri−�rj)

∣∣∣ � 1, which limits the application of the per-

turbation method to slight geometric variations.

2.3 Homogeneous Chaos Expansion
An alternative approach to approximate a stochastic

function is Homogeneous Chaos expansion.

Theorem 1 The Homogeneous Chaos expansion (8) con-
verges to any random process with finite second-order mo-
ments.

F (�ξ ) =
∞∑

i1+···+id=0

fi1,··· ,id
Hi1,··· ,id

d (�ξ ). (8)

where Hi1,··· ,id

d (�ξ ) = Hi1
1 (ξ1)×· · ·×Hid

1 (ξd) denotes the
d-dimensional Hermite polynomial of order (i1 + · · ·+ id),
Hj

1 is the one-dimensional Hermite polynomial of order j
and

fi1,··· ,id
=

∫
F (�ξ )Hi1,··· ,id

d (�ξ )ρ(�ξ )d�ξ. (9)

Term ρ(�ξ ) corresponds to the probability density function
of Gaussian random vector �ξ. Since most of the physical
process is second-order process, the Homogeneous Chaos
expansion is a better way to represent stochastic functions.

The new development of Homogeneous Chaos is the
Askey scheme [11], which consists of different kinds of or-
thogonal polynomials with weighting functions related to
different kinds of stochastic processes. Based on the Askey
principle, expansion based on Hermite polynomials has the
optimal (exponential) convergence rate for a Gaussian ran-
dom process. When modeling other non-Gaussian random
fields, the corresponding Askey scheme polynomial chaos
can be chosen in order to achieve the optimal convergence
rate. Take a Poisson process for example, either Homo-
geneous Chaos expansion or Taylor expansion will have a
lower convergence rate than Charlier-chaos expansion. In
this paper, we first deal with the most common Gaussian
variations and propose to employ Homogeneous Chaos to
model the capacitances with geometric variations.

3 Spectral Stochastic Collocation Method
In this section, we will propose a Spectral Stochastic

Collocation Method (SSCM), as one of the stochastic spec-
tral methods, for variation-aware capacitance extraction of
interconnects. First, instead of a PFA procedure, a K-L
expansion procedure is adopted to find a minimal random
variable space to model the geometric variations, as will
be presented in subsection 3.1. Then spectral stochastic
collocation method is proposed in subsection 3.2. Finally,
the Sparse Grid technique with Minimum Spanning Tree
(MST) representation, which significantly reduces the sam-
pling points and the computation time, is developed for sto-
chastic collocation method in subsection 3.3.

3.1 K-L Expansion
The PFA [3] and K-L expansion [5] are both used to find

a small number of random variables to model geometric

variations, and therefore reduce the complexity. K-L ex-
pansion is the one that directly applies to a random process,

h(�r ) ≈
N∑

n=1

√
λnξngn(�r ), (10)

where {ξn}N
n=1 is a set of independent random variables

with N(0, 1) distribution when the surface fluctuation h(�r )
is a Gaussian random process, λn is the nth largest eigen-
value of the correlation function Cov(�r1, �r2) defined in (4)
and gn(�r) is the corresponding eigenfunction, i.e.∫

Ω

Cov(�r1, �r2)gn(�r2)d�r2 = λngn(�r1), (11)

where Ω denotes the area of conductor surface. The N-term
approximation in (10) possesses the following best approx-
imation property.
Theorem 2 (10) is the best root mean square approxima-
tion of the random process h(�r ) [5].

Equation (11) is a homogeneous Fredholm Equation of
the second kind, and many numerical techniques have been
proposed to solve such an equation. In this paper, the popu-
lar Nystrom method [12] is used.

The advantage of K-L expansion over PFA is that spec-
tral decomposition is directly applied to the correlation
function instead of the correlation matrix. Therefore, we
are able to adopt a different discretization scheme based
on the correlation length to solve (11) in order to keep the
balance between accuracy and efficiency. Since the cor-
relation length is much longer than the size of conductors
for most on-chip geometric variations, the amount of un-
knowns, i.e. p, required for the discretization of (11) can be
much smaller than m, where m is the amount of panels for
the discretization of conductor surfaces. Furthermore, an
eigenvalue problem has a cubic complexity, thus m/p times
saving in the amount of panels can result in (m/p)3 times
saving in computation time.

