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Abstract

We present a computationally efficient implementation
of positive-real balanced truncation (PRBT) for symmetric
multiple-input multiple-output (MIMO) systems. The solu-
tion of a pair of algebraic Riccati equations (AREs) in con-
ventional PRBT, whose complexity limits practical large-
scale realization, is replaced with the solution of one cross
Riccati equation (XRE). The cross-Riccatian solution then
permits simple construction of projection matrices without
actually balancing the system. The method encompasses
passive linear networks, as commonly used in interconnect
and package modelings, due to their inherent reciprocity
and therefore symmetric transfer functions. Effectiveness of
the proposed approach is verified by numerical examples.

1. Introduction

Parasitic extraction of packages and deep-submicron in-
terconnects produces massively coupled RLC elements that
prohibit direct computer simulation. Model order reduc-
tion (MOR) has become a standard routine whereby the ini-
tial model is approximated by a reduced-order model with
little loss in time/frequency-domain accuracy. Moreover,
the reduced-order model must preserve stability and pas-
sivity of the original model to ensure valid global simula-
tion [3, 8, 9]. Specifically, a passive system is one that does
not generate energy internally. A strictly passive system is
dissipative and is automatically stable. In linear systems,
passivity is equivalent to positive realness [3].

Among numerous MOR approaches, the control-
theoretic balanced truncation (BT) schemes are known to
have superior accuracy and closed-form error bounds [1–3,
9, 13–15]. The key idea of BT is to align and sort the inter-
nal states of the original model based on their participation
in input-output state/energy transfer. The least important

states are then truncated with little impact on the system
responses. In standard BT, the bottleneck is the solution
of two linear matrix equations, called Lyapunov equations,
for obtaining the controllability and observability Grami-
ans. The cross product of these Gramians is then used to
obtain low-order projection matrices to reduce (truncate)
the original system. However, standard BT does not neces-
sarily preserve passivity. Positive-real balanced truncation
(PRBT), also known as positive-real truncated balanced re-
alization (PR-TBR) [9], is another BT approach that pre-
serves both passivity and stability, and has no special struc-
tural restriction on the internal state space. However, it in-
volves the solution of a pair of quadratic matrix equations,
called algebraic Riccati equations (AREs), whose complex-
ity is even higher than that of Lyapunov equations [13–15].

In the standard BT of symmetric multiple-inputmultiple-
output (MIMO) systems1, information in the cross prod-
uct of controllability and observability Gramians can be
directly extracted from one Sylvester equation which is a
linear matrix equation [1, 2, 5]. As only one matrix equa-
tion is solved, computation is effectively halved, with fur-
ther advantages like better consistency and numerical ro-
bustness [1, 2]. A quadratic counterpart of the Sylvester
equation, called the cross Riccati equation (XRE), appeared
in [6,10] on control topics like feedback control and discrete
stochastic processes. Its integration with PRBT, however,
has not been elaborated nor fully appreciated by the EDA
community.

This paper generalizes the cross-Gramian framework
in standard BT [1] to the cross-Riccatian framework for
PRBT of symmetric MIMO systems. An invariant sub-
space method for solving the XRE is described. A Schur
decomposition procedure, borrowed from the standard BT
scenario [1], then allows simple construction of projection
matrices to obtain equivalent PRBT-reduced models with-

1Hence all single-input single-output (SISO) systems are automatically
included.
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out actually balancing the system. The scope of the algo-
rithm encompasses passive linear circuits such as RLC net-
works, commonly used in interconnect and package model-
ings, which exhibit reciprocity and therefore have symmet-
ric transfer functions [7, 11]. (A system is reciprocal if its
admittance or impedance matrix is symmetric, i.e., the volt-
age and current at any two points in the network can be in-
terchanged.) Numerical examples then confirm the remark-
able efficiency of the proposed method over conventional
PRBT realizations.

