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Abstract
Extensive work has been done for optimal management 

of scratch-pad memory (SPM) all assuming that the SPM 
is assigned a fixed address space. The main target objects 
to be placed on the SPM have been code and global mem-
ory since their sizes and locations are not changed dy-
namically.  We propose a novel idea of dynamic address 
mapping of SPM with the assistance of memory manage-
ment unit (MMU). It allows us to use SPM for stack man-
agement without architecture modification and complier 
assistance. The proposed technique is orthogonal to the 
previous works so can be used at the same time. Experi-
ments results show that the proposed technique results in 
average performance improvement of 13% and energy sav-
ings of 12% observed compared to using only external 
DRAM. And it also gives noticeable speed up and energy 
saving against a typical cache solution for stack data.  

 
1. Introduction 
 

Compared with the cache, the scratch-pad memory 
(SPM) has potential advantage for low power embedded 
systems since it does not need additional hardware logic 
for managing the contents. Consequently, to make the SPM 
the alternative solution of on-chip SRAMs, extensive work 
has been done for optimal management of SPM. Optimal 
management of SPM aims to find out the best memory 
objects to be placed on SPM statically or dynamically to 
maximize the performance. 

The previous works assume that the SPM is assigned a 
fixed address space. Thus the main target objects for SPM 
management have been code and/or global data since their 
sizes and locations are not varied at run time. On the other 
hand, local variables that are stored in stack vary their lo-
cations dynamically.  

Most of the previous works are based on compile time 
analysis that examines the access pattern of memory ob-
jects to find out the most frequently used. As the applica-
tion size gets large, the computational complexity of com-
pile time analysis becomes a limiting factor for optimal 
decision. And, it requires compiler modification to put the 
explicit copy operation of memory objects onto the SPM.  

In this paper, we propose a novel idea of dynamic ad-
dress mapping of SPM with the assistance of memory 
management unit (MMU). It allows us to use SPM for 
stack area without architecture modification and complier 
assistance. We just assume the environment supporting 
MMU, which is getting more popular in SoC products. The 

proposed technique is implemented with a reset handler 
and a permission fault handler of MMU software. In spite 
of its simplicity, it takes the advantage of the stack locality 
quite well. The proposed technique is orthogonal and com-
plementary to the previous works.  

The rest of this paper is organized as follows. Section 2 
reviews related work and section 3 gives the basic idea of 
our approach. In section 4, we present details on the pro-
posed dynamic slot paging method. Section 5 describes the 
experimental results and discussion. Finally section 6 con-
cludes the paper with summary of our work. 
 
2. Related Work 
 

Contrary to cache systems, SPM requires careful man-
agement to maximize the performance. So there have been 
extensive works performed recently on optimal manage-
ment of SPM. They can be categorized by what objects to 
allocate and by when to perform allocation. To determine 
the candidate objects to place in the SPM several tech-
niques such as static analysis, memory tracing, and profil-
ing are used to obtain the size, life-times, access frequency 
of the objects. 

Static allocation methods ([3], and [4]) fix the place-
ment of code or data before run time. For instance, the op-
timal placement algorithm proposed in [3] is formulated as 
the knapsack problem[14] that is NP-complete. Therefore, 
ILP is used as a heuristic in order to reducing computation 
overhead. 

In dynamic allocation techniques, contents in SPM are 
changed at runtime. Dynamic overlay of SPM[8] copies 
both code and data during run time paying the cost of copy 
overhead. It has been shown that the advantage of dynamic 
overlay is larger than the copy overheads. In order to assist 
dynamic managing procedure, [9] splits data arrays into 
tiles, [10] uses data compression, [11] adds DMA hardware 
to reduce the copy overhead, and [6] uses compiler-
inserted code to exploit dynamic program behavior. 

As mentioned in the previous section, all previous 
works, to our best knowledge, assume that the address map 
of the SPM is fixed. Therefore they mainly consider code 
or global data for candidate objects for SPM allocation. 
Local variables positioned in the stack area at run time are 
not good candidates since their locations vary. In [3], com-
pile-time analysis on local variables is performed in much 
the same way as global data. Call graph analysis is applied 
in order to use the same SPM space for different functions. 
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It proposed to split the stack into two separate memory 
units, the SPM and the DRAM, as shown in Figure 1. For 
this scheme, architecture modification is necessary, which 
is not feasible in many cases.  