Now, we have the geometric variations modeled by a
small number of random variables �ξ. The normal-direction
fluctuation of the ith panel, ∆�ri = h(�ri), is approximated
by a linear function of these random variables (10). There-
fore, P and �q in (5) become functions of these reduced set
of random variables, and SIE in (5) can be re-written as

P(ξ1, · · · , ξN )�q (ξ1, · · · , ξN ) = �v. (12)

3.2 Stochastic Collocation Method
For solving a stochastic equation like (12), spectral

methods based on polynomial chaos, including Galerkin
and collocation method, possess exponential convergence
rate [11]. In this paper, the more efficient collocation
method, which simply consists of the following two steps,
is applied to the capacitance extraction with geometric vari-
ations.
1) Homogeneous Chaos is employed for the discretization
of unknowns �q (�ξ ) in random space,

�q (�ξ ) ≈ q̃(�ξ ) =
∑

i1+···+id≤2

�qi1,··· ,id
Hi1,··· ,id

d (�ξ ), (13)

where Hi1,··· ,id

d (�ξ ) denotes the Hermite polynomials of or-
der at most two for a quadratic modeling and �qi1,··· ,id

are
the unknown coefficients.
2) To compute the unknown coefficients in (13), the in-
ner product of test delta function and the residue, R(�ξ ) =
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P(�ξ )q̃(�ξ ) − �v, is enforced to vanish at each collocation
point ξ̂i, i.e.

< P(�ξ )q̃(�ξ )−�v, δ(�ξ−ξ̂i) >ρ= P(ξ̂i)q̃(ξ̂i)−�v = 0, (14)
where i = 1, · · · , M and < >ρ is the inner product for ran-
dom space. For one-dimensional problems, Gaussian points
are generally used for collocation points, when extended to
high-dimensional cases, we choose Sparse Grids as collo-
cation points, which will be explained in Section 3.3.

Equations (15) and (16) can be derived by setting (13)
and (14) at M collocation points.∑

i1+···+id≤2

�qi1,··· ,id
H

i1,··· ,id

d (ξ̂i) = q̃(ξ̂i), (15)

q̃(ξ̂i) = P(ξ̂i)−1�v, i = 1, · · · , M. (16)

Note that equations in (16) at M collocation points are nat-
urally decoupled. Therefore, we first compute the charges
at collocation points by solving (16), and then evaluate the
unknown coefficients �qi1,··· ,id

from (15).
Equation (16) becomes a conventional IE at each collo-

cation point, and will be solved by an iterative method such
as GMRES, combined with fast solvers using precondition-
ing and Hierarchical method [13, 14], resulting in O(m)
complexity, where m is the number of panels.

In order to compute the unknown coefficients from (15),
we first derive the solution of the kth equation in (15), i.e.∑

i1+···+id≤2

qk
i1,··· ,id

H
i1,··· ,id

d (ξ̂i) = qk(ξ̂i), i=1,··· ,M, (17)

where qk
i1,··· ,id

and qk(ξ̂i) denote the kth element of vector

�qi1,··· ,id
and q̃(ξ̂i), respectively. (17) can be rewritten as

A�xk = �bk, (18)

where A =




H0,··· ,0
d (ξ̂1) H1,··· ,0

d (ξ̂1) · · · H0,··· ,2
d (ξ̂1)

...
...

. . .
...

H0,··· ,0
d (ξ̂M )H1,··· ,0

d (ξ̂M )· · ·H0,··· ,2
d (ξ̂M )


 ,

�xk =
[
qk
0,··· ,0q

k
1,··· ,0· · · qk

0,··· ,2

]T
,�bk =

[
qk(ξ̂1)· · · qk(ξ̂M )

]T
.

For a multi-dimensional problem, the number of collo-
cation points M is generally larger than the number of un-
known coefficients. Therefore, a weighted Least Square
method is applied to (18) for the computation of unknown
coefficients qk

i1,··· ,id
, and the solution is

�xk =
(
ATWA

)−1
AT W�bk, (19)

where W = diag(w1, · · · , wM ) are the corresponding
weights of Sparse Grids, as will be explained in section
3.3. Based on the orthonormality of Hermite polynomials,
ATWA = I. Therefore, by employing (19) as the solution
of (17) for k = 1, · · · , m, the solution of (15) is simple as

�qi1,··· ,id
=

M∑
i=1

q̃(ξ̂i)Hi1,··· ,id

d (ξ̂i)wi, i1+···+id≤2. (20)

The resulting unknown coefficients {�qi1,··· ,id
}i1+···+id≤2

in (20) are exactly the coefficients of a Homogeneous Chaos
expansion of q̃(�ξ ), as defined in (8) and (9), while the inte-
gration for coefficients in (9) is now computed by a Sparse
Grid quadrature in (20), as will be explained in the follow-
ing.

