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ABSTRACT
In this paper we introduce a new algorithm for model order reduc-
tion in the presence of parameter or process variation. Our analysis
is performed using a graph interpretation of the multi-parameter
moment matching approach, leading to a computational technique
based on Random Sampling of Moment Graph (RSMG). Using this
technique, we have developed a new algorithm that combines the
best aspects of recently proposed parameterized moment-matching
and approximate TBR procedures. RSMG attempts to avoid both
exponential growth of computational complexity and multiple ma-
trix factorizations, the primary drawbacks of existing methods, and
illustrates good ability to tailor algorithms to apply computational
effort where needed. Industry examples are used to verify our new
algorithms.

1. INTRODUCTION
A central topic in the recent research literature of electronic de-

sign automation is the analysis of circuit performance under param-
eter variability. It is believed that proper treatment of performance-
related yield questions, induced by increased amounts of process
and environmental variability, will be essential to economically
produce integrated circuits at future technology nodes. It is hoped
that a move to analysis tools that explicitly incorporate variability
will enable more robust circuit designs.

Our concern in this paper is with model order reduction algo-
rithms for interconnect analysis. For deterministic, non-parameter
varying networks, model order reduction is a mature area with sev-
eral well-established algorithms, the most familiar of which are the
Krylov-subspace algorithms PVL [1] and PRIMA [2]. More re-
cently, several approaches have been proposed for reduction that
considers process variability effects [3, 4, 5, 6, 7, 8] and they ex-
plicitly generate parametric models. Algorithms in [3, 4, 5, 7] are
moment matching type algorithms, or related to moment match-
ing type algorithms. Usually the moment-matching methods match
multi-dimensional moments involving the parameters and frequency.
The algorithm in [6] appears to be quite general and able to model
a variety of nonlinear process descriptions. However, for purposes
of this paper we will consider it only for purposes of parametric
model generation.

The intent of this paper is to investigate some computational
quandaries that have arisen in this recent literature. Roughly stated,
the moment matching schemes suffer from the problem that the
computational effort to generate the model grows exponentially
with the number of parameters, if all parameters are treated equally.
Several workers have remarked that it is in general not a good idea
to treat all the moments equally. Generally it is better to match
many moments in the frequency variable and only a few in the pa-
rameter variables. This is particularly true in the case of process

variation where the range of parameter variation is restricted. Un-
fortunately this observation does not improve matters greatly for
the software implementer since it isn’t obvious which moments are
the important ones. Since in a multi-metal-layer interconnect pro-
cess, the number of parameters can stretch well into double digits,
even keeping the multi-dimensional moments associated with fre-
quency and one additional order per parameter can result in unac-
ceptably large computation times. To make matters worse in some
cases such low-order approximations are not sufficiently accurate.

From the results that have appeared in the literature, the PMTBR
method in [6] appears to sidestep this problem. In many cases the
number of projection vectors that must be generated in constructing
the reduced order model appears to be only weakly related to the
number of parameters. In fact often the number of projection vec-
tors that must be generated for engineering accuracy is only 3-5 per
input, considerably less than the number of parameters. This type
of performance cannot be equaled by any of the moment matching
schemes that have appeared to date even for affine model depen-
dencies, and certainly not for, e.g., quadratic models where there
are 20+ parameters.

On the other hand, the method of [6] suffers from a large constant-
factor computational penalty, because a combination of the capac-
itance and conductance matrices must be factored, rather than just
the conductance matrix as in the moment-matching approaches (when
expansions around zero frequency are considered). This leads to a
large potential slowdown as the capacitance matrix can be much
denser than the conductance matrix if coupling effects are consid-
ered. What is worse, multiple factorizations must be performed,
one for each sampling point. In summary, in building the projec-
tion matrices, in the moment-matching approaches, each vector1

is cheap to compute, but a potentially large number of vectors is
required. The TBR-like approach requires few vectors, but each
vector costs somewhat more to generate. Table 1 compares the mo-
ment matching approaches in [4, 7] and the PMTBR method in [6].
We can see that moment matching approaches and PMTBR method
are complementary to each other. This raises the question if there
is a new method that combines the strength of the two classes and
avoids their weaknesses.

The empirical results from the variational version of PMTBR
would seem to predict that the actual dimension of the projection
space needed for engineering accuracies is much smaller than would
be expected based on moment-counting arguments. This is in line
with previous empirical observations about being able to drop var-
ious moments in multi-dimensional problems. More importantly,
the success of PMTBR suggests a possible strategy to obtain the
“important” moments in a reliable and computationally effective
way. PMTBR is based on the idea of taking random samples of the
range space of Grammian operator, followed by a singular value
decomposition to perform rank detection and redundant component
removal. Is there a similar approach for moment-matching? Such

1We will count in size-N vectors, to make appropriate compar-
isons with approaches such as in [7] and [5] that work in higher-
dimensional spaces.
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Table 1: Comparison of PMTBR and Moment Matching Meth-
ods. N is the size of original system, p is number of parameters
mq is the order of matched derivative for each λi, and Ns is the
number of samples used. O�Nα� is the estimated CPU for LU
back solve, where α � �1�2�

Methods model size construction projection size
[4] O�pmq� O�Nα� O�pmq�
[7] O�mq� O�Nα� O�pmq�
PMTBR Ns NsO�Nα� Ns

an approach is not immediately obvious – we cannot, for example,
take random combinations of moments, because this would require
constructing too many moments, and the numerical errors intrinsic
to power methods would obscure any redundant information be-
tween the various subspaces.

In this paper we describe a new algorithm, Random Sampling of
Moment Graph (RSMG), that uses machinery similar to moment
matching. We present a formal way of describing the “moment
space” that we term the moment graph. We describe a methodical
way of sampling it, and a mechanism for error control and stopping
criteria. The accuracy of RSMG, and the number of sample vec-
tors needed for model construction, are competitive with PMTBR.
However, due to the recursive formulation, RSMG inherits the po-
tential computational advantages. We do not need to factor each
sampling system matrix. Only one LU factorization and a small
number of sparse matrix-vector products are involved in each sam-
pling. Hence, on a per-sample basis, the efficiency is improved.

The outline of the paper is as follows. The variation-aware model
order reduction is defined in the next section. The moment graph
concept is introduced in Section 3, and the recursive sampling pro-
cedure is detailed in Section 4. In Section 5, we present empirical
results from industrial problems to indicate that the RSMG algo-
rithm is both fast and accurate. Conclusions are given in section 6.

2. PROBLEM DEFINITION
Consider a linear system in standard state-space form

E�λ̄�
dx
dt

� A�λ̄�x�t��Bu�t�� y�t� �CT x�t�� (1)

where the state vector x has a very large order N and vector λ̄ con-
tains a list of parameters. These parameters could be process vari-
ables such as width and spacing for interconnect analysis problems.
They could also be voltage threshold and channel length for analog
circuit analysis problems. It is common to use simple functions
such as polynomials to approximate the nonlinear functions E�λ̄�
and A�λ̄� as

E�λ̄� � E0 �
p

∑
i�1

Eiλi �
p

∑
j�k�1

E jkλ jλk � ���

A�λ̄� � A0 �
p

∑
i�1

Aiλi �
p

∑
j�k�1

A jkλ jλk � ��� (2)

where p is the number of parameters, Ai and Ei are the sensitivity
of matrix A�λ̄� and E�λ̄� with respect to λi. Matrices A jk and E jk
are second-order derivative with respect to λ j and λk, respectively.

For the sake of clarity, in this paper we will restrict our notation
in this paper to the case where both matrices E�λ̄� and A�λ̄� are

described by an affine model:

E�λ̄� � E0 �
p

∑
i�1

Eiλi

A�λ̄� � A0 �
p

∑
i�1

Aiλi� (3)

Being based on the general moment-matching ideas, the proposed
approaches in this paper encompass higher order models such as
(2) and the necessary extensions to the notation and algorithms is
fairly straightforward, at least in concept.

The commonly used projection-based approach is to find an or-
thogonal projection matrix V of size N�q and transform (1) to

Ê�λ̄�
dx̂
dt

� Â�λ̄�x̂�t�� B̂u�t�� y�t� � ĈT x̂�t�� (4)

where

Ê�λ̄� � V T E0V �
p

∑
i�1

V T EiV λi � Ê0 �
p

∑
i�1

Êiλi (5)

Â�λ̄� � V T A0V �
p

∑
i�1

V T AiV λi � Â0 �
p

∑
i�1

Âiλi (6)

B̂ � V T B (7)

Ĉ � V TC� (8)

Note that the reduced matrices in (5) and (6) are parametrized in
the same way as are the original matrices in (3). Algorithms in [4,
7, 6] are different mainly by the ways the projection matrix V is
constructed.

3. MOMENT GRAPH
Re-writing the system in (1) in Laplace domain and in view of

(3), we have

�s�E0 �
p

∑
i�1

Eiλi�� �A0 �
p

∑
i�1

Aiλi��x � Bu (9)

Multiplying both sides with �A�1
0 , we obtain

�I�
p

∑
i�1

Ãiλi� sẼ0� s
p

∑
i�1

Ẽiλi�x � B̃u� (10)

where

Ãi ��A�1
0 Ai (11)

Ẽi � A�1
0 Ei (12)

B̃ ��A�1
0 B (13)

We can formally express the inverse of the system pencil as a multi-
variable Taylor series

x�s� λ̄� � �I�
p

∑
i�1

Ãiλi� sẼ0� s
p

∑
i�1

Ẽiλi�
�1B̃u

�
∞

∑
k�0

�
p

∑
i�1

Ãiλi � sẼ0 � s
p

∑
i�1

Ẽiλi�
kB̃u (14)

For the sake of clarity, we will use a two-parameter case in this sec-
tion to explain the concept of moment graph. Extension to multiple
parameter cases is straight forward. The simplified equation (14)



for the case of two parameters is

x�s� λ̄� �
∞

∑
k�0

�Ã1λ1 � Ã2λ2 � sẼ0 � sẼ1λ1 � sẼ2λ2�
kB̃u

� �I � Ã1λ1 � Ã2λ2 � sẼ0 � Ã2
1λ2

1 � Ã2
2λ2

2 � Ẽ2
0 s2

��Ã1Ẽ0 � Ẽ0Ã1 � Ẽ1�sλ1 ��Ã2Ẽ0 � Ẽ0Ã2 � Ẽ2�sλ2

��Ã1Ã2 � Ã1Ã2�λ1λ2 � � � � �B̃u� (15)

It is shown in [4] that in order to match a certain moment in the
transfer function, the corresponding terms in (15) has to be included
in the Krylov subspace for the projection matrix. For example, if
we want to match the moment of sλ1, then �Ã1Ẽ0 � Ẽ0Ã1 � Ẽ1�B̃
has to be included in the column span of V . This is a direct ex-
tension of the single-parameter Krylov subspace commonly used
for the nominal model order reduction [9, 2]. The column span of
projection matrix V is

span
�

B̃� Ã1B̃� Ã2B̃� Ã2
1B̃��Ã1Ã2 � Ã2Ã1�B̃� Ã

2
2B̃� � � �

��

span
�

Ẽ0B̃��Ã1Ẽ0 � Ẽ0Ã1 � Ẽ1�B̃��Ã2Ẽ0 � Ẽ0Ã2 � Ẽ2�B̃� � � �
�

�
span

�
Ẽ2

0 B̃� � � �
��

� � � (16)

Here we deliberately arrange the span in (16) such that the first
line corresponds to the moments with s0 and the second line corre-
sponds to the moments with s1. It can be shown that the method in
[7] generates exactly the same terms as in (16).

For multi-parameter cases, this process can be very tedious and
error-prone. A much more intuitive graphical interpretation of the
power series in (14) is proposed in [10]. A simple tree structure
graph for the two-parameter case in (15) is shown in Figure 1,
where the maximum order of the moments is 3. There are two
components in this graph: nodes and directed edges.

� Each node represents one term in (15). A node has three
properties: index, value and level. The 3-tuple index of each
node, as shown in Figure 1, is the power for s, λ1 and λ2,
respectively. For example, node index �1�0�0� means s1λ0

1λ0
2

and node index �1�1�0� means s1λ1
1λ0

2. The value at root
node �0�0�0� is B̃. The value at other nodes is the sum of
all the incoming edge values. For example, the node �1�0�0�
has only one incoming edge and its value is Ẽ0B̃. The node
�1�1�0� has three incoming edges and its value is Ã1Ẽ0B̃�
Ẽ0Ã1B̃� Ẽ1B̃. The level of each node is the summation of its
index. For example, the level of node �1�1�0� is 2.

� Each edge represents one of the terms in the parenthesis af-
ter the first equal sign in (15). An edge has four properties:
multiplier, value, index and level. A multiplier is the matrix
Ai and Ei in (15). The multiplier is next to its correspond-
ing edge in Figure 1. The value of each directed edge is the
product of the multiplier and the value of the starting node
of the edge. The index of an edge is the difference between
the indexes of its starting and terminating nodes. For exam-
ple, the index of the edge between node �1�0�0� and �2�0�0�
is �1�0�0�. The level of an edge is the summation of its in-
dex. Clearly, a level-1 edge can only connect a level-k and a
level-�k�1� node.

The depth of a graph is the maximum level of the nodes in the graph
or the maximum moment order in (15).

Comparing Figure 1 and equation (15), it is clear that one can
directly obtain the coefficients in (15) by reading the value and the
index of each node from the graph. This means that one can directly
obtain the column span of the projection matrix from the graph.
The value of each node in Figure 1 becomes a term in (16).

Figure 1: Moment tree graph for two-parameter case in (15).
The depth is 3.

Figure 2: Moment line graph for the recursion (28) where the
sampling index k is dropped for the sake of clarity

It is shown in [4] that using the projection matrix V with q columns
in (16) can match up the first q moments (corresponding to the first
mq derivatives in each parameter) of the original system in (10).
For p parameters and mq derivatives matched for each parameter,
the number of columns in (16) or the order of reduced system is
q � O�pmq�. This exponential growth is clearly illustrated by the
tree graph in Figure 1 and is the fundamental difficulty of the mo-
ment matching methods in [4, 7].

4. RANDOM SAMPLING OF MOMENT GRAPH
As pointed out in [4], the matrix containing the columns in (16) is

usually rank-deficient, particularly for large number of parameters.
This suggests that there should be a more efficient way to generate
the projection matrix V .

One of the main ideas in PMTBR algorithm [6] is that a small
set of randomly generated sampling state vectors are sufficient to
obtain good approximation to projection space. In this section, we
show that a similar random sampling idea can be used to efficiently
construct a basis for the projection space induced by the moment
graph. We first show that one can “compress” the tree structure in
Figure 1 into a line structure by summing up weighted nodes and
edges of same level. We then use this moment line as the building
block to efficiently reconstruct the projection matrix V that has the
same subspace span as the original tree structure moment graph up
to user-specified accuracy.

4.1 From moment tree to moment line
Evaluating the state vector x�s�λ� in (14) at a random set �sk� λ̄k�,

we obtain

x�sk� λ̄k� � �I�
p

∑
i�1

Ãiλk�i� skẼ0� sk

p

∑
i�1

Ẽiλk�i�
�1B̃

� B̃��
p

∑
i�1

Ãiλk�i � skẼ0�B̃��sk

p

∑
i�1

Ẽiλk�i�B̃

��
p

∑
i�1

Ãiλk�i � skẼ0 � sk

p

∑
i�1

Ẽiλk�i�
2B̃� � � � (17)



To facilitate the discussion in the rest of this paper, we first define
a few notations.

The terms in (17) all follow a similar pattern. For example, we
can write the first three terms as

B̃ � B̃s0
kλ0

k�1λ0
k�2 � � �λ

0
k�p (18)

Ã1B̃λk�1 � Ã1B̃s0
kλ1

k�1λ0
k�2 � � �λ

0
k�p (19)

Ẽ0B̃sk � Ẽ0B̃s1
kλ0

k�1λ0
k�2 � � �λ

0
k�p� (20)

So they are all in the form of T si0
k λi1

k�1λi2
k�2 � � �λ

ip

k�p, where T is B̃,

Ã1B̃ and Ẽ0B̃, respectively

DEFINITION 1 (COMPOSITE POWER). For a term in the form

of T si0
k λi1

k�1λi2
k�2 � � �λ

ip

k�p in (17), its composite power is

L �
p

∑
α�0

iα (21)

REMARK 1. L is simply the level of the nodes in the tree graph
shown in Figure 1.

DEFINITION 2 (MOMENT RECURSION TERMS). The m-th mo-

ment recursion term T �k�
m is the sum of all terms in (17) whose com-

posite power is m. For example,

T0 � B̃ (22)

T �k�
1 � �

p

∑
i�1

Ãiλk�i � skẼ0�B̃ (23)

T �k�
2 � �

p

∑
i�1

Ãiλk�i � skẼ0�
2B̃��sk

p

∑
i�1

Ẽiλk�i�B̃ (24)

REMARK 2. T0, T �k�
1 and T �k�

2 are the sum of node values scaled

by si0
k λi1

k�1λi2
k�2 at level 0,1 and 2, respectively. Here �i0� i1� i2� is the

node index shown in Figure 1.

DEFINITION 3 (MULTIPLIER). The level-m multiplier is the
sum of all the terms in the parenthesis after the first equal sign in
(17) whose composite power is m. For example, the level-1 and
level-2 multipliers are respectively

M�k�
1 �

p

∑
i�1

Ãiλk�i � skẼ0 (25)

M�k�
2 � sk

p

∑
i�1

Ẽiλk�i� (26)

REMARK 3. M�k�
1 (M�k�

2 ) is the weighted sum of the multipliers
for all edges going from level l to l � 1 (l to l � 2). The weight-
ing coefficient is si0

k λi1
k�1λi2

k�2, where �i0� i1� i2� are the indexes of the
edges involved. For example, for the edge between node �1�1�0�
and �0�1�0�, the weighted edge value is s1

kλ0
k�1λ0

k�2Ẽ0.

In view of (22)-(24) and (25)-(26), it is clear that

T �k�
1 � M�k�

1 T0

T �k�
2 � M�k�

1 T �k�
1 �M�k�

2 T0� (27)

Hence we speculate the following:

PROPOSITION 1 (MOMENT RECURSION). Given M�k�
i � i� 1�2

in (25) and (26), the following recursion holds for l � 2

T �k�
l � M�k�

1 T �k�
l�1 �M�k�

2 T �k�
l�2� (28)

PROOF. By definition 2, all terms with composite power l� 1

are in T �k�
l�1. By definition 3, all the terms in M�k�

1 T �k�
l�1 have com-

posite power l. The same holds true for M�k�
2 T �k�

l�2. Since every term

in T �k�
l is the product of some terms in M�k�

j and some terms in T �k�
l� j ,

and the union of M�k�
i T �k�

l�i � i � 1�2 cover all the possible combina-

tions, M�k�
1 T �k�

l�1 �M�k�
2 T �k�

l�2 has all the terms with composite power
l. Hence (28) directly follows.

The recursion in (28) can be represented by Figure 2, a much
more simplified graph than that in Figure 1. In view of (11)-(12)
and (25)-(26), we have

M�k�
1 R � A�1

0 ��
p

∑
i�1

λk�iAiR� skE0R� (29)

M�k�
2 R � A�1

0 �sk

p

∑
i�1

λk�iEiR�� (30)

where R can be a matrix or a vector with conforming size. Clearly,
application of each multiplier only involves a few sparse matrix-
vector product and one LU back solve. These can be done very
efficiently. In addition, we only need to do one LU factorization of
sparse matrix A0 in (29) and (30). So the cost of recursion in (28)
is comparable to that of the moment matching method.

4.2 Random Sampling
Figure 2 shows how to generate progressively higher order mo-

ments. However, only one node is generated for each moment or-
der. There are two basic ways to generate more nodes for each
moment order: the depth-first scheme and the breadth-first scheme.

The depth-first scheme. This scheme repeatedly generate the
moment line shown in Figure 2. With a starting seed node and a set
of randomly generated �sk� λ̄k�, one node of progressively higher
level is generated from (28), up to certain pre-defined order. The
starting seed node and another set of randomly generated �sk� λ̄k�
are then used to generate another moment line in the same manner.
This process is repeated until the newly generated nodes do not add
rank to the projection matrix V any more.

The drawback of a depth-first scheme is obvious: it generates the
same number of samples for each moment order. In other words,
it treats each moment order equally. This is in general not a good
idea because usually lower-order moments are more important. So
we will focus on the breadth-first scheme in the remaining of this
paper.

The breadth-first sampling scheme. With a starting seed
node, an order-one node is generated for a set of randomly gen-
erated �sk� λ̄k�. This process is repeated until the newly generated
order-one node does not add rank to the projection matrix V . Then
an order-two node is generated for a set of randomly generated
�sk� λ̄k�. And this process is repeated until the newly generated
order-two node does not add rank to the projection matrix V . We
then move to order-three nodes and so forth. The precess stops
when the number of samples reach a pre-determined value or the
added nodes do not add rank any more.

The key idea in the breadth-first sampling is that the order of
the sampled node is not increased until the newly generated node
stops adding rank to the projection matrix V . The detailed steps are
shown as Algorithm 1.

It should be noted that the numerical stability in Algorithm 1 is
ensured because each newly generated column is back orthogonal-
ized against all previous columns. We will not run into numerical
stability problem suffered by AWE [11, 12]. But if we directly gen-
erate columns in (16) and then do SVD to throw away redundant



columns, we are essentially computing the power series directly.
This would be no different than AWE.

Algorithm 1: Random Sampling of Moment Graph
Input: A0�A1� � � � �Ap;E0�E1� � � � �Ep;B;C;
joint PDF for parameters λ̄ and frequency
s; Ns: number of samplings; tol: truncation
tolerance for rank revealing QR
Output: Â0� Â1� � � � � Âp; Ê0� Ê1� � � � � Êp; B̂;Ĉ
(1) LU factor A0
(2) Compute B̃ in (13) and set T0 � B̃
(3) S1 � T0
(4) P � �S1�
(5) l � 1
(6) foreach k � 1 : Ns
(7) Sample sk λ̄k using given PDFs
(8) if l � 1

(9) Compute T �k�
l � M�k�

1 S1 us-
ing (29)

(10) else
(11) Compute T �k�

l � M�k�
1 S1 �

M�k�
2 S0 using (29) and (30)

(12) P � �P T �k�
l �

(13) run rank revealing QR to obtain
rank r and the full-rank columns
P1�P2� ����Pr

(14) if r � k, i.e., P is rank deficient
(15) S0 � S1, S1 � Pr
(16) l � l �1
(17) Use P as projector and compute

Âi� Êi� B̂�Ĉ as shown in (5)-(8)

LEMMA 1. Let Nc denote the number of columns in (16) and Ns
the number of samples in Algorithm 1. Let tol be the input tolerance
to Algorithm 1. If Ns � Nc and tol � 0, the models generated by
Algorithm 1 match the same moments as in (16) with probability
one.

PROOF. By construction, each level-l sampling node generated
by Algorithm 1 is a linear combination of all level-l nodes in Figure
1. 2 If tol � 0, then this sampling node will always be kept until the
number of level-l sampling nodes is equal to the number of level-l
nodes in Figure 1. The case that one level-l node in Figure 1 is
missed will happen if and only if sk � 0 and λk�i � 0� i � 1�2� ���� p
for all the samples drawn from the joint PDF P�λ�s�. The set of
samples for which this is true is a set of measure zero. Therefore,
excepting this measure zero set, after Ns samplings, Algorithm 1
will construct the whole column span with Nc columns in (16). This
means, with probability one, that the algorithm recovers exactly the
results obtained by moment matching methods. Hence the result
directly follows.

THEOREM 1. For a given moment matching requirement, the
computational complexity of random sampling of moment graph is
upper bounded by that of the moment matching methods.

PROOF. Follows directly from the lemma above.

REMARK 4. The Ns � Nc samples only happen in the worst
case scenario, with very stringent tol. Typically, one needs many
fewer samples then Nc.

2This is true even if different sets of �sk� λ̄k� are used for T �k�
l , T �k�

l�1

and T �k�
l�2 in (28).
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Figure 3: Number of projection vectors computed to reach 1%
error at maximum frequency.

5. NUMERICAL RESULTS
We have implemented the RSMG Algorithm 1, PMTBR [6] and

PRIMA [2] in C++ and performed various numerical experiments
on a desktop PC with Pentium III microprocessor. In PRIMA im-
plementation, we used the projection matrix generated from cir-
cuit with nominal process parameters to reduce the parameterized
model as shown in (5-8). Though this is not the original PRIMA,
we still call it ’PRIMA’ due to the same projection.

There are two types of experiments. First we run RSMG Al-
gorithm 1 on a set of several thousand signal nets extracted from
some industrial test cases. This is to show RSMG Algorithm is
practically useful. Then, we pick a representative case to perform
the in-depth analysis and compare RSMG to PMTBR and PRIMA.

The process variables considered here are inter-level spacing, di-
electric constant, interconnect width, and interconnect thickness/spacing
for each layer. This results in more than thirty process variables in
total. Affine models were built for each extracted capacitance and
resistance.

5.1 Histogram of projector size
Figure 3 shows the results of applying the RSMG Algorithm 1 to

the previously mentioned large set of signal nets. We tabulate the
order needed to reach engineering accuracy of 1% in the transfer
function at the highest frequency (10GHz) considered, over a large
set of randomly sampled process conditions. As can be seen, usu-
ally a model can be constructed with 2 or 3 samples, and the vast
majority of cases can be handled with fewer than five samples.

5.2 Accuracy
Now we focus on a representative case picked from the many

signal nets used in last section. This example has 550 nodes and
31 process parameters. In Figure 4, we compare the maximum rel-
ative error in transfer function at the highest frequency (10GHz)
considered, over a large set of randomly sampled process condi-
tions. Note that we have extended the accuracy range to ten digits.
While not relevant in ultimate application, investigation of such a
range of precision is important in assessing algorithm stagnation,
which can indicate a flaw or hidden inefficiency in the approach.

The tolerance for incremental QR factorization in Algorithm 1
decides the number of samples at each level. As indicated by lemma
1, at strict tolerances, Algorithm 1 reduces to the full moment match-
ing, which is already known to be quite inefficient when many pa-
rameters are involved. This is clearly shown in Figure 4. We use
three difference tolerance values in Figure 4. For this particular



0 5 10 15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

order

re
la

tiv
e 

er
ro

r
PMTBR
RSMG tol=1e−4
RSMG tol=1e−6
RSMG tol=1e−10
PRIMA

Figure 4: Max relative error in transfer function for a large
set of randomly selected points in the 31-dimension parameter
space.

example, it appears that tol � 1e� 4 strikes a good balance be-
tween the breadth at each level and depth of the sampling. From
our experiments, a good tolerance value depends on the range of
parameters and is critical to the efficiency of the Algorithm 1.

Figure 4 shows that the accuracy of PMTBR and RSMG is com-
parable up to order 10, at which point the relative error has already
dropped to 1e� 6. So for all engineering intents and purposes,
the accuracy of RSMG is very competitive comparing to that of
PMTBR. The stagnation of RSMG at higher order seems to imply
two things: 1) More sophisticated sampling schemes are to be used
for high accuracy applications; 2) The projection space generated
by moment matching method, as illustrated by the moment graph
in Figure 1, is genuinely different from that approximated by the
PMTBR method. This issue will be a good direction for future
investigation.

5.3 Speed
There are three main steps in RSMG, PMTBR and PRIMA: A)

generating new columns in Krylov sub-space; B) back orthogonal-
ization using incremental QR factorization; C) reducing the system
matrices ABCE using (5-8). The difference is mainly in step A. De-
pending on the over all percentage of step A in the whole process,
the speed up due to RSMG may vary.

We use the same example in Figure 4 to compare CPU time by
different algorithms. The order or the projection size is fixed to
be 4 which gives us about 4-digits accuracy (PRIMA gives about
3-digit accuracy). Table 2 shows the ratio of CPU time used by
RSMG and PMTBR to that of PRIMA. It is clear from Table 2
that while the overall speed up due to RSMG is about 20%, the
speedup at step A is 3�5 times. RSMG only needs to peform one
LU factorization while PMTBR needs to do 4. But the operations
involving the sensitivity matrices Ai and Ei in (29-30) somewhat
offset RSMG’s advantage. This is also why the step A of the RSMG
is more expensive than that of PRIMA. In addition, the example we
used here only involves diagonal matrices C0 and Ci, i.e., there is no
coupling capacitance. This means that factorizing A0 and sE�λ̄��
A�λ̄� takes the same CPU time (sample frequency s is usually a real
number in PMTBR). This also takes away an important advantage
of using RSMG.

It should be noted that in full chip simulation, one typically has
hundreds thousands of nets like the example shown here. So a 20%
reduction in CPU time can be significant. In addition, we have not

Table 2: The ratio of CPU time used by PMTBR and RSMG to
that used by PRIMA with fixed order=4

Methods total step A
PMTBR 1.33 7
RSMG 1.05 2

exploit the high sparsity of matrices Ai and Ei in our implemen-
tation. There is considerable room for efficiency improvement in
performing (29-30).

6. CONCLUSIONS
In this paper we present a new algorithm based on random sam-

pling of moment graph (RSMG). Empirical studies indicate that
the RSMG algorithm circumvents the exponential complexity of
full moment matching approaches (e.g. [4, 7]) in the average case.
We also show that RSMG is competitive in accuracy comparing to
the approximate TBR method (PMTBR [6]), but has about 20%
advantage in CPU time.
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