

1

A Novel Technique to Use Scratch-pad Memory for Stack Management

Soyoung Park Hae-woo Park Soonhoi Ha

School of EECS, Seoul National University, Seoul, Korea
{soy, starlet, sha}@iris.snu.ac.kr

Abstract
Extensive work has been done for optimal management

of scratch-pad memory (SPM) all assuming that the SPM
is assigned a fixed address space. The main target objects
to be placed on the SPM have been code and global mem-
ory since their sizes and locations are not changed dy-
namically. We propose a novel idea of dynamic address
mapping of SPM with the assistance of memory manage-
ment unit (MMU). It allows us to use SPM for stack man-
agement without architecture modification and complier
assistance. The proposed technique is orthogonal to the
previous works so can be used at the same time. Experi-
ments results show that the proposed technique results in
average performance improvement of 13% and energy sav-
ings of 12% observed compared to using only external
DRAM. And it also gives noticeable speed up and energy
saving against a typical cache solution for stack data.

1. Introduction

Compared with the cache, the scratch-pad memory
(SPM) has potential advantage for low power embedded
systems since it does not need additional hardware logic
for managing the contents. Consequently, to make the SPM
the alternative solution of on-chip SRAMs, extensive work
has been done for optimal management of SPM. Optimal
management of SPM aims to find out the best memory
objects to be placed on SPM statically or dynamically to
maximize the performance.

The previous works assume that the SPM is assigned a
fixed address space. Thus the main target objects for SPM
management have been code and/or global data since their
sizes and locations are not varied at run time. On the other
hand, local variables that are stored in stack vary their lo-
cations dynamically.

Most of the previous works are based on compile time
analysis that examines the access pattern of memory ob-
jects to find out the most frequently used. As the applica-
tion size gets large, the computational complexity of com-
pile time analysis becomes a limiting factor for optimal
decision. And, it requires compiler modification to put the
explicit copy operation of memory objects onto the SPM.

In this paper, we propose a novel idea of dynamic ad-
dress mapping of SPM with the assistance of memory
management unit (MMU). It allows us to use SPM for
stack area without architecture modification and complier
assistance. We just assume the environment supporting
MMU, which is getting more popular in SoC products. The

proposed technique is implemented with a reset handler
and a permission fault handler of MMU software. In spite
of its simplicity, it takes the advantage of the stack locality
quite well. The proposed technique is orthogonal and com-
plementary to the previous works.

The rest of this paper is organized as follows. Section 2
reviews related work and section 3 gives the basic idea of
our approach. In section 4, we present details on the pro-
posed dynamic slot paging method. Section 5 describes the
experimental results and discussion. Finally section 6 con-
cludes the paper with summary of our work.

2. Related Work

Contrary to cache systems, SPM requires careful man-
agement to maximize the performance. So there have been
extensive works performed recently on optimal manage-
ment of SPM. They can be categorized by what objects to
allocate and by when to perform allocation. To determine
the candidate objects to place in the SPM several tech-
niques such as static analysis, memory tracing, and profil-
ing are used to obtain the size, life-times, access frequency
of the objects.

Static allocation methods ([3], and [4]) fix the place-
ment of code or data before run time. For instance, the op-
timal placement algorithm proposed in [3] is formulated as
the knapsack problem[14] that is NP-complete. Therefore,
ILP is used as a heuristic in order to reducing computation
overhead.

In dynamic allocation techniques, contents in SPM are
changed at runtime. Dynamic overlay of SPM[8] copies
both code and data during run time paying the cost of copy
overhead. It has been shown that the advantage of dynamic
overlay is larger than the copy overheads. In order to assist
dynamic managing procedure, [9] splits data arrays into
tiles, [10] uses data compression, [11] adds DMA hardware
to reduce the copy overhead, and [6] uses compiler-
inserted code to exploit dynamic program behavior.

As mentioned in the previous section, all previous
works, to our best knowledge, assume that the address map
of the SPM is fixed. Therefore they mainly consider code
or global data for candidate objects for SPM allocation.
Local variables positioned in the stack area at run time are
not good candidates since their locations vary. In [3], com-
pile-time analysis on local variables is performed in much
the same way as global data. Call graph analysis is applied
in order to use the same SPM space for different functions.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2

It proposed to split the stack into two separate memory
units, the SPM and the DRAM, as shown in Figure 1. For
this scheme, architecture modification is necessary, which
is not feasible in many cases.

bb

aa

Stack in DRAM

Stack in SRAM

SP1

SP2

foo ()
{

int a;
float b;
…

}

Figure 1. Example of stack split into two separate
memory units.[3]

Compared with these related works, the proposed tech-

nique has the following unique characteristics:
1. The address map of SPM is changed dynamically at

run time.
2. No architecture modification or compiler assistance

is needed.
3. No explicit copying is needed in the application

software.
As a result, the proposed technique enables us to use

SPM for stack data to exploit the locality of local variables.
It is the main theme of this paper.

3. Basic Idea

The proposed approach concerns about the locality
characteristic that can be generally observed in stack data
access as shown in Figure 2 with a simple example.

...
a[0]…a[30]

b[0]…b[40]

c

…

d[0]…d[100]

e

...
a[0]…a[30]

b[0]…b[40]

c

…

d[0]…d[100]

e

Growth

SP

(B)

(A)

(a) (b)

func_a() {
int a[30];
char b[40];
int c;
…
c = func_b();
…

}

func_b() {
int d[100];
char e;
…
//operation using d, e

}

Figure 2. (a) Example program, (b) Stack view at
point of executing func_b()

Suppose that func_b() is currently being executed in the

program shown in Figure 2-(a) with the status of stack as
displayed in Figure 2-(b). Then, the region (B) of stack is
the most frequently accessed region (we call it the working
set in this paper) during execution of func_b(). After
func_b() ends, the stack becomes shrunken down and now

the working set of stack is changed to region (A) that
stores the local variables of func_a().

While the working set of the stack varies dynamically,
the following fact remains consistent. The working set of
the stack is located near the stack pointer. To exploit this
locality characteristic, we propose to change the address
map of SPM dynamically following the stack pointer. The
proposed technique is similar to the virtual memory sys-
tems: SPM is to DRAM what DRAM is to hard disk. The
SPM is logically partitioned into slots as the DRAM is
partitioned into pages in the virtual memory systems.

Initially, the entire SPM space is mapped to the bottom
of the stack area. SPM can be used for entire stack if the
stack does not overgrow the SPM space. However, as the
stack size gets larger than the SPM size, we find an SPM
slot for replacement, expel it to DRAM area after copying
its contents, and map the top portion of the stack to the slot.
The resultant stack area consists of the SPM and the
DRAM.

To understand the management policy in more details,
we consider two cases separately.

CASE 1: It is the case when the stack grows over the
SPM space as mentioned above. If there is any attempt to
access the stack region that is over the SPM region, a per-
mission fault occurs for non-allocated region. Then, the
fault handler selects some slot of the SPM, copies it to a
DRAM region, and allocates the slot as requested.

CASE 2: It is the case when the access below the SPM
region is made inside the stack. It may occur when the cur-
rent function completes its execution or the current work-
ing set is larger than the SPM area. This case also signals
the fault handler. The fault handler finds the deallocated
SPM slots if exist and copies the DRAM slots into the de-
allocated SPM slots.

In this way, our method behaves like sliding SPM up
and down as the stack pointer moves. Since the data near
the top always exists in the SPM, it takes advantage of the
stack locality.

4. Dynamic Slot Paging

The proposed technique is based on an assumption that
the target architecture includes MMU. The proposed tech-
nique modifies the address mapping of the SPM by modi-
fying the associated page table entries at run time. When
the modification is needed, we let permission faults be
generated so that the fault handler modifies the page table
and performs memory management. The key technique is
to manipulate the access permission bits, shortly AP bits in
ARM processors, of the page table entries. As explained
earlier, we divide the SPM area into slots: a slot is a group
of pages and its size is determined empirically, as will be
discussed in the next section. Since a slot is the unit of op-
eration, we name the proposed technique “dynamic slot
paging”.

Initially, the reset handler maps the SPM at the bottom
of the stack as shown in Figure 3. In the figure, a slot con-
tains only one page of size 1K. On top of the SPM, the
external DRAM is placed, also divided into slots logically.
We mark the beginning address of the DRAM space above

3

the SPM space in the stack as DRAM Base. The rest han-
dler disables the AP bits of the DRAM page table entries in
the stack area to generate permission faults for any access
into the DRAM space.

SPM slot #1
SPM slot #2

…

SPM slot #16
DRAM slot #1
DRAM slot #2

…

DRAM slot #k

SPM slot #1
SPM slot #2

…

SPM slot #16
DRAM slot #1
DRAM slot #2

…

DRAM slot #k

SP

Stack Limit
Virtual address

0x71fc00
0x720000

0x71f800

0x714800
0x714400
0x714000
0x713c00

Memory space

…

…

GrowthDRAM Base

Figure 3. Initial stack view on Dynamic Slot

Paging (16KB SPM, slot size : 1KB)

We classify permission faults into two cases, Case 1 and

Case 2. When a permission fault occurs, the fault handler
compares the aborted logical address with the DRAM Base.
If the logical address is lower than the DRAM Base, the
fault is classified into Case 1. Otherwise it is classified as
Case 2. Next the handler performs different operations for
two cases.

4.1. SPM Management for Case 1

SPM slot (A)

SPM slot

…

SPM slot

DRAM slot (B)

DRAM slot

…

DRAM slot

SPM slot (A)

SPM slot

…

SPM slot

DRAM slot (B)

DRAM slot

…

DRAM slot

SP

DRAM slot (B)

SPM slot

…

SPM slot

SPM slot (A)

DRAM slot

…

DRAM slot

DRAM slot (B)

SPM slot

…

SPM slot

SPM slot (A)

DRAM slot

…

DRAM slot

1.Copy

Stack Base

Stack Limit

(a) (b)

(P)

0x71fc00

0x720000

0x714400

0x714000

Virtual Address

…

3. DRAM Base

2. Swap

…

DRAM Base

Figure 4. Stack structure: (a) at the abort condi-
tion leading to Case 1 fault, (b) after fault handler
completion

The Case 1 fault usually occurs when the stack grows

over the SPM size, so the stack pointer points to a DRAM
slot (B) as illustrated in Figure 4-(a). As the program tries
to access the data located at (P), the MMU aborts the ac-
cess and signals an access permission fault. Then the op-
eration of the fault handler consists of 6 steps as follows:
1. Pick the SPM slot that is located closest to the stack

base. In the figure, SPM slot (A) is selected for re-
placement.

2. Enable the AP bits of the page table entries associ-
ated with the aborted DRAM slot. Then we can ac-
cess the DRAM slot without write permission fault in
the next step.

3. Copy the valid stack data in the SPM slot (A) into the
aborted DRAM slot (B) using load-store instructions.

4. Swap the address map of the SPM slot and the
aborted DRAM slot in the page table. Now we call
this DRAM slot as a backup slot. A backup slot con-
tains valid stack data in DRAM below the SPM space.

5. After address swapping is completed, disable again
the AP bits of the page table entry associated with the
DRAM slot. It allows us to detect Case 2 fault after-
wards.

6. Finally, update the DRAM Base to point the next
DRAM slot. The DRAM base always indicates the
top of the SPM space.

After the fault handler finishes its operation, the stack
becomes like Figure 4–(b). Note that the SPM space moves
one slot up to cover the top of the stack. So the locality of
the stack access is fully exploited in the proposed tech-
nique. Experiments reveal that the copy overhead of step 3
is relatively small, so we could get significant performance
improvement for the stack data, which will be discussed in
the next section.

Backup slot

…

Backup slot

SPM slot(A)

SPM slot(B)

…

SPM slot

DRAM slot(D)

DRAM slot(E)

…

DRAM slot

Backup slot

…

Backup slot

SPM slot(A)

SPM slot(B)

…

SPM slot

DRAM slot(D)

DRAM slot(E)

…

DRAM slot

Backup slot

…

Backup slot

DRAM slot(D)

SPM slot(B)

…

SPM slot

SPM slot(A)

DRAM slot(E)

…

DRAM slot

Backup slot

…

Backup slot

DRAM slot(D)

SPM slot(B)

…

SPM slot

SPM slot(A)

DRAM slot(E)

…

DRAM slot

Backup slot

…

Backup slot

DRAM slot(D)

DRAM slot(E)

…

SPM slot

SPM slot(A)

SPM slot(B)

…

DRAM slot

Backup slot

…

Backup slot

DRAM slot(D)

DRAM slot(E)

…

SPM slot

SPM slot(A)

SPM slot(B)

…

DRAM slot

SP

Stack Limit

(P)

Stack Base
(a) (b) (c)

DRAM Base
3.Copy

4.Swap

5.DRAM
Base

1.Copy

2.Swap

Figure 5. Stack structure: (a) an example of Case
1 permission fault when the stack pointer grows
over multiple DRAM slots, (b) after the aborted
slot (D) management, (c) after fault handler com-
pletion

We may need to apply this management for several
DRAM slots when the stack pointer moves over multiple
DRAM slots. Let us consider the situation of Figure 5-(a)
where the aborted DRAM slot(E) is located one slot over
the SPM space. In this case, the handler performs its opera-
tions sequentially for all DRAM slots between (P) and the
DRAM base. In the figure, we swap two DRAM slots (D)
and (E) with two SPM slots at the bottom (A) and (B).

4.2. SPM Management for Case 2

Due to step 5 of Case 1 fault handler operation, access

to the backup DRAM slot also generates a permission fault.
Note that even though the DRAM contains the valid data,
it generates a fault. We can further classify Case 2 into two
situations. The first situation is when the stack shrinks be-
low the entire SPM space as presented in Figure 6-(a).

4

Then the operation of the fault handler consists of the fol-
lowing 7 steps.
1. Select the top SPM slot just below the DRAM Base.

In the figure, SPM slot (F) is selected for replace-
ment.

2. Enable the AP bits of the page table entries associ-
ated with the aborted DRAM backup slot. Then we
can access the DRAM slot without read permission
fault in the next step.

3. Copy the valid stack data in the aborted backup slot
(A) into the SPM slot (F) using load-store instruc-
tions.

4. Swap the address map of the SPM slot and the
DRAM backup slot in the page table.

5. For each backup slot above the updated stack pointer,
select the top SPM slot and swap the address map
without copying data. After stack pointer update, no
SPM slot except the bottom slot contains valid data.
Therefore data copy is not needed.

6. After address swapping is completed, disable again
the AP bits of the page table entry associated with the
DRAM slots.

7. Finally, update the DRAM Base to point the first
DRAM slot over the SPM space.

Figure 6-(c) displays the final stack structure after fault
handler execution.

SPM slot(E)

SPM slot(D)

Backup slot(C)

Backup slot(B)

Backup slot

…

Backup slot

SPM slot(F)

SPM slot

…

SPM slot

Backup slot(A)

DRAM slot

…

DRAM slot

SPM slot(E)

SPM slot(D)

Backup slot(C)

Backup slot(B)

Backup slot

…

Backup slot

SPM slot(F)

SPM slot

…

SPM slot

Backup slot(A)

DRAM slot

…

DRAM slot

SPM slot(E)

SPM slot(D)

Backup slot(C)

Backup slot(B)

Backup slot

…

Backup slot

Backup slot(A)

SPM slot

…

SPM slot

SPM slot(F)

DRAM slot

…

DRAM slot

SPM slot(E)

SPM slot(D)

Backup slot(C)

Backup slot(B)

Backup slot

…

Backup slot

Backup slot(A)

SPM slot

…

SPM slot

SPM slot(F)

DRAM slot

…

DRAM slot

(P)

(a) (b)

SP

Stack Base

Stack Limit

DRAM Base

4.DRAM
Base

2.Swap

Backup slot(C)

Backup slot(B)

SPM slot(E)

SPM slot(D)

Backup slot

…

Backup slot

SPM slot(F)

SPM slot

…

SPM slot

Backup slot(A)

DRAM slot

…

DRAM slot

Backup slot(C)

Backup slot(B)

SPM slot(E)

SPM slot(D)

Backup slot

…

Backup slot

SPM slot(F)

SPM slot

…

SPM slot

Backup slot(A)

DRAM slot

…

DRAM slot

(c)

3.Swap

1.Copy

Figure 6. Stack structure: (a) at the Case 2-abort
status with shrinking the stack pointer, (b) after
the aborted slot (A) management, (c) after fault
handler completion

The other situation corresponds to the case when an ac-

cess is attempted to a backup slot without modifying the
stack pointer. We call this backup slot as the target backup
slot. Then we swap the target backup slot with a free SPM
slot above the stack pointer if exists. If there is no free
SPM slot, we just enable the access permission of the
backup slot. If there is a free SPM slot as depicted in
Figure 7, the fault handler operates by the following steps.
1. Select the backup slot below the SPM space. In this

figure, Backup slot (B) is selected.

2. Enable the AP bits of the page table entries associ-
ated with the backup slot. Then we can access the
DRAM slot without read permission fault in the next
step.

3. Copy the valid stack data in the backup slot (B) into
the SPM slot (D) using load-store instructions.

4. Swap the address map of the SPM slot and the
backup slot in the page table. The backup slot be-
comes a DRAM slot above the SPM space.

5. After address swapping is completed, disable again
the AP bits of the page table entry associated with the
DRAM slot.

6. Select the backup slot below the SPM space again
until we meet the target backup slot and perform
steps 3 to 6.

7. Finally, update the DRAM Base to point the first
DRAM slot over the SPM space.

Backup slot(A)

Backup slot

…

Backup slot

SPM slot(D)

SPM slot

…

SPM slot(C)

Backup slot(B)

DRAM slot

…

DRAM slot

Backup slot(A)

Backup slot

…

Backup slot

SPM slot(D)

SPM slot

…

SPM slot(C)

Backup slot(B)

DRAM slot

…

DRAM slot

Backup slot(B)

Backup slot

…

Backup slot

Backup slot(A)

SPM slot

…

SPM slot(C)

SPM slot(D)

DRAM slot

…

DRAM slot

Backup slot(B)

Backup slot

…

Backup slot

Backup slot(A)

SPM slot

…

SPM slot(C)

SPM slot(D)

DRAM slot

…

DRAM slot

(P)

(a) (b)

SP

Stack Base

Stack Limit

2.Swap
SPM slot(C)

Backup slot

…

Backup slot

SPM slot(D)

SPM slot

…

Backup slot(A)

Backup slot(B)

DRAM slot

…

DRAM slot

SPM slot(C)

Backup slot

…

Backup slot

SPM slot(D)

SPM slot

…

Backup slot(A)

Backup slot(B)

DRAM slot

…

DRAM slot

1.Copy

4.Swap

5. DRAM
Base

(c)

3.Copy

DRAM Base

Figure 7. Stack structure: (a) at the Case2-abort

status without shrinking the stack pointer, (b) af-
ter backup slot (B) management, (c) after fault
handler completion

The resultant stack structure after the fault handler op-
eration is shown in Figure 7-(c). The proposed technique
places the SPM space always at the top of the stack assum-
ing that the top region of the stack tends to be accessed
more often than the other region.

5. Experiments

The target architecture consists of an ARM926EJ-S that
has an MMU, 4-associative on-chip cache, and on-chip
scratchpad memory, and an off-chip RAM. We imple-
mented a reset handler and a permission fault handler in
ARM assembly language for the target architecture. We
used page size of 1KB for the stack, and 1MB for the other
memory regions. The total execution cycle is measured by
cycle accurate simulation using ARMulator[1]. In cycle
measurement we assumed that the access delay of the off-
chip DRAM is 20 cycles. And we estimated the energy
consumption based on the cycle information. The energy
consumption per access for on-chip cache, scratchpad
memory, and TLBs is obtained from the CACTI cache

5

model[12] for 0.13µm technology. We borrowed the pa-
rameters of each memory component for the cache model
from [15]. And the other figures for the energy consump-
tion are taken from [4] and [7].

Table 1. Benchmark applications (size: bytes)

The benchmarks used in experiments include gzip ap-

plications[17] and several multimedia applications from
Mediabench[18]. The application characteristics and the
on-chip memory size we used are summarized in Table 1.
In the first set of experiments, we used the slot size of 1KB,
which is same with the page size for stack region.

Figure 8 displays the normalized total execution cycles
of benchmark applications. The reference performance is
the case without any on-chip SRAM as denoted by (A) in
the figure. To focus on the performance comparison only
for the stack data, we disabled the cacheable flags of pages
related to the global data and the code sections in this ex-
periment. We compared the proposed technique, denoted
by (C), with the cache solution, denoted by (B), for the
stack data. The proposed technique outperforms the
DRAM only solution by average 13% in the total execu-
tion time. It reveals that the stack operation takes signifi-
cant portion of execution time. If the total execution time
is reduced by using caches for code and global data, the
percentage improvement will be larger. An important ob-
servation is that the proposed technique gives better per-
formance than the cache solution by 2% to 18%. It indi-
cates that our approach takes more advantage of stack lo-
cality than general cache policy.

We measured the runtime-overhead for managing per-
mission fault in Figure 9 for the benchmark applications,
except gunzip that has no fault generated. The figure
shows that the overhead is insignificant, below 0.1% of
total execution time for all applications. In fact the number
of page faults is pretty low due to stack locality. It means
the proposed technique does not require any hardware
overhead such as DMA to reduce the overhead.

Figure 10 presents the estimated energy consumption
for each case. Though TLBs give extra energy consump-
tion, the proposed technique gives 12% power saving on
average over (A) and average of 8% over (B). In case of
x264, the speed up(7%) and the energy saving(6%) is rela-
tively small compared with the other applications because
the reference code defines large size of global data and re-
uses the global data even for the local usage inside func-

tions. So stack access takes relatively low portion of the
total execution.

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6

(A) Default

(B) Cache-Stack

(C) SPM-Stack

N
or

m
al

iz
ed

 R
un

tim
e

jpeg-compminizip jpeg-trans x264 mp3gunzip
Figure 8. Execution time comparison among
three: DRAM-only solution, cache solution, and
SPM solution for stack data.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

minizip jpeg-comp jpeg-trans x264 mp3

SPM-DRAM copy

Extra overhead

jpeg-compminizip jpeg-trans x264 mp3
H

an
dl

er
ov

er
he

ad
(%

)

Figure 9. Runtime-overhead caused by the fault
handler

50
55
60
65
70
75
80
85
90
95

100

gunzip minizip jpeg-comp jpeg-trans x264 mp3

(A) Default
(B) Cache-Stack
(C) SPM-Stack

jpeg-compminizip jpeg-trans x264 mp3gunzip

N
or

m
al

iz
ed

 E
ne

rg
y

Figure 10. Normalized energy consumption

9,000

9,500

10,000

10,500

11,000

11,500

12,000

12,500

2 4 8 16 32 64 128

On-chip memory size (KB)

(A) Default
(B) Cache-Stack
(C) Cache-All
(D) SPM-Stack
(E) SPM+Cache

to
ta

l e
xe

cu
tio

n
cy

cl
es

 (
m

eg
ac

yc
le

s)

Figure 11. MP3 : Total execution cycles

For mp3 application, we investigated the effect of on-

chip memory size for various configurations and plotted
the total execution cycles in Figure 11. (B) is the cache
solution, and (D) is the proposed SPM solution for stack
data. When we use 64KB SPM, all stack variables are allo-
cated into the SPM so that no performance improvement is
achieved with larger size of memory. The figure shows that
the performance variation is not significant over the entire

Application Description Global
data

Stack
depth On-chip

gunzip Uncompress
a gzip file 340,584 442 1,024

minizip Compress
a gzip file 16,588 17,976 4,096

jpeg-comp Compress
a jpeg file 12,244 2,000 1,024

jpeg-trans Transpose a jpeg
image 10,324 2,608 2,048

x264 Encode h264/avc
video streams[16] 3,096,828 25,584 8,192

mp3 Decode mp3
audio streams 120,776 49,784 16,384

6

range. It is because the working set is usually not larger
than 2KB. Additionally, we tested two more configurations.
In (C), data cache is used not only for the stack data but
also for the global data. The speedup is not significant,
compared with (B). In (E), we use a half size- data cache
and a half size-SPM. In this case, the data cache is used for
the global data, and we apply our approach to the SPM for
the stack data. (E) outperforms (C) consistently by 7% on
average. It confirms the viability of the proposed tech-
nique: the SPM management for the stack data is superior
to cache solutions.

10,000

10,200

10,400

10,600

10,800

11,000

11,200

11,400

11,600

2 4 8 16 32
SPM size (KB)

1KB slot
2KB slot
4KB slot

to
ta

l e
xe

cu
tio

n
cy

cl
es

 (
m

eg
ac

yc
le

s)

2 4 8 16 32
SPM size (KB)

Figure 12. Total execution cycles with three differ-
ent slot sizes for MP3 application

The final experiment is performed to examine the effect

of slot size on the performance. As shown in Figure 12, the
worst case occurs when the slot size is the same as the
SPM size. It results in performance degradation of 10% in
experiments. For the other cases, the slot size has different
effect depending on the applications. In general, perform-
ance tends to get better as the slot size getting smaller, be-
cause the size of the working set is usually smaller than the
page size. However, the performance variation is not sig-
nificant in almost all cases, around 0.3% in MP3.

6. Conclusions

In this paper, we propose a novel technique to use
scratch-pad memory for stack management. Unlike the
previous works, we change the address map of the SPM
region by managing the page table in the target architecture
with MMU. The experimental results show that the pro-
posed technique exploits the stack locality better than the
cache solution and so gives better performance. It does not
require any additional hardware and compiler technique so
that it can be cheaply implemented. One drawback of the
proposed technique is lack of predictability.

The proposed technique is complementary to the previ-
ous works. And, it can be applied separately with the
global data management. As an example, we tested a con-
figuration where an SPM is used for the stack data and a
normal cache is used for the global data, and obtained the
better results than the other configurations. How to obtain
the optimal configuration remains as a future work.

Acknowledgement
This work was supported by IT leading R&D Support

Project funded by Korean MIC, IT-SoC project, and BK21
project. The ICT and ISRC at Seoul National University
and IDEC provided research facilities for this study.

References

[1] ARM. Advanced RISC Machines Ltd. http://www.arm.com.
[2] W Wolf, M Kandemir., Memory system optimization of em-

bedded software, In Proc. of the IEEE, 2003.
[3] Oren Avissar , Rajeev Barua , Dave Stewart, An optimal

memory allocation scheme for scratch-pad-based embedded
systems, ACM Transactions on Embedded Computing Sys-
tems (TECS), v.1 n.1, p.6-26, November 2002.

[4] S. Steinke , L. Wehmeyer , B. Lee , P. Marwedel, Assigning
Program and Data Objects to Scratchpad for Energy Reduc-
tion, In Proc. of the conference on Design, automation and
test in Europe, p.409, March 04-08, 2002.

[5] Manish Verma , Stefan Steinke , Peter Marwedel, Data par-
titioning for maximal scratchpad usage, In Proc. of the 2003
conference on Asia South Pacific design automation, Kita-
kyushu, Japan, January 21-24, 2003.

[6] Sumesh Udayakumaran, Angel Dominguez, Rajeev Barua,
Dynamic allocation for scratch-pad memory using compile-
time decisions, ACM Transactions on Embedded Computing
Systems (TECS), v.5 , n.2, p.472-511, May 2006.

[7] Federico Angiolini , Luca Benini , Alberto Caprara, Polyno-
mial-time algorithm for on-chip scratchpad memory parti-
tioning, In Proc. of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems,
San Jose, California, USA, October 30-November 01, 2003.

[8] Manish Verma , Lars Wehmeyer , Peter Marwedel, Dynamic
Overlay of Scratchpad Memory for Energy Minimization, In
Proc. of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS'04), p.104-
109, September 08-10, 2004.

[9] M. Kandemir , J. Ramanujam , J. Irwin , N. Vijaykrishnan , I.
Kadayif , A. Parikh, Dynamic management of scratch-pad
memory space, In Proc. of the 38th conference on Design
automation, p.690-695, Las Vegas, Nevada, United States
June 2001.

[10] Ozcan Ozturk , Mahmut Kandemir , Mary Jane Irwin, In-
creasing on-chip memory space utilization for embedded
chip multiprocessors through data compression, In Proc. of
the 3rd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, Jersey City, NJ,
USA, September 19-21, 2005.

[11] Poletti Francesco , Paul Marchal , David Atienza , Luca
Benini , Francky Catthoor , Jose M. Mendias, An integrated
hardware/software approach for run-time scratchpad man-
agement, In Proc. of the 41st annual conference on Design
automation, San Diego, CA, USA, June 07-11, 2004.

[12] S.J.E. Wilton and N.P.Jouppi., CACTI: An enhanced cache
access and cycle time model. IEEE Journal of Solid-State
Circuits, 31(5):677-688, May 1996.

[13] Richard Ernest Bellman, Dynamic Programming, Dover
Publications, Incorporated, 2003.

[14] Martello, S.; Toth, P., "Knapsack Problems", John Wiley &
Sons, Chichester, 1990.

[15] ARM. Advanced RISC Machines Ltd. ARM926EJ-S Tech-
nical Reference Manual, http://www.arm.com.

[16] X264, http://developers.videolan.org/x264.html.
[17] gzip, http://www.gzip.org.
[18] Mediabench, http://cares.icsl.ucla.edu/MediaBench

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