3.3 Sparse Grid Technique
For multi-dimensional integration, Sparse Grid devel-

ops a minimal number of collocation points based on one-
dimensional Gaussian quadrature and avoids the exponen-
tial growth of computation cost w.r.t. the dimensionality
[8, 9, 15]. Furthermore, a MST (Minimum Spanning Tree)
representation for Sparse Grids is developed, further reduc-
ing the computation cost at each collocation point.
3.3.1 One-dimensional Gaussian Quadrature

Gaussian-Hermite quadrature can be represented by the
following equation [12],

1√
2π

∫
Γ

e−
x2
2 f(x)dx =

l+1∑
i=1

f(xl+1
i )wl+1

i , (21)

where Γ is the integration domain, f(x) is the integrand,
xl+1

i and wl+1
i are the collocation point and weight, respec-

tively. It can be proved that the quadrature (21) is exact for
all polynomials of degree at most (2l + 1) if the quadrature
points are selected as the roots of (l + 1)th-order Hermite
polynomial [12]. In this paper, a l-level accuracy Gaussian
quadrature rule refers to the quadrature formula constructed
by the roots of (l + 1)th-order orthogonal polynomial.
3.3.2 Sparse Grid for Multi-dimensional Quadrature

Let Θl
1 = {xl

1, · · · , xl
l} and W l

1 = {wl
1, · · · , wl

l} de-
note the set of collocation points and weights for one-
dimensional (l − 1)-level accuracy Gaussian quadrature
rule. Direct tensor product of Θl

1 and W l
1 can extend the

quadrature formula (21) to multi-dimensional integration,
but suffers from the “Curse of Dimensionality” [9]. The
amount of collocation points is (k + 1)d when applied to a
d-dimensional integration of k-level accuracy, which makes
the direct tensor product impracticable.

A more promising approach for multi-dimensional in-
tegration is the Sparse Grid [15], of which the quadrature
points Θk

d for a d-dimensional quadrature of k-level accu-
racy is constructed by a linear combination of the tensor
product of Θl

1,

Θk
d =

⋃
k+1≤i1+···+id≤d+k

(Θi1
1 × · · · × Θid

1 ), (22)

with the corresponding weight,

wi1,··· ,id

ji1 ,··· ,jid
= (−1)d+k−|�i|

(
d−1

d+k−|�i|

)
(wi1

ji1
· · ·wid

jid
). (23)

Then, integration is computed as a summation of the contri-
butions at Sparse Grids,(

1√
2π

)d
∫

e−
x2
1+···+x2

d
2 f(x1, · · · , xd)dx1 · · · dxd

=
∑

(x̂
i1
ji1

,··· ,x̂id
jid

)∈Θk
d

f(x̂i1
ji1

, · · · , x̂id

jid
)wi1,··· ,id

ji1 ,··· ,jid
. (24)

Theorem 3 Sparse Grid quadrature is exact for all d-
variables polynomials of order at most (2k + 1) [15].
Therefore, in this paper, Θ2

d is applied to the quadratic mod-
eling of capacitance while Θ1

d is used for the linear model-
ing.

Furthermore, the amount of Sparse Grids for d-
dimensional quadrature of k-level accuracy is [15],

M = dim(Θk
d) ∼ 2k

k!
dk ∼ 2kdim(πk

d), d � 1, (25)
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where πk
d denotes the space of all d-variables Hermite poly-

nomials of order at most k. The algorithm may be re-
garded as optimal because at least dim(πk

d) collocation
points are necessary to determine a polynomial in πk

d . Table
1 shows the number of collocation points of different meth-
ods, an exponentially increasing rate of direct tensor prod-
uct method can be observed while the number of second-
order Sparse Grids is only about four times of dim(π2

d).

Table 1. Amount of collocation points
(Zk

d denotes the collocation points of direct tensor product)

d dim(π1
d) Θ1

d/Z1
d dim(π2

d) Θ2
d/Z2

d
6 7 13/64 28 85/729

14 15 29/16384 120 421/4782969
3.3.3 MST Structure representation of Sparse Grids

In collocation method, equation (16) has to be solved
at M collocation points. In order to accelerate the conver-
gence of GMRES for (16), charges computed at the previ-
ous nearest collocation points will be selected and serve as
the initial value of GMRES at the latter collocation points.
Based on this idea, we proposed to build a tree T to repre-
sent the Sparse Grids, by which capacitances at the root of
T will be computed first and the capacitances at node-i in T
will be computed by setting the solution of its parent node-
p(i) as the initial value in GMRES. In the following, we
will first define the experimental distance function d(i, j),
which is a measurement of the computation cost of GM-
RES at node-i when setting the solution of node-j as its
initial value, and then derive a Minimum Spanning Tree to
minimize the total cost of GMRES at collocation points.
Experimental distance function:

It is observed that charges at surfaces of two different
collocation points are close in value when the shapes of sur-
faces are close to each other. Moreover, it will be efficient
for GMRES when using an initial value close to the real so-
lution. Therefore, the similarity of surface shapes at node-i
and node-j can be reasonably used to quantify the compu-
tation cost of GMRES at node-i when setting the solution
of node-j as its initial value.

Let ξ̂i = (ξi
1, · · · , ξi

N ) and ξ̂j = (ξj
1, · · · , ξj

N ) be two
collocation points of the Sparse Grids. Based on K-L ex-
pansion (10), the difference of h(�r) at �r between two col-
location points is ∆ijh(�r) =

∑N
n=1

√
λn(ξi

n − ξj
n)gn(�r ).

Therefore, the experimental distance function can be de-
fined by

d(i, j) =
∫

Ω

[∆ijh(�r)]2d�r =
N∑

n=1

λn(ξi
n − ξj

n)2, (26)

where Ω is the area of conductor surfaces.
MST representation of Sparse Grids:

Borrowing the idea from the graph theory [16], Sparse
Grids can be represented by a complete undirected graph
G = (V, E), where the vertex set V contains all the col-
location points. For edge between node-i and node-j, an
experimental distance function d(i, j) is defined in (26) to
quantify the computation cost of GMRES at node-i when
setting the solution of node-j as the initial value for node-i.

Therefore, the total cost of GMRES at collocation points
of a tree T generated from graph G can be estimated
by

∑M
i=1 d(i, p(i)), where node-p(i) is the parent node of

node-i and M is the number of collocation points. A Min-
imum Spanning Tree (MST), of which

∑M
i=1 d(i, p(i)) is

minimal, can minimize the total computation cost of GM-
RES at collocation points.

Kruskal’s algorithm and Prim’s algorithm can be applied
to grow a MST from the graph G [16]. Capacitance ex-
traction for each collocation points can then be carried out
by a Depth-First Search of the MST. The charge density of
the parent node is set as the initial value of GMRES for the
capacitance extraction of the child node.

4 Numerical Results
In this section, two 3-D test cases, which are 3-bit bus

and 2x2 bus, are used to validate the accuracy and effi-
ciency of the proposed SSCM. Considering the 35% varia-
tions at 70nm technology node [1], the 3σ range of geomet-
ric variations of interconnects, including width variations
and thickness variations, is chosen as 30% of the dimen-
sion of conductors in 3-bit bus example and 35% in 2x2
bus example. In these cases, the correlation length of width
variations is assumed to be 27 times of the conductor width,
while the correlation length of thickness variations is set as
40 times of the conductor width. Either PFA or K-L ex-
pansion preserves two and four random variables to model
the width variations and thickness variations, respectively.
Monte Carlo method with 50,000 samplings are used as a
benchmark of the experiments.
A) Efficiency of K-L Expansion

In Table 2, computation costs for PFA and K-L expan-
sion for various on-chip interconnect structures are com-
pared. Since the discretization of K-L expansion is based
on the correlation length of geometric variations, the num-
ber of unknowns p in K-L expansion can be much smaller
than the number of panels m in PFA, as shown in Table 2.
Up to two orders of computation time saving by K-L expan-
sion can be observed.

Table 2. Computation time of K-L and PFA
test cases PFA KL

m cost time p cost time
3-bit bus 1440 9.71 272 0.05
2x2 bus 528 1.08 48 0.005

B) Accuracy and Efficiency of SSCM
Figure 1 is a comparison of the Cumulative Distribution

Functions (cdf) of the self-capacitance of the mid-conductor
C22 in 3-bit bus example. Compared with the perturbation
result, the overall SSCM result is more close to the Monte
Carlo simulation.
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Figure 1. CDF of C22 in 3-bit bus example
For further comparison, the mean values, variances and

covariances of the capacitances of both test cases are listed
in Table 3-5. It is observed that,
1) The quadratic model of SSCM has a great improvement
in the accuracy compared with the linear model, while the
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accuracy improvement of perturbation method from linear
model to quadratic model is not so significant.
2) For the approximation of means, variances and covari-
ances, linear model of SSCM has the same order of ac-
curacy compared with the quadratic model of perturbation
method.

The above two points have fully demonstrated that
SSCM has the optimal (exponential) convergence rate com-
pared with perturbation method. The errors of covariances
reach as much as 30% for quadratic model of perturbation
method, which is far from accurate for the real applica-
tion. On the other hand, quadratic model of SSCM has only
within 6% errors for the approximation of covariances.

Iterations in GMRES for various methods are also listed
in Table 6, which shows that,
1) Both perturbation method and SSCM have 1000×
speedup compared with the Monte Carlo sampling.
2) Compared with the SSCM without MST, SSCM based on
MST representation can achieve the same accuracy while
costs only half of the computation time for quadratic models
in both cases.
3) With the same model order, SSCM based on MST repre-
sentation has the same order of computation cost compared
with the perturbation method.

In conclusion, with almost the same computation time,
quadratic model of SSCM with MST has much higher ac-
curacy than the quadratic model of perturbation method. To
approximate the means, variances and covariances of the
stochastic capacitance parameters, linear model of SSCM
with/without MST representation can achieve the same ac-
curacy but with nearly one order less computation time
than second-order perturbation method. Thus, the above
numerical results have well demonstrated that SSCM has
higher accuracy and faster convergence rate than perturba-
tion method.

Table 3. Mean C̄ = E(C)
MC error of Pert. error of SSCM

linear quad. linear quad.
3- C11 1.14 3.46% 0.87% 0.51% 0.09%
bit C22 1.60 4.88% 1.11% 0.71% 0.14%
bus C12 -0.7 5.61% 1.28% 0.82% 0.16%
2x2 C11 1.17 3.58% 1.16% 0.40% 0.03%
bus C12 -0.7 5.73% 1.68% 0.65% 0.04%

Table 4. Variance σ =
√

E(C − C̄)2
MC error of Pert. error of SSCM

linear quad. linear quad.
3- C11 0.21 19.9% 18.0% 16.0% 4.1%
bit C22 0.39 21.8% 19.4% 17.8% 4.6%
bus C12 0.20 21.9% 19.5% 18.0% 4.8%
2x2 C11 0.23 19.5% 17.8% 14.5% 3.4%
bus C12 0.21 21.8% 19.6% 16.8% 4.0%

Table 5. Covariance σ2
i,j=E(Ci−C̄i)(Cj−C̄j)

MC error of Pert. error of SSCM
linear quad. linear quad.

3- σ2
11,22 0.08 34.9% 31.9% 28.2% 5.8%

bit σ2
12,22 -0.07 36.4% 33.1% 29.7% 6.2%

bus σ2
11,12 -0.04 35.1% 32.1% 28.6% 6.1%

2x2 σ2
11,22 0.05 32.8% 30.5% 24.3% 4.0%

bus σ2
11,12 -0.05 34.6% 31.9% 26.1% 4.4%

5 Conclusions
In this paper, a Spectral Stochastic Collocation Method

is proposed to build a variational model of capacitance
based on the Homogeneous Chaos expansion. Firstly, the
K-L expansion involved in SSCM is independent of the

Table 6. Total iterations in GMRES
3-bit bus 2x2 bus

linear quad. linear quad.
MC sampling 2,867,559 3,482,716
Pert. method 452 3,182 558 3714

SSCM without MST 654 4,738 884 6284
SSCM with MST 468 2,744 588 3652

discretization of the surfaces of conductors, thus is much
more efficient than the PFA method [3]. Secondly, com-
pared with the perturbation method based on a Taylor ex-
pansion, stochastic spectral methods consisting of Homo-
geneous Chaos expansion has exponential convergence rate.
Furthermore, Sparse Grid combined with MST representa-
tion significantly reduces the number of collocation points
and the number of iterations, and makes the SSCM very
efficient. The proposed method can be further extended
to non-Gaussian geometric variation cases. For random
process listed in Askey scheme, the corresponding Askey
polynomial chaos can be applied. While for those not listed
in Askey scheme, we can also transform them to a Gaussian
random process. In the future work, we will further study
the SSCM for non-Gaussian variations.
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