2. Background and Preliminaries

2.1. Positive-Real Balanced Truncation

Starting with the state space of a minimal (but not neces-
sarily symmetric) MIMO square system

ẋ = Ax + Bu, (1a)

y = Cx + Du, (1b)

where A ∈ Rn×n, B, CT ∈ Rn×m, D ∈ Rm×m, and u,
y are power-conjugate: for every entry of u that is a node
voltage (branch current), the corresponding entry of y is a
branch current (node voltage) such that uT y represents a
power metric. A is stable or its spectrum is in the open left
half plane, denoted by spec(A) ⊂ C−. Let M > 0 (≥ 0)
denote a positive definite (positive semidefinite) matrix M ,
we assume without loss of generality that D + DT > 0,
otherwise the reduction technique in [12] is used to achieve
this. Also, an impulse-free system in the descriptor repre-
sentation [3] with a singular E before ẋ can be put into the
regular form in (1) [9]. The positive-real lemma [3] states
that the linear system (1) is passive if and only if there exists
an X(∈ Rn×n) ≥ 0 satisfying the linear matrix inequality

[
AT X + XA XB − CT

BT X − C −(D + DT )

]
≤ 0. (2)

Applying Schur complement on (2), PRBT formulates and
solves for the unique stabilizing solutions, Xc(≥ 0) and
Xo(≥ 0), to the dual AREs

AXc + XcA
T + (XcC

T − B)(D + DT )−1(CXc − BT ) = 0,
(3a)

AT Xo + XoA + (XoB − CT )(D + DT )−1(BT Xo − C) = 0.
(3b)

Existence of solutions is guaranteed by the passivity as-
sumption. We call Xc the controllability Riccatian and Xo

the observability Riccatian. Factoring out Xc and Xo in (3)
for their coefficient matrices, we define

Ac = A − (B − XcC
T )(D + DT )−1C, (4a)

Ao = A − B(D + DT )−1(C − BT Xo). (4b)

Stabilizability of Xc and Xo implies spec(Ac) =
spec(Ao) ⊂ C− [15]. Let Xc = LcL

T
c and Xo = LoL

T
o ,

where Lc, Lo ∈ Rn×n, be any matrix square-root decompo-
sitions. Compute the singular value decomposition (SVD)

LT
c Lo = UΣV T , Σ = diag(σ1, · · · , σn). (5)

Here Σ is a diagonal matrix and

σ1 ≥ σ2 ≥ · · · ≥ σr � σr+1 ≥ · · · ≥ σn. (6)

Define the matrices

TR = LcUΣ− 1
2 and TL = T−1

R = Σ− 1
2 V T LT

o , (7)

and using ‘→’ to denote the corresponding similarity trans-
form, we get the positive-real-balanced model

(A,B, C, D) → (Â, B̂, Ĉ, D) := (TLATR, TLB, CTR, D).(8)

Such transform also results in simultaneously diagonalized
Riccatians in the new state space, namely,

Xc → TLXcT
T
L = Σ and Xo → T T

R XoTR = Σ, (9)

satisfying

ÂΣ + ΣÂT + (ΣĈT − B̂)(D + DT )−1(ĈΣ − B̂T ) = 0,
(10a)

ÂT Σ + ΣÂ + (ΣB̂ − ĈT )(D + DT )−1(B̂T Σ − Ĉ) = 0.
(10b)

The states in (Â, B̂, Ĉ, D) are aligned in descending im-
portance in energy transfer [9]. Express Σ = diag(Σ b, Σs)
where Σb ∈ Rr×r holds the “bigger” singular values and
Σs ∈ R(n−r)×(n−r) holds the “smaller” ones. Partition
columns of TR and rows of TL accordingly so that with
respect to (9),

Xc = TRΣT T
R =

[
TRb TRs

] [
Σb

Σs

] [
T T

Rb

T T
Rs

]
,

(11a)

Xo = T T
L ΣTL =

[
T T

Lb T T
Ls

] [
Σb

Σs

] [
TLb

TLs

]
.

(11b)

The PRBT-reduced model is obtained from the rank-r sub-
space projection

(Âr, B̂r, Ĉr, D) := (TLbATRb, TLbB, CTRb, D), (12)

where Âr ∈ Rr×r, B̂r, Ĉ
T
r ∈ Rr×m. The system in (12)

is passive and stable and the transfer matrix Gr(s) = D +
Ĉr(sI − Âr)−1B̂r has an H∞-norm error bound [9] with
respect to G(s) = D + C(sI − A)−1B.



2.2. Sylvester Equation in the Standard BT
of Symmetric Systems

Standard BT requires solving a pair of dual Lyapunov
equations

AWc + WcA
T + BBT = 0, (13a)

AT Wo + WoA + CT C = 0, (13b)

whose solutions, Wc and Wo, are the controllability and ob-
servability Gramians, respectively. The rest of the standard
BT procedure is the same as in PRBT except that Xc and Xo

are replaced with Wc and Wo, respectively. Previous work
has studied the use of the cross Gramian in standard BT of
symmetric MIMO (thus also SISO) systems [2]. Specifi-
cally, for a symmetric system, the cross Gramian, Wco, is
solved from the Sylvester equation

AWco + WcoA + BC = 0, (14)

where Wco satisfies the important property W 2
co = WcWo.

Since Wco contains both the controllability and observabil-
ity information, standard BT can directly make use of the
eigenvector bases of Wco without having to solve two Lya-
punov equations [1].

3. PRBT of Symmetric Systems

We first define system symmetry. The MIMO system
(A, B, C, D) in (1) is symmetric if G(s) = G(s)T or

D + C(sI − A)−1B = DT + BT (sI − AT )−1CT , (15)

for all s ∈ C \ spec(A) where ‘\’ denotes set subtraction.
This necessitates D = DT . Symmetry and minimality of
(A, B, C) means that it is similar to (AT , CT , BT ) through
a unique nonsingular T ∈ Rn×n (e.g., [6]) such that

AT = T−1AT , CT = T−1B , BT = CT. (16)

Analogous to (13) and (14), we formulate, with respect
to (3), the cross Riccati equation (XRE)

AXco + XcoA + (XcoB − B)(D + DT )−1(CXco − C) = 0.
(17)

Here Xco is called the cross Riccatian as in [10]. The fol-
lowing describes a two-step cross-Riccatian PRBT flow for
symmetric systems.

3.1. Solving the Cross Riccati Equation

Based on (16) and the results in [6], we present a possi-
ble way of solving (17) associated with a symmetric system.

First, define the two Hamiltonian matrices, Hc and Ho, cor-
responding to (3a) and (3b), respectively,

Hc =

�
AT 0
0 −A

�
−

�
CT

B

�
(D + DT )−1

�
BT −C

�
, (18a)

Ho =

�
A 0

0 −AT

�
−

�
B

CT

�
(D + DT )−1

�
C −BT

�
.(18b)

Spectral structure of a Hamiltonian matrix and solutions of
(3a) and (3b) by identifying the stable invariant subspaces
of (18a) and (18b), respectively, are well studied, e.g., [15].
We note that Hc and Ho share the same spectrum since

Hc =
[

0 I
I 0

]
(−Ho)

[
0 I
I 0

]
. In [15] it has been

shown that when the stable and unstable subspaces of Ho

are separated (passivity implies no purely imaginary eigen-
values), i.e.,

Ho

[
X11 X12

X21 X22

]
=

[
X11 X12

X21 X22

] [
Φ− 0
0 Φ+

]
, (19)

with Φ−, Φ+ ∈ Rn×n corresponding to the stable and un-
stable parts, respectively, of spec(Ho), then the stabiliz-
ing solution to (3b) is Xo = X21X

−1
11 and that to (3a) is

Xc = X12X
−1
22 . Now we show that this invariant subspace

approach is also applicable to (17). First, define

Hco =

�
A 0
0 −A

�
−

�
B
B

�
(D + DT )−1

�
C −C

�
, (20)

it can be seen that spec(Hco) = spec(Ho) = spec(Hc)
since

Hco =
[

I 0
0 T

]
Ho

[
I 0
0 T−1

]
. (21)

Applying (21) to (19) we get

Hco

�
X11 X12

TX21 TX22

�
=

�
X11 X12

TX21 TX22

� �
Φ− 0
0 Φ+

�
.

(22)

Then, noting

[
0 I
I 0

]
Hco

[
0 I
I 0

]
= −Hco, (22) can

be broken into two equations

Hco

[
X11

TX21

]
=

[
X11

TX21

]
Φ−, (23a)

Hco

[
TX22

X12

]
=

[
TX22

X12

]
(−Φ+). (23b)

It is easily shown that both TX21X
−1
11 = TXo and

X12X
−1
22 T−1 = XcT

−1 solve (17). From the Hamiltonian
structure, we further have spec(Φ−) = spec(−Φ+). Using
span(◦) to denote the span (image) of a matrix, we have

span

([
X11

TX21

])
= span

([
TX22

X12

])
, (24)



which implies TXo = XcT
−1 =: Xco is a solution to

(17) found by identifying the stable invariant subspace of
Hco. The choice of the actual basis is immaterial as long
as the spectrum restricted to it is the same, and from this
the uniqueness of Xco follows. Recalling (3) and (4), we
generalize “stabilizability” in this symmetric-system cross-
Riccatian sense: factoring out Xco from both sides in (17)
for the associated matrices, and noting Xco = XcT

−1 =
TXo and (16), we get

A − (B − XcoB)(D + DT )−1C = Ac, (25a)

A − B(D + DT )−1(C − CXco) = Ao. (25b)

It is readily seen that spec(Ac) = spec(Ao) = spec(Φ−) ⊂
C−. Also, similar to results in Section 2.2, we have

X2
co = XcXo, (26)

and the actual T in (16) is immaterial. With the same notion
as in Section 2.1, the effect of similarity transform on X co

(in fact for arbitrary TR and TL = T−1
R ) is

Xco → TLXcoTR, (27)

so spec(Xco) is invariant. Since there exists a similar sys-
tem in which Xc and Xo are both diagonal [c.f. (9)], we
have

|λi(Xco)| = σi , i = 1, 2, · · · , n, (28)

where σis are the singular values in (6) and λi(◦) denotes
the ith eigenvalue in descending magnitude without loss of
generality.

3.2. Constructing the Projection Matrices

The system balancing in PRBT, corresponding to (5)-
(8), may sometimes be numerically inefficient and ill-
conditioned. This is especially so for large-scale systems
with nearly singular Xc and/or Xo, i.e., some states are
nearly uncontrollable and/or unobservable [1, 2]. To avoid
ill-conditional arithmetic, we borrow results from [1] on
standard BT and present an alternative way for obtaining
a reduced-order model with the same transfer function as
the PRBT-reduced model. From (26),

span(Xco) = span(Xc), (29a)

span(XT
co) = span(Xo). (29b)

Therefore, Xco contains both the controllable and ob-
servable subspaces in the cross-Riccatian sense. By (11)
and (26),

X2
co =

[
TRb TRs

] [
Σ2

b 0
0 Σ2

s

] [
TLb

TLs

]
. (30)

However, solution of Xco in (17) is generally not block-
diagonal. To block-diagonalize Xco, we first compute an
intermediate ordered real Schur form of it, namely,

Xco =
[

Qb Qs

] [
Xb

co Ω
0 Xs

co

] [
QT

b

QT
s

]
, (31)

where Xb
co ∈ Rr×r and Xs

co ∈ R(n−r)×(n−r) hold, in
terms of magnitude, the bigger and smaller eigenvalues, re-
spectively [c.f. (28)]. And X b

co and Xs
co are block upper-

triangular. Next, solve for Γ ∈ R
r×(n−r) in the Sylvester

equation

Xb
coΓ − ΓXs

co + Ω = 0. (32)

It can be easily verified that

Xco =
�

Qb QbΓ + Qs

� � Xb
co 0
0 Xs

co

��
QT

b − ΓQT
s

QT
s

�

=:
�

Vb Vs

� � Xb
co 0
0 Xs

co

��
Wb

Ws

�
, (33)

where
[

Vb Vs

]−1 =
[

Wb

Ws

]
. Comparing (33)

and (30), we have that TRb and Vb span the same (right)
eigenspace corresponding to X b

co, while TRs and Vs span
the same (right) eigenspace corresponding to X s

co. There-
fore, there exist nonsingular M1 ∈ Rr×r and M2 ∈
R(n−r)×(n−r) such that

[
TRb TRs

]
=

[
Vb Vs

] [
M1 0
0 M2

]
. (34)

Taking inverse on both sides, we also get

[
TLb

TLs

]
=

[
M−1

1 0
0 M−1

2

] [
Wb

Ws

]
. (35)

Using (34) and (35), the reduced-order model by projection
onto the “more significant” subspaces of (33),

(Ãr, B̃r, C̃r, D) = (WbAVb, WbB, CVb, D), (36)

is easily shown to be similar to (12), thereby producing the
same transfer function as the PRBT-reduced model (so the
H∞-norm error bound [9] accompanying PRBT still ap-
plies). In other words, an equivalent PRBT-reduced model
can be obtained from the block diagonalization of X co with-
out actually balancing the system.

4. Numerical Examples

We compare the proposed XRE-based PRBT method
with conventional realizations in which two AREs are
solved. All experiments are done in Matlab 7.0.4 on a 3GHz



slcares aresolv XRE
(eigen)

Spiral (4.33)† (3.83)
inductor (3.89) (3.98) (4.00)

(0.52) (5.03) (0.56)
order=500 48.45 78.13 29.28

RLC (182.61) (193.58)
ladder (195.72) (204.20) (194.11)

(17.02) (124.38) (27.38)
order=800 395.34 522.16 221.48

† The brackets are time breakdowns. From top: time
for solving each ARE (only one in the last column),
the last bracket is the time for matrix factorizations.

Table 1. CPU times (sec) for different PRBT
implementations.

PC with 3G memory. The AREs are solved with the Mat-
lab routine aresolv with the eigen flag enabled (gener-
ally faster than its schur option) and also the SLICOT [4]
FORTRAN routine slcares (which is faster than its gen-
eralized Schur counterpart slcaregs) invoked through a
Matlab gateway. Matlab m-script files are coded for the pro-
posed method. The XRE in (17) is solved by identifying the
stable invariant subspace as in Section 3.1, and the projec-
tion matrices constructed through block diagonalization of
Xco as in Section 3.2. Both steps essentially make use of
the Matlab routine schur.

We try out two real-life symmetric-system benchmarks
available from the literature [15]: the first one is a spi-
ral inductor of order 500; the second one is an RLC lad-
der of order 800. The CPU times for PRBT are tabu-
lated in Table 1. As expected, the cross-Riccatian ap-
proach easily outperforms the conventional ones. This is
because the competing ARE solvers are also based on sta-
ble invariant subspace identification, and that instead of
two AREs, only one XRE needs to be solved in the pro-
posed method. Figs. 1(a) and 2(a) show the frequency re-
sponses of the original systems and the reduced-order mod-
els, while Figs. 1(b) and 2(b) show the relative errors. The
PRIMA [8] curves are also shown to highlight the superior
accuracy of PRBT. We note in passing that PRIMA consti-
tutes a passivity-preserving projection-type MOR scheme
and poses certain structural constraints on the internal state
space for which PRBT does not [9]. It is seen that curves
from the cross-Riccatian approach apparently overlap with
those from conventional PRBT. This is expected because
the system obtained in (36) is similar to that in (12), but
without the need of the balancing operation.

Some additional remarks are in order:
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Figure 1. (a) Frequency responses of the spi-
ral inductor (order=500) and reduced models
(order=7); (b) relative error from the original
response.
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1. Referring to Sections 3.1 and 3.2, the invariant sub-
space approach for solving the XRE, without exploit-
ing any matrix structure like sparsity or bands, has an
O(n3) complexity and an O(n2) memory requirement.
The workload arises mainly from the (ordered) Schur
decompositions required in (23a) [or (23b)] and (31),
and the solution of the Sylvester equation in (32).

2. With reference to Table 1, a recent algorithm in [15]
can almost halve the time in solving two AREs through
completely separating the stable and unstable invari-
ant subspaces of a Hamiltonian matrix. However, such
approach still requires the time-consuming full matrix
factorizations afterward. The XRE method, besides
practically halving the time in ARE solution, further
saves time by replacing several large-size matrix fac-
torizations with only one matrix block diagonalization.
In fact, from other experiments not reported here, the
latter PRBT approach is consistently about 40% faster
than the former (with both algorithms coded and run
in Matlab). Another merit gained from the XRE ap-
proach is the better numerical consistency and accu-
racy as noted in [1, 2].

3. The cross-Riccatian framework is generic and any fast
solver, not necessarily using the invariant subspace ap-
proach, may be adopted for computing X co in (17).
For example, a recent ARE solver algorithm known
as the quadratic alternating direction implicit (QADI)
iteration [13, 14] may be modified to solve (17). A
low-rank Cholesky-factor variant of QADI (called
CFQADI) for XREs, if exists, can accelerate PRBT
to a speed comparable to that of PRIMA [13, 14]. Re-
search is being done along this direction and findings
will be reported elsewhere.

5. Conclusion

This paper has presented an efficient PRBT implemen-
tation for symmetric MIMO systems. Instead of two AREs
as in conventional PRBT, only one cross Riccati equation
(XRE) needs to be solved. An invariant subspace method
has been described for solving the XRE, followed by sim-
ple construction of projection matrices through block di-
agonalization. No positive-real balancing is required, thus
avoiding the possible numerical ill-conditions in nearly un-
controllable/unobservable systems. The XRE-based PRBT
framework is applicable to a large class of passive linear
networks satisfying reciprocity. Numerical examples have
demonstrated the significant computational savings from
the proposed approach over conventional PRBT realiza-
tions.
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