 

bb

aa

Stack in DRAM

Stack in SRAM

SP1

SP2

foo ( )
{

int a;
float b;
…

}

 
Figure 1. Example of stack split into two separate 
memory units.[3] 

 
Compared with these related works, the proposed tech-

nique has the following unique characteristics: 
1. The address map of SPM is changed dynamically at 

run time. 
2. No architecture modification or compiler assistance 

is needed. 
3. No explicit copying is needed in the application 

software. 
As a result, the proposed technique enables us to use 

SPM for stack data to exploit the locality of local variables. 
It is the main theme of this paper. 
 
3. Basic Idea 
 

The proposed approach concerns about the locality 
characteristic that can be generally observed in stack data 
access as shown in Figure 2 with a simple example.  
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d[0]…d[100]
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a[0]…a[30]

b[0]…b[40]
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Growth

SP

(B)

(A)

(a) (b)

func_a() {
int a[30];
char b[40]; 
int c;
…
c = func_b( );
…

}

func_b() {
int d[100];
char e;
…
//operation using d, e

}

 
Figure 2. (a) Example program, (b) Stack view at 
point of executing func_b() 

 
Suppose that func_b() is currently being executed in the 

program shown in Figure 2-(a) with the status of stack as 
displayed in Figure 2-(b). Then, the region (B) of stack is 
the most frequently accessed region (we call it the working 
set in this paper) during execution of func_b(). After 
func_b() ends, the stack becomes shrunken down and now 

the working set of stack is changed to region (A) that 
stores the local variables of func_a(). 

While the working set of the stack varies dynamically, 
the following fact remains consistent. The working set of 
the stack is located near the stack pointer. To exploit this 
locality characteristic, we propose to change the address 
map of SPM dynamically following the stack pointer. The 
proposed technique is similar to the virtual memory sys-
tems: SPM is to DRAM what DRAM is to hard disk. The 
SPM is logically partitioned into slots as the DRAM is 
partitioned into pages in the virtual memory systems. 

Initially, the entire SPM space is mapped to the bottom 
of the stack area. SPM can be used for entire stack if the 
stack does not overgrow the SPM space. However, as the 
stack size gets larger than the SPM size, we find an SPM 
slot for replacement, expel it to DRAM area after copying 
its contents, and map the top portion of the stack to the slot. 
The resultant stack area consists of the SPM and the 
DRAM.  

To understand the management policy in more details, 
we consider two cases separately. 

CASE 1: It is the case when the stack grows over the 
SPM space as mentioned above. If there is any attempt to 
access the stack region that is over the SPM region, a per-
mission fault occurs for non-allocated region. Then, the 
fault handler selects some slot of the SPM, copies it to a 
DRAM region, and allocates the slot as requested.  

CASE 2: It is the case when the access below the SPM 
region is made inside the stack. It may occur when the cur-
rent function completes its execution or the current work-
ing set is larger than the SPM area. This case also signals 
the fault handler. The fault handler finds the deallocated 
SPM slots if exist and copies the DRAM slots into the de-
allocated SPM slots.  

In this way, our method behaves like sliding SPM up 
and down as the stack pointer moves. Since the data near 
the top always exists in the SPM, it takes advantage of the 
stack locality.   
 
4. Dynamic Slot Paging 
 

The proposed technique is based on an assumption that 
the target architecture includes MMU. The proposed tech-
nique modifies the address mapping of the SPM by modi-
fying the associated page table entries at run time. When 
the modification is needed, we let permission faults be 
generated so that the fault handler modifies the page table 
and performs memory management. The key technique is 
to manipulate the access permission bits, shortly AP bits in 
ARM processors, of the page table entries. As explained 
earlier, we divide the SPM area into slots: a slot is a group 
of pages and its size is determined empirically, as will be 
discussed in the next section. Since a slot is the unit of op-
eration, we name the proposed technique “dynamic slot 
paging”.  

Initially, the reset handler maps the SPM at the bottom 
of the stack as shown in Figure 3. In the figure, a slot con-
tains only one page of size 1K. On top of the SPM, the 
external DRAM is placed, also divided into slots logically. 
We mark the beginning address of the DRAM space above 
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the SPM space in the stack as DRAM Base. The rest han-
dler disables the AP bits of the DRAM page table entries in 
the stack area to generate permission faults for any access 
into the DRAM space.  
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Figure 3. Initial stack view on Dynamic Slot 

Paging ( 16KB SPM, slot size : 1KB )  
 
We classify permission faults into two cases, Case 1 and 

Case 2. When a permission fault occurs, the fault handler 
compares the aborted logical address with the DRAM Base. 
If the logical address is lower than the DRAM Base, the 
fault is classified into Case 1. Otherwise it is classified as 
Case 2. Next the handler performs different operations for 
two cases. 

 
4.1. SPM Management for Case 1 
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Figure 4. Stack structure: (a) at the abort condi-
tion leading to Case 1 fault, (b) after fault handler 
completion 

 
The Case 1 fault usually occurs when the stack grows 

over the SPM size, so the stack pointer points to a DRAM 
slot (B) as illustrated in Figure 4-(a). As the program tries 
to access the data located at (P), the MMU aborts the ac-
cess and signals an access permission fault. Then the op-
eration of the fault handler consists of 6 steps as follows: 
1. Pick the SPM slot that is located closest to the stack 

base. In the figure, SPM slot (A) is selected for re-
placement. 

2. Enable the AP bits of the page table entries associ-
ated with the aborted DRAM slot. Then we can ac-
cess the DRAM slot without write permission fault in 
the next step.  

3. Copy the valid stack data in the SPM slot (A) into the 
aborted DRAM slot (B) using load-store instructions. 

4. Swap the address map of the SPM slot and the 
aborted DRAM slot in the page table. Now we call 
this DRAM slot as a backup slot. A backup slot con-
tains valid stack data in DRAM below the SPM space. 

5. After address swapping is completed, disable again 
the AP bits of the page table entry associated with the 
DRAM slot. It allows us to detect Case 2 fault after-
wards. 

6. Finally, update the DRAM Base to point the next 
DRAM slot. The DRAM base always indicates the 
top of the SPM space. 

After the fault handler finishes its operation, the stack 
becomes like Figure 4–(b). Note that the SPM space moves 
one slot up to cover the top of the stack. So the locality of 
the stack access is fully exploited in the proposed tech-
nique. Experiments reveal that the copy overhead of step 3 
is relatively small, so we could get significant performance 
improvement for the stack data, which will be discussed in 
the next section. 
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Figure 5. Stack structure: (a) an example of Case 
1 permission fault when the stack pointer grows 
over multiple DRAM slots, (b) after the aborted 
slot (D) management, (c) after fault handler com-
pletion 
 

We may need to apply this management for several 
DRAM slots when the stack pointer moves over multiple 
DRAM slots. Let us consider the situation of Figure 5-(a) 
where the aborted DRAM slot(E) is located one slot over 
the SPM space. In this case, the handler performs its opera-
tions sequentially for all DRAM slots between (P) and the 
DRAM base. In the figure, we swap two DRAM slots (D) 
and (E) with two SPM slots at the bottom (A) and (B).  

 
4.2. SPM Management for Case 2 

 
Due to step 5 of Case 1 fault handler operation, access 

to the backup DRAM slot also generates a permission fault. 
Note that even though the DRAM contains the valid data, 
it generates a fault. We can further classify Case 2 into two 
situations. The first situation is when the stack shrinks be-
low the entire SPM space as presented in Figure 6-(a). 
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Then the operation of the fault handler consists of the fol-
lowing 7 steps. 
1. Select the top SPM slot just below the DRAM Base. 

In the figure, SPM slot (F) is selected for replace-
ment. 

2. Enable the AP bits of the page table entries associ-
ated with the aborted DRAM backup slot. Then we 
can access the DRAM slot without read permission 
fault in the next step. 

3. Copy the valid stack data in the aborted backup slot 
(A) into the SPM slot (F) using load-store instruc-
tions. 

4. Swap the address map of the SPM slot and the 
DRAM backup slot in the page table.  

5. For each backup slot above the updated stack pointer, 
select the top SPM slot and swap the address map 
without copying data. After stack pointer update, no 
SPM slot except the bottom slot contains valid data. 
Therefore data copy is not needed. 

6. After address swapping is completed, disable again 
the AP bits of the page table entry associated with the 
DRAM slots.  

7. Finally, update the DRAM Base to point the first 
DRAM slot over the SPM space. 

Figure 6-(c) displays the final stack structure after fault 
handler execution. 
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Figure 6. Stack structure: (a) at the Case 2-abort 
status with shrinking the stack pointer, (b) after 
the aborted slot (A) management, (c) after fault 
handler completion 

 
The other situation corresponds to the case when an ac-

cess is attempted to a backup slot without modifying the 
stack pointer. We call this backup slot as the target backup 
slot. Then we swap the target backup slot with a free SPM 
slot above the stack pointer if exists. If there is no free 
SPM slot, we just enable the access permission of the 
backup slot. If there is a free SPM slot as depicted in 
Figure 7, the fault handler operates by the following steps.  
1. Select the backup slot below the SPM space. In this 

figure, Backup slot (B) is selected. 

2. Enable the AP bits of the page table entries associ-
ated with the backup slot. Then we can access the 
DRAM slot without read permission fault in the next 
step. 

3. Copy the valid stack data in the backup slot (B) into 
the SPM slot (D) using load-store instructions. 

4. Swap the address map of the SPM slot and the 
backup slot in the page table. The backup slot be-
comes a DRAM slot above the SPM space.  

5. After address swapping is completed, disable again 
the AP bits of the page table entry associated with the 
DRAM slot. 

6. Select the backup slot below the SPM space again 
until we meet the target backup slot and perform 
steps 3 to 6. 

7. Finally, update the DRAM Base to point the first 
DRAM slot over the SPM space. 
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Figure 7. Stack structure: (a) at the Case2-abort 

status without shrinking the stack pointer, (b) af-
ter backup slot (B) management, (c) after fault 
handler completion 
 

The resultant stack structure after the fault handler op-
eration is shown in Figure 7-(c). The proposed technique 
places the SPM space always at the top of the stack assum-
ing that the top region of the stack tends to be accessed 
more often than the other region.  
 
5. Experiments  
 

The target architecture consists of an ARM926EJ-S that 
has an MMU, 4-associative on-chip cache, and on-chip 
scratchpad memory, and an off-chip RAM. We imple-
mented a reset handler and a permission fault handler in 
ARM assembly language for the target architecture. We 
used page size of 1KB for the stack, and 1MB for the other 
memory regions. The total execution cycle is measured by 
cycle accurate simulation using ARMulator[1]. In cycle 
measurement we assumed that the access delay of the off-
chip DRAM is 20 cycles. And we estimated the energy 
consumption based on the cycle information. The energy 
consumption per access for on-chip cache, scratchpad 
memory, and TLBs is obtained from the CACTI cache 
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model[12] for 0.13µm technology. We borrowed the pa-
rameters of each memory component for the cache model 
from [15]. And the other figures for the energy consump-
tion are taken from [4] and [7]. 

 
Table 1. Benchmark applications (size: bytes) 

 
The benchmarks used in experiments include gzip ap-

plications[17] and several multimedia applications from 
Mediabench[18]. The application characteristics and the 
on-chip memory size we used are summarized in Table 1. 
In the first set of experiments, we used the slot size of 1KB, 
which is same with the page size for stack region.  

Figure 8 displays the normalized total execution cycles 
of benchmark applications. The reference performance is 
the case without any on-chip SRAM as denoted by (A) in 
the figure. To focus on the performance comparison only 
for the stack data, we disabled the cacheable flags of pages 
related to the global data and the code sections in this ex-
periment. We compared the proposed technique, denoted 
by (C), with the cache solution, denoted by (B), for the 
stack data. The proposed technique outperforms the 
DRAM only solution by average 13% in the total execu-
tion time. It reveals that the stack operation takes signifi-
cant portion of execution time. If the total execution time 
is reduced by using caches for code and global data, the 
percentage improvement will be larger. An important ob-
servation is that the proposed technique gives better per-
formance than the cache solution by 2% to 18%. It indi-
cates that our approach takes more advantage of stack lo-
cality than general cache policy.  

