
Instruction-Set Customization for Real-Time Embedded Systems

Huynh Phung Huynh and Tulika Mitra
School of Computing

National University of Singapore
{huynhph1,tulika}@comp.nus.edu.sg

Abstract

Application-specific customization of the instruction set
helps embedded processors achieve significant performance
and power efficiency. In this paper, we explore customiza-
tion in the context of multi-tasking real-time embedded sys-
tems. We propose efficient algorithms to select the optimal
set of custom instructions for a task set under two popu-
lar real-time scheduling policies. Our algorithms minimize
the processor utilization through customization while satis-
fying the task deadlines and the constraint on silicon area.
Experimental evaluation with various task sets shows that
appropriate customization can achieve significant reduction
in the processor utilization and the energy consumption.

1 Introduction

Current generation embedded system designs are char-
acterized by the increasing demand on higher performance
under stringent time-to-market constraints. In this context,
application-specific customizable processor cores strike the
right balance between performance and design efforts. A
customizable processor is, in general, configurable w.r.t. the
micro-architectural parameters. More importantly, a cus-
tomizable processor may support application-specific ex-
tensions of the core instruction-set. Custom instructions
encapsulate the frequently occurring computation patterns
in an application. They are implemented as custom func-
tional units (CFU) in the datapath of the existing processor
core. CFUs improve performance through parallelization
and chaining of operations. Some examples of commercial
customizable processors include Lx, ARCTM core, Xtensa
and Stretch S5.

In this work, we explore customization in the context of
multi-tasking real-time embedded systems. Most embedded
system designs today support concurrency through multi-
tasking. Moreover, they often employ real-time schedul-
ing policies to meet strict timing constraints. Customizable
processor cores appear to be quite promising in this sce-

nario. First, custom instructions may reduce the processor
utilization for a task set through performance speedup of
the individual tasks. This improvement may enable a task
set that was originally unschedulable to satisfy all the tim-
ing requirements. This is a far better option than choos-
ing a high-frequency and energy-inefficient processor core
to meet the deadlines. Second, a lower processor utiliza-
tion opens up the possibility to execute non-real-time (best-
effort) tasks alongside real-time tasks. Finally, a lower uti-
lization can exploit voltage scaling opportunities to lower
the operating frequency/voltage of the processor and still
meet the computational requirements of the tasks. As en-
ergy consumption scales quadratically with the operating
voltage (E ∝ V 2), a small change in voltage can have a sig-
nificant impact on the energy consumption.

One of the major challenges in the effective deploy-
ment of customizable processors is the development of the
design-automation tool chain. In particular, a major re-
search focus in the recent past has been automated identifi-
cation of suitable instruction-set extensions for an applica-
tion [7]. Given a single sequential application (a task), the
goal here is to select a set of custom instructions that opti-
mizes certain design criteria (such as power or performance)
under pre-defined design constraints (such as silicon area).

Multi-tasking real-time embedded systems add substan-
tial complexity to this design space exploration process.
The optimization problem in this context is to minimize the
processor utilization (through custom instructions) while
satisfying the task deadlines under an area constraint.
Clearly, a naı̈ve approach of optimizing the execution time
of each task in isolation will miss certain opportunities. We
have to take into account the complex interplay among the
tasks enabled by the real-time scheduling policy.

We propose efficient algorithms to select the optimal set
of custom instructions for a multi-tasking real-time work-
load. We consider two popular real-time scheduling poli-
cies: a static priority based Rate-Monotonic Scheduler
(RMS) and a dynamic priority based Earliest Deadline First
(EDF) scheduler. For EDF scheduling policy, we employ a
dynamic programming solution whereas for RMS schedul-
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ing, we resort to an efficient branch-and-bound based search
algorithm. Our experimental evaluation with a large number
of workloads confirms the benefit of processor customiza-
tion in real-time systems.

2 Related Work

The design space exploration problem to select suit-
able custom instructions for an application consists of two
steps[7]. The first step identifies a large set of candidate pat-
terns from the program’s dataflow graph and their frequency
via profiling [2, 4, 11]. Given this library of patterns, the
second step selects a subset to maximize the performance
under different design constraints. Various approaches pro-
posed for this step include dynamic programming [1], 0-1
Knapsack [5], greedy heuristic [4], and ILP [8].

Customization for task graphs has been addressed
in [10]. They propose an iterative algorithm to perform the
assignment and scheduling of a task graph on to a heteroge-
neous multiprocessor platform together with processor cus-
tomization in an integrated manner. However, they do not
consider real-time constraints. A heuristic to select custom
instructions such that the worst-case execution time (which
is critical for real-time systems rather than the average-
case) of a task is minimized has been proposed earlier by
our group [12]. This intra-task customization approach is
complimentary to inter-task customization for multi-tasking
real-time systems.

3 Customization for Real-Time Systems

3.1 Problem Formulation

In the classic model of a real-time system, a set of tasks
are executed periodically. Each task Ti is associated with a
period Pi and a worst-case execution time Ci. An instance of
the task Ti is released periodically once every Pi time units.
The task instance should complete execution by its dead-
line, which is typically defined as the end of the period. The
goal of real-time scheduling is to meet the deadline of every
task. Schedulability analysis determines whether a specific
set of tasks can be successfully scheduled using a specific
scheduler. Given a set of N independent, preemptable, and
periodic tasks on a uniprocessor, let U be the total utiliza-
tion of this task set. U quantifies the fraction of processor
cycles used by a task set. Therefore, a necessary condition
for feasible scheduling of a task set is

U =
N

∑
i=1

Ui =
N

∑
i=1

Ci

Pi
≤ 1 (1)

We would like to explore the opportunities opened up
by instruction-set customization in this context. Each task

Figure 1. Application performance versus additional
gate count for different processor configurations cor-
responding to g721 encoding task.

Ti has a set of custom instructions enhanced configurations
with different performance/silicon area tradeoff. The higher
is the area cost of a custom instruction configuration, the
better is its performance. Let con f igi, j (for j = 1 . . .ni)
be the jth configuration corresponding to task Ti and ni is
the number of configurations for task Ti. In addition, let
cyclei, j and areai, j denote the application performance in
processor cycles and gate count of con f igi, j. We assume
that con f igi,1 corresponds to the configuration without any
custom instruction, i.e., areai,1 = 0 and cyclei,1 = Ci (the
task performance without any enhancement). For example,
Figure 1 shows the set of configurations corresponding to
g721 encoding task.

Given (1) a set of independent, preemptable, and peri-
odic tasks, (2) a specific scheduling policy (RMS or EDF),
and (3) a total area budget AREA for the custom instruc-
tions, our goal is to select an appropriate configuration for
each task such that the task set is schedulable and the total
utilization U is minimized.

3.2 Customization for EDF Scheduling

Earliest Deadline First (EDF) is an optimal dynamic pri-
ority scheduling policy. It executes at any instant, the ready
task with the closest deadline. If more than one ready tasks
have the same deadline, EDF randomly selects one for ex-
ecution. A task set is schedulable under EDF policy if the
total utilization (U) is less than or equal to 1 (Equation 1).

We develop an algorithm to select the appropriate config-
uration for each task such that the total utilization of the task
set is minimized. As the value of total utilization determines
the feasibility of an EDF schedule, the algorithm, by defini-
tion, works towards meeting task deadlines. If the minimum
utilization returned is greater than 1, then the task set cannot
be scheduled even with custom instruction enhancements.
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We propose a pseudo-polynomial time dynamic pro-
gramming algorithm that returns the optimal solution. Let
Ui(A) be the minimum total utilization of tasks T1 . . .Ti un-
der an area budget A. Then Ui(A) can be defined recursively.

Ui(A) = min
j=1...ni

areai, j≤A

(cyclei, j

Pi
+Ui−1(A−areai, j)

)
(2)

That is, given an area A, we explore all possible configu-
rations for Ti and choose the one that results in minimum
utilization for tasks T1 . . .Ti. The base case for task T1 is

U1(A) = min
j=1...n1

area1, j≤A

(cycle1, j

P1

)
(3)

The minimum utilization for tasks T1 . . .TN under area bud-
get AREA then corresponds to UN(AREA).

Algorithm 1: Custom Instructions selection under EDF
Input: Task Set T1, . . . ,TN with configurations; Area constraint: AREA

Result: Minimum utilization
for A = 0 to AREA in steps of ∆ do

U1(A) ← min j=1...n1
area1,j≤A

(
cycle1,j

P1

)

for A = 0 to AREA in steps of ∆ do
for i=2 to N do

Ui(A) ← min j=1...ni
areai,j≤A

(
cyclei,j

Pi
+Ui−1(�

A−areai,j
∆ �×∆)

)

return UN(AREA);

Algorithm 1 encodes this recursion as a bottom-up dy-
namical programming algorithm. The step value ∆ deter-
mines the granularity of area (typically area equivalent of
1K logic gates for most tasks). It is chosen based on the
minimum area difference between two successive configu-
rations for any task. The time complexity of this algorithm
is O(N × Area

∆ × x) where x = maxi=1...N(ni).

3.3 Customization for RMS

Rate Monotonic Scheduler (RMS) is an optimal static-
(fixed-) priority scheduling policy using the task’s period as
the task’s priority. RMS executes at any instant the ready
task with the shortest period, i.e., the task with the short-
est period has the highest priority. If more than one ready
tasks have the same period, RMS randomly selects one for
execution. Unlike EDF, however, there exist task sets with
U ≤ 1 that are not schedulable under RMS. There are no
known polynomial time exact schedulability tests for RMS.
In this work, we use a recently proposed exact schedula-
bility test [3] that is more efficient than the previously pro-
posed tests.

Theorem 1 Given a periodic task set T1, . . . ,TN in increas-
ing order of periods

1. Ti can be scheduled using RMS if and only if:

Li = min
t∈Si−1(Pi)

∑i
j=1

⌈
t

Pj

⌉
Cj

t
≤ 1

where Si(t) is defined by the following recurrent expression:{
S0(t) = {t}
Si(t) = Si−1

(⌊
t
Pi

⌋
Pi

)
∪Si−1(t)

2. The entire task set is schedulable using RMS if and only if:

max
i=1...N

Li ≤ 1

Due to the double recurrent form of its definition, the worst-
case cardinality of a generic Si(t) set is 2i. In case two sets,

Si−1

(⌊
t
Pi

⌋
Pi

)
and Si−1(t), overlap, the cardinality reduces.

The complexity of the schedulability test renders the de-
sign space exploration under the RMS policy more difficult
compared to the EDF policy. Given a task set scheduled
with RMS, it is possible to have two customized configu-
rations p and p′ such that U(p) < U(p′) but p′ meets all
the task deadlines whereas p does not. That is, we can no
longer minimize only the total utilization without checking
the feