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ABSTRACT
In this paper, we propose a novel statistical model order reduction
technique, called statistical spectrum model order reduction (SS-
MOR) method, which considers both intra-die and inter-die process
variations with spatial correlations. The SSMOR generates order-
reduced variational models based on given variational circuits. The
reduced model can be used for fast statistical performance anal-
ysis of interconnect circuits with variational input sources, such
as power grid and clock networks. The SSMOR uses statistical
spectrum method to compute the variational moments and Monte
Carlo sampling method with the modified Krylov subspace reduc-
tion method to generate the variational reduced models. To con-
sider spatial correlations, we apply orthogonal decomposition to
map the correlated random variables into independent and uncorre-
lated variables. Experimental results show that the proposed method
can deliver about 100× speedup over the pure Monte Carlo projection-
based reduction method with about 2% of errors for both means and
variances in statistical transient analysis.

1. INTRODUCTION
The process-induced variability has huge impacts on the circuit per-
formance in the sub-100nm VLSI technologies [12, 11]. The vari-
ational consideration of process has to be assessed in the various
VLSI design steps to ensure robust circuit design.

Statistical modeling of RLC interconnects, which are typically treated
as linear time-invariant (LTI) dynamic systems, has been studied in-
tensively in the past and many research works have been reported [2,
4, 8, 7, 10, 14]. Fundamentally, the most common approach to sta-
tistical modeling and simulation is Monte Carlo based sampling
method, which is the most flexible and trusted method. However,
its high computing costs render its applications limited to very small
circuits.

Statistical modeling methods of interconnects, based on the ex-
tracted parameters/variables, were proposed in [8, 2, 7]. The idea
is to treat the variational variables as the global variables (param-
eters) of the circuits. The original circuits then can be represented
by matrix polynomial forms in terms of those variables. Thus, the
traditional model order reduction methods are applied to the coeffi-
cient matrices of the polynomials. Those methods are more suitable
for the inter-die variations, because variations are treated as global
variables. Interval-valued statistical modeling and model order re-
duction methods have been proposed recently [10, 9]. The idea is to
approximate the variations as a finite interval and uses the interval
arithmetic to generate the order reduced models in terms of varia-
tional poles/residues as well as order-reduced circuit matrices with
interval-valued parameters. Interval methods in general suffer from
the over-pessimism problem in spite of the recent improvement by
using affine interval arithmetic. Also, the errors are accumulated
with the arithmetic operations. Therefore, in [9], it was applied
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only to tree-like circuits, where solving the circuits was done with
very few numerical operations by topology tracing.

Another approach to the statistical modeling and simulation of in-
terconnect circuits is by means of statistical spectrum analysis [5,
14, 4], where statistical variations are presented by orthogonal poly-
nomials. One only needs to solve for the coefficients of the poly-
nomials deterministically in order to compute the variations of the
responses or performance metrics. The major benefit of this method
is the compatibility with current transient simulation framework: it
requires to solve for some coefficients of the orthogonal polyno-
mials. Thus, the computation of variances of node responses can
be done by using transient simulations of given circuits with deter-
ministic inputs. Ghanta [4] applied the statistical spectrum method
to compute the timing delays, based on the moment methods in
frequency domain.

In this paper, we propose a new statistical spectrum based method,
called statistical spectrum model order reduction (SSMOR), to gen-
erate the order-reduced variational models, which in turn can be
used to compute the variational responses and performance metrics
with given variational inputs. The variational models are applied
to fast statistical simulations of many interconnect circuits under
various variations (both inter-die and intra-die). Specifically, our
contribution includes a novel statistical model order reduction tech-
nique, which consists of the statistical spectrum method, the Krylov
subspace based model order reduction technique, and Monte Carlo
sampling method to generate order-reduced variational models. To
consider the spatial correlation, we apply orthogonal decomposi-
tion via principal component analysis to map the correlated random
variables into independent and uncorrelated variables.

The SSMOR follows similar reduction flow proposed previously
in [9]. However, SSMOR uses the statistical spectrum method to
compute the variational moments, which do not suffer the problems
of over-pessimism, nor the accumulated inaccuracy in the interval-
valued method. Also, the proposed method addresses the issue of
spatial correlations, which were not considered in [9]. After vari-
ational moments are generated, Monte Carlo sampling method is
applied by using modified Krylov subspace reduction approach to
generate the variational order-reduced models. Since Monte Carlo
only operates on the order-reduced space (namely, within a few
moments), therefore the cost of high computing diminishes.

The rest of this paper is organized as follows: Section 2 presents
statistical modeling problem to be solved. Section 3 reviews the
orthogonal polynomial chaos based stochastic simulation methods
and Section 4 reviews the principal component analysis method.
Section 5 presents our new statistical model order reduction method.
Section 6 presents the experimental results and Section 7 concludes
this paper.

2. PROBLEM FORMULATION
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Considering the following state equation for a given RLC intercon-
nect circuit using Modified Nodal Analysis (MNA) formulation:

Gv(t)+C
dv(t)

dt
= Bu(t) (1)

where G ∈ Rn×n is the conductance matrix, C ∈ Rn×n the matrix
resulting from storage elements. v(t) is the vector of time-varying
node voltages and branch currents of voltage sources. u(t) is the
vector of independent power sources, and B is the input selector
matrix.

The G and C matrices and input currents u(t) depend on the circuit
parameters, such as metal wire width, length, thickness on intercon-
nects, and transistor parameters, like channel length, width, gate
oxide thickness, etc. In this paper, all the circuit parameter vari-
ations are treated as correlated Gaussian random variables, which
differ from previous research to model the intra-die variations as
uncorrelated in [5] . The spatial correlations are removed by us-
ing a set of independent random variables via orthogonal mapping
technique, principal component analysis (PCA) [3].

In this paper, we assume that there are a number of dependent,
correlated random Gaussian variables. After applying PCA, those
correlated variables are transformed into independent, uncorrelated
ortho-normal random Gaussian variables ξi(θ), i = 1, ...,n, which
actually model the channel length and the device threshold voltage
variations. Let Θ denote the process sampling space. Let θ ∈ Θ,
ξi : θ → R denote a normalized Gaussian variable, and ξ(θ) =
[ξ1(θ), ...,ξn(θ)] is a vector of n independent Gaussian variables.
So, the matrices G and C are functions of ξ, i.e. G(ξ) and C(ξ).
Thus, equation (1) becomes

G(ξ)v(t)+C(ξ)
dv(t)

dt
= Bu(t) (2)

Note that input u(t) is also subject to variations. But here we fo-
cus on the variations of the interconnects for the sake of modeling.
Thus, the problem is to develop a variational order-reduced system
in terms of Ĝ ∈ Rk×k and Ĉ ∈ Rk×k, where k << n,

Ĝv(t)+Ĉ
dv(t)

dt
= B̂u(t) (3)

where Ĝ and Ĉ have variational matrix elements, which are treated
as uncorrelated after applying PCA. The input sources may be vari-
ational, thus the reduced models can be combined with Monte Carlo
method to compute the variational responses of interconnects, such
as power grid and clock networks. In addition, the reduced sys-
tem can be represented in terms of variational pole/residue forms.
Therefore, transfer functions are evaluated through fast transient
waveform computation by using the recursive convolution method.

3. STATISTICAL SPECTRUM ANALYSIS
In this section, we briefly review the statistical spectrum or orthog-
onal polynomial chaos (PC) based stochastic simulation methods.

3.1 Concept of Hermite Polynomial Chaos
In the following, a random variable ξ(θ) is expressed as a function
of θ, which is the random event. Hermite PC utilizes a series of
orthogonal polynomials (with respect to the Gaussian distribution)
to facilitate stochastic analysis [15]. These polynomials are used as
orthogonal basis to decompose a random process in a similar way
that sine and cosine functions are used to decompose a periodic
signal in a Fourier series expansion.