We measured the runtime-overhead for managing per-
mission fault in Figure 9 for the benchmark applications, 
except gunzip that has no fault generated. The figure 
shows that the overhead is insignificant, below 0.1% of 
total execution time for all applications. In fact the number 
of page faults is pretty low due to stack locality. It means 
the proposed technique does not require any hardware 
overhead such as DMA to reduce the overhead.  

Figure 10 presents the estimated energy consumption 
for each case. Though TLBs give extra energy consump-
tion, the proposed technique gives 12% power saving on 
average over (A) and average of 8% over (B). In case of 
x264, the speed up(7%) and the energy saving(6%) is rela-
tively small compared with the other applications because 
the reference code defines large size of global data and re-
uses the global data even for the local usage inside func-

tions. So stack access takes relatively low portion of the 
total execution. 
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Figure 9. Runtime-overhead caused by the fault 
handler 
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Figure 10. Normalized energy consumption 
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Figure 11. MP3 : Total execution cycles 

 
For mp3 application, we investigated the effect of on-

chip memory size for various configurations and plotted 
the total execution cycles in Figure 11. (B) is the cache 
solution, and (D) is the proposed SPM solution for stack 
data. When we use 64KB SPM, all stack variables are allo-
cated into the SPM so that no performance improvement is 
achieved with larger size of memory. The figure shows that 
the performance variation is not significant over the entire 

Application Description Global 
data 

Stack 
depth On-chip

gunzip Uncompress 
a gzip file        340,584 442 1,024

minizip Compress 
a gzip file 16,588 17,976 4,096

jpeg-comp Compress  
a jpeg file 12,244 2,000 1,024

jpeg-trans Transpose a jpeg 
image  10,324 2,608 2,048

x264 Encode h264/avc 
video streams[16] 3,096,828 25,584 8,192

mp3 Decode mp3 
audio streams  120,776 49,784 16,384
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range. It is because the working set is usually not larger 
than 2KB. Additionally, we tested two more configurations. 
In (C), data cache is used not only for the stack data but 
also for the global data. The speedup is not significant, 
compared with (B). In (E), we use a half size- data cache 
and a half size-SPM. In this case, the data cache is used for 
the global data, and we apply our approach to the SPM for 
the stack data. (E) outperforms (C) consistently by 7% on 
average. It confirms the viability of the proposed tech-
nique: the SPM management for the stack data is superior 
to cache solutions.  
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Figure 12. Total execution cycles with three differ-
ent slot sizes for MP3 application 

 
The final experiment is performed to examine the effect 

of slot size on the performance. As shown in Figure 12, the 
worst case occurs when the slot size is the same as the 
SPM size. It results in performance degradation of 10% in 
experiments. For the other cases, the slot size has different 
effect depending on the applications. In general, perform-
ance tends to get better as the slot size getting smaller, be-
cause the size of the working set is usually smaller than the 
page size. However, the performance variation is not sig-
nificant in almost all cases, around 0.3% in MP3. 
 
6. Conclusions 
 

In this paper, we propose a novel technique to use 
scratch-pad memory for stack management. Unlike the 
previous works, we change the address map of the SPM 
region by managing the page table in the target architecture 
with MMU. The experimental results show that the pro-
posed technique exploits the stack locality better than the 
cache solution and so gives better performance. It does not 
require any additional hardware and compiler technique so 
that it can be cheaply implemented. One drawback of the 
proposed technique is lack of predictability.  

The proposed technique is complementary to the previ-
ous works. And, it can be applied separately with the 
global data management. As an example, we tested a con-
figuration where an SPM is used for the stack data and a 
normal cache is used for the global data, and obtained the 
better results than the other configurations. How to obtain 
the optimal configuration remains as a future work.  
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