Given a random variable v(t,ξ) with certain variance, where ξ =
[ξ1,ξ2, ...ξn] denotes a vector of ortho-normal Gaussian random
variables with zero mean, the random variable can be approximated

by truncated Hermite PC expansion as follows: [3]

v(t,ξ) =
P

∑
k=0

akHn
k (ξ) (4)

where n is the number of independent random variables, Hn
k (ξ) is

n-dimensional Hermite polynomials, and ak are the deterministic
coefficients. The number of terms P is given by

P =
p

∑
k=0

(n−1+k)!
k!(n−1)!

(5)

where p is the order of the Hermite PC. If only one random vari-
able is considered, the one-dimensional Hermite polynomials are
expressed as follows:

H1
0 (ξ) = 1,H1

1 (ξ) = ξ,H1
2 (ξ) = ξ2 −1,H1

3 (ξ) = ξ3 −3ξ, ... (6)

Hermite polynomials are orthogonal with respect to Gaussian weighted
expectation (the superscript n is dropped for simple notation):

< Hi(ξ),Hj(ξ) >=< H2
i (ξ) > δi j (7)

where δi j is the Kronecker delta and < ∗,∗> denotes an inner prod-
uct defined as:

< f (ξ),g(ξ) >=
1√

(2π)n

Z
f (ξ)g(ξ)e−

1
2 ξT ξdξ (8)

Thus, the coefficient, ak, is found by a projection operation onto
the Hermite PC basis:

ak(t) =
< v(t,ξ),Hk(ξ) >

< H2
k (ξ) >

, ∀k ∈ {0, ...,P}. (9)

3.2 Simulation Approach Based on Hermite
PCs

In case that v(t,ξ) is unknown random variable vector (with un-
known distributions), such as node voltages in (1), then the coef-
ficients can be computed by using Galerkin method. The principle
of orthogonality states that the best approximation of v(t,ξ) is ob-
tained when the error, ∆(t,ξ), which is defined as

∆(t,ξ) = G(ξ)v(t)+C(ξ)
dv(t)

dt
−Bu(t) (10)

is orthogonal to the approximation. That is

< ∆(t,ξ),Hk(ξ) >= 0, k = 0,1, ...,P (11)

where, Hk(ξ) are Hermite polynomials. In this way, we have trans-
formed the stochastic analysis process into a deterministic form,
where we only need to compute the corresponding coefficients of
the Hermite PC. Once we obtain those coefficients, the mean and
variance of the random variables can be easily calculated.

In the following section, we will show how to apply the statisti-
cal spectrum method to compute the variational circuit moments,
which in turn are used to generate the variational reduced models
via Krylov subspace reduction methods.

4. CONSIDERATION OF SPATIAL CORRE-
LATION

In this section, we consider the spatial correlations among different
variations. The spatial correlations exist in the intra-die variations
and have been modeled for timing analysis [12, 1]. The general
way to consider spatial correlation is by means of mapping the cor-
related random variables into a set of independent and uncorrelated
variables. In this paper, we apply PCA method in our spectral sta-
tistical analysis framework for power/grid statistical analysis.



4.1 Concept of Principal Component Analysis
We first briefly review the concept of principal component analysis,
which is used here to transform the random variables with correla-
tion to uncorrelated random variables [6].

Suppose that x is a vector of n random variables, x = [x1,x2, ...,xn]T ,
with covariance matrix C and mean vector µx = [µx1 ,µx2 , ...,µxn ]. To
find the orthogonal random variables, we first calculate the eigen-
value and corresponding eigenvector. Arranging the eigenvectors
in descending order based on corresponding eigenvalues, the or-
thogonal mapping matrix A is expressed as

A = [eT
1 ,eT

2 , ...,eT
n ]T (12)

where ei is the corresponding eigenvector to eigenvalue λi, which
satisfies

λiei = Cei, i = 1,2, ...,n (13)

and

λi < λi−1, i = 2,3, ...,n (14)

With matrix A, we can perform the transformation to obtain the
orthogonal random variables, y = [y1,y2, ...,yn]T , by using

y = A(x−µx) (15)

where, yi is a random variable with Gaussian distribution. The
mean, µyi , is zero and the standard deviation, σyi , is

√
λi under

the condition that [6]

eT
i ei = 1, i = 1,2, ...,n (16)

Here, due to the orthogonal property of matrix A

A−1 = AT (17)

Therefore, we may use the following equation to reconstruct the
original random variables x:

x = AT y+µx (18)

4.2 Spatial Correlation Analysis in Linear Dy-
namic Systems

Assuming Φ = [Φ1,Φ2, ...,Φn] is a random variable vector, repre-
senting the correlated variations of certain sources of the circuit.
Let Φi,i = 1,2, ...,n, be a random variable with Gaussian distribu-
tion. µΦ = [µΦ1 ,µΦ2 , ...,µΦn ] is the mean vector of Φ and C is the
covariance matrix of Φ.

Applying PCA, we can obtain the corresponding uncorrelated ran-
dom variables φ = [φ1,φ2, ...,φn] through the equation

φ = A(Φ−µΦ) (19)

where, A is the orthogonal mapping matrix. Also, the original cor-
related random variables, Φ, can be expressed as

Φi =
n

∑
j=1

ai jφ j +µΦi , i = 1,2, ...n (20)

where ai j is the ith row, jth column element in the orthogonal map-
ping matrix as defined in equation (15). φ = [φ1,φ2, ...,φn] is a
vector with orthogonal (uncorrelated) Gaussian random variables.
The mean of φ j is zero and variance is λ j, j = 1,2, ...,n. The dis-
tribution of φi can be written as

φi = µφi +σφi ξ̂i, i = 1,2, ...,n (21)

where, ξ̂ = [ξ̂1, ξ̂2, ..., ξ̂n] is a vector with ortho-normal Gaussian
random variables. σφi is the standard deviation. Thus, the corre-
lated random variable vector Φi can be expressed with uncorrelated

orthogonal random variables, ξ̂ = [ξ̂1, ξ̂2, ..., ξ̂n], as:

Φi =
n

∑
j=1

ai j

√
λ jξ̂ j +µΦi , i = 1,2, ...,n (22)

5. STATISTICAL SPECTRUM MODEL OR-
DER REDUCTION (SSMOR)

In this section, we first present our modified Krylov subspace model
order reduction (MOR) framework, which is suitable for variational
modeling, followed by the new variational moment computation
method.

5.1 Modified Krylov Subspace Model Order
Reduction

Krylov subspace based MOR method is to project the given circuit
states into the dimension-reduced Krylov subspace of the circuit
states. The Krylov subspace essentially is spanned by the domi-
nant moment vectors of circuit transfer function. For a state space
equation of an RLC circuit in equation (2), Krylov subspace is de-
fined as

Kq(A,b) = span{b,Ab,A2b, ...,Aqb}, (23)

where A = G−1C and b = G−1B and q is some given positive inte-
ger. Note that Aib is the i block moment defined as

mi = Aib = (−G−1C)iG−1B, (24)

of the circuit state transfer function, namely, H(s) = (G+Cs)−1B.
The block moment mi can be directly computed in a recursive way

m0 = G−1B;
m1 = −G−1Cm0;
· · ·
mi = −G−1Cmi−1; for i > 0,

(25)

One way to build the reduced model is by means of Pade approxi-
mation, which computes the poles/residues of the transfer functions
by using the moment information directly, as shown in the clas-
sic AWE method [13]. However, this explicit moment matching
method is not numerical stable for computing higher order models.

In our approach, we propose a modified Krylov subspace projection
based MOR method to generate the reduced models. Specifically,
we first define the moment matrix M as

M = [m0,m1, ...,mq−1] (26)

The standard Krylov subspace projection method is to orthonor-
malize the vectors in M in order to generate a projection matrix
V with the same dimension. Numerical methods like Arnoldi and
Lanczos methods are typically used for the orthonormalization pro-
cess, where the moment vectors are orthonormalized immediately
after generation against all the previously-generated moment vec-
tors.

Such orthonormalization process, however, is not suitable for our
variational modeling process, as it is difficult to pass the varia-
tional information through the orthonormalization process using
the aforementioned statistical spectrum method. Instead, we com-
pute all variational moments by using statistical spectrum method.
After all the block moments and associated variations are com-
puted, we switch gears to the Monte Carlo sampling method to
generate the variational reduced models. In each sampling run,
we orthonormalize moment vectors in M by using Gram-Schmidt
or modified Gram-Schmidt orthonormalization algorithms to com-
pute projection matrix V . Once the projection matrix V is obtained,
the original circuit matrix G and C are transformed to dimension-
reduced matrices by congruence transformation:

Ĝ = V T GV ; Ĉ = V TCV ; B̂ = V T B (27)



Due to the nature of congruence transformation, the reduction pro-
cess guarantees the passivity of all the reduced models. To compute
the poles and residues, we can further perform eigen-decomposition
of Ĝ−1Ĉ

Ĝ−1Ĉ = SΛS−1

where Λ = diag(λ1,λ2, ...λi), which are the reciprocals of the dom-
inant poles.

To find the residues, we solve for w in Ĝw = V T B. Then the
residues are simply the multiplications of STV T B and S−1w. How-
ever, note that when generating the variational reduced models us-
ing Monte-Carlo method, we need to consider the variations in both
moments (i.e. the projection matrix V ) and the given G and C matri-
ces in state equations. One important remark is that those variations
are correlated, thus we need to treat them as correlated samples dur-
ing the Monte Carlo method.

5.2 The New Statistical Model Order Reduc-
tion Flow

The proposed statistical model order reduction flow, SSMOR, is
shown on the left hand side of Fig. 1. As comparison, we also
show the pure Monte Carlo based MOR approach by using the tra-
ditional Krylov subspace projection MOR method. In the proposed
flow, we use statistical spectrum method to compute the variational
moments. Later on, we adapt the Monte Carlo sampling method
to generate the variational reduced models by using the modified
Krylov subspace method. The samplings are done based on the
computed means and variances of Gaussian distributions for each
corresponding moment. Since the Monte Carlo method is per-
formed on the reduced models, it is obvious that we gain significant
speedup over the pure Monte Carlo MOR method.

Compute poles/residues

    Orthonormalization

Congruence transformation

  Solve for variational moments

              MNA

Monte Carlo−based

     Decompose G,C into 
   Hermite Polynomials

       Add variation into netlist

Solve for moments

Orthonomalization

Compute poles/residues

Congruence transformation

Monte Carlo 

Setup variational moment
             equations

Hermite−based

          

    Given variance of G,C

   based  MOR            MOR

Monte Carlo sampling

Statistical Spectrum

Figure 1: Flowchart of Statistical Spectrum and Monte Carlo
Algorithms

5.3 Statistical Moment Computation with Mul-
tiple Random Variables

Since the correlations may be removed by PCA, let’s consider n
uncorrelated random variables. In this case, we use first order
Hermite expansion. This is also a valid assumption practically, as
first-order Hermite polynomials lead directly into Gaussian distri-
butions. Given a Gaussian variations on the RLC elements, many
interconnect timing performances are assumed to be Gaussian [1,
4]. The variational G and C matrices now become

G = g0 +
n

∑
i=1

giξi ; C = c0 +
n

∑
i=1

ciξi

where, ξi is the random variable with Gaussian distribution with
zero mean and standard deviation 1. g0 and c0 denote the means of
G and C respectively. gi and ci are the variances of the associated
ξi respectively.

For n random variables, it is clear that the basis of Hermite poly-
nomials with expansion to first order is known as [1,ξ1,ξ2, ...,ξn].
Thus,

m0 = am0 +
n

∑
i=1

amiξi

m2q = a0 +
n

∑
i=1

aiξi

m2q−1 = b0 +
n

∑
i=1

biξi (28)

where, [am0,am1, ...,amn], [a0,a1, ...,an], and [b0,b1, ...,bn] are co-
efficients with respect to the Hermite polynomial basis. Applying
the principle of orthogonality and equalities of Gaussian distribu-
tions, the zero moment can be computed with the following equa-
tion:



g0 g1 g2 . . . gi . . . gn
g1 g0 0 . . . 0 . . . 0
g2 0 g0 . . . 0 . . . 0
...

...
...

...
...

...
...

gi 0 0 . . . g0 . . . 0
...

...
...

...
...

...
...

gn 0 0 . . . . . . . . . g0







am0
am1
am2

...
ami

...
amn



−




B
0
0
...
0
...
0




= 0

(29)

Once the zero moment is computed, the (2q)th moment can be eval-
uated from (2q−1)th moment recursively with the following equa-
tion:




g0 g1 g2 . . . gi . . . gn
g1 g0 0 . . . 0 . . . 0
g2 0 g0 . . . 0 . . . 0
...

...
...

...
...

...
...

gi 0 0 . . . g0 . . . 0
...

...
...

...
...

...
...

gn 0 0 . . . . . . . . . g0







a0
a1
a2
...

ai
...

an




+




c0 c1 c2 . . . ci . . . cn
c1 c0 0 . . . 0 . . . 0
c2 0 c0 . . . 0 . . . 0
...

...
...

...
...

...
...

ci 0 0 . . . c0 . . . 0
...

...
...

...
...

...
...

cn 0 0 . . . . . . . . . c0







b0
b1
b2
...

bi
...

bn




= 0 (30)

Once all the moments and their variations are computed by statisti-
cal spectrum method, we proceed to compute the variational poles
and residues via Monte Carlo methods by using modified Krylov
subspace projection methods, as mentioned in the earlier part of
this section.

6. EXPERIMENTAL RESULTS
This section describes the simulation results of circuits with varia-
tions in G and C in linear dynamic systems. The proposed method
has been implemented in Matlab 7 and partially in Perl. All the ex-
perimental results are carried out in Linux system with dual Xeon
CPU’s with 3.06 GHz and 1 GB of memory.

Firstly, the magnitudes of variations are assumed to be the same
without correlations for all nine random variables. These variations



affect both G and C respectively in linear systems. Secondly, exper-
imental results with nine random variables considering correlations
are presented. Nine random variables are assumed to affect both G
and C at the same time with predefined correlations among them.
The correlated random variables are transformed into uncorrelated
variables through PCA.

For pure Monte Carlo based model order reduction method, we
perform the modified Krylov subspace method on the variational G
and C matrices. Specifically, for each sampled linear dynamic cir-
cuit, we find the first qth order moments, say q = 10, of the system
in our experiment in a recursive way. The next step is to compute
the corresponding reduced circuit matrices, Ĝ, Ĉ and B̂. Finally,
we find the pole and residues by eigen-decomposition. At least five
poles are evaluated in our experiments.

In the SSMOR method, we compute variational moments by using
the statistical spectrum method. After variational moments are cal-
culated, we switch gears to Monte Carlo by using correlated sam-
ples to compute the variational poles and residues. The approach
with modified Krylov subspace projection is employed to obtain
the poles and residues.

For practical consideration, we select a small RLC network with
33 nodes and some variational current sources to test the proposed
method. The small size of the circuit allows Mente Carlo simula-
tions to finish within reasonable time. The variances with respect
to R and C for nine random variables are set to be 0.005. The vari-
ances for current sources are set to be 0.01. Furthermore, larger-
sized circuits are tested, as shown in Table 2, to study the scalability
of the proposed method over the pure Monte Carlo method.

Fig. 2 shows the comparison between SSMOR approach and Monte
Carlo simulation with nine independent and uncorrelated random
variables in terms of pole variations. Given the same circuit for
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Figure 2: Comparison of poles between SSMOR and Monte
Carlo methods (nine uncorrelated random variables).

both methods, the experiment is repeated for 2000 times in Monte
Carlo method, such that there are 2000 sets of moments for each
method. The number of samples is sufficient to guarantee 99%
confidence level with 1% to 2% inaccuracy. The values of poles
are derived from those 2000 sets of moments using the SSMOR
method, the pure Monte Carlo MOR method. The values of poles
are shown in x-axis with five pole indices shown in y-axis. We can
see that the SSMOR method agrees pretty well with the pure Monte
Carlo MOR method using Krylov subspace methods.

In addition, we compare the pole variations between the proposed
SSMOR method and the pure Monte Carlo MOR method for nine
correlated random variables. The results are shown in Fig. 3 and
Fig. 4. Obviously, without applying PCA, the variational pole dis-
tribution does not match with the one obtained from pure Monte
Carlo method as shown in Fig. 3. Applying PCA dramatically im-
proves the accuracy of the pole distribution against Monte Carlo
method, as shown in Fig. 4.

Finally, we use the reduced variational models to compute the tran-
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Figure 3: Comparison of poles between SSMOR without PCA
and MC method (nine correlated random variables)
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Figure 4: Comparison of poles between SSMOR with PCA and
MC method (nine correlated random variables)

.

sient responses with deterministic and variational power source in-
puts. The variational inputs are piecewise linear current sources.

Given a deterministic piecewise linear input, the comparison of
voltage waveform in time domain at selected node between SS-
MOR and the Monte Carlo MOR method with 2000 samplings,
is shown in Fig. 5. For the variational models, we use recursive
convolution method to compute the transient responses after vari-
ational poles and residues are computed. The two waveforms are
very similar. In the case of variational stimulus, the comparison be-
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Figure 5: Comparison of PWL response between SSMOR re-
duced model and Monte Carlo method with deterministic stim-
ulus (nine random variables).



Table 1: Voltage response comparison between SSMOR and
Monte Carlo methods

Time MC SSMOR % error
instance mean std mean std mean std
(e-3) s (e-5) (e-6) (e-5) (e-6) % %

3 0.673 9.24 0.674 9.27 0.15 0.32
5 3.94 9.22 3.95 9.28 0.25 0.65

30 17.63 15.35 0.1766 15.81 0.17 2.53

Table 2: Runtime comparison between SSMOR and Monte
Carlo method

#node SSMOR MC Speedup
Ckt1 33 1 40.44 44 times
Ckt2 553 1 220.53 221 times
Ckt3 1720 1 338.34 338 times

tween SSMOR method and Monte Carlo MOR method is shown in
Fig. 6. As it can be shown in both figures, the responses from our
SSMOR method are almost identical to the ones using Monte Carlo
method. To calculate the percentage of errors in SSMOR method
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Figure 6: Comparison of PWL response between SSMOR re-
duced model and Monte Carlo method with stochastic stimulus
(nine random variables)

.

against Monte Carlo method, we measure the transient waveforms
at three different time instances at a randomly selected node, as
shown in the first column of Table 1. The Table 1 shows the per-
centage of errors for the three time instances over 2000 samples. It
can be seen that the transient errors between two methods are about
2% for both means and variances.

In consideration of the runtime speed between SSMOR and Monte
Carlo MOR, the result of the speedup is shown in Table 2. Please
note that the measurement of the speedup is based on the algorithms
for SSMOR and Monte Carlo MOR. The benchmark includes the
time for PCA transformation, and the computation of poles and
residues. However, it does not include the time for transient anal-
ysis. The SSMOR shows about 100X of speedup over pure Monte
Carlo method depending upon the size of the circuits.

7. CONCLUSION
We have proposed a new statistical model order reduction tech-
nique, named SSMOR, which considers both intra-die and inter-
die process variations. The SSMOR generates order-reduced varia-
tional models from the given variational circuits with correlations.
The reduced model can be used for fast statistical performance
analysis of interconnect circuits with variational input sources. To
consider spatial correlations, orthogonal mapping, based on prin-
cipal component analysis, is applied to eliminate the correlations
among variational random variables. The SSMOR method com-
bines the statistical spectrum analysis method, Monte Carlo sam-

pling method, and a modified Krylov subspace model order reduc-
tion technique, to generate the statistical reduced models. The pro-
posed SSMOR method can deliver about 100× speedup over the
pure Monte Carlo projection-based reduction method with about
2% of errors in statistical transient analysis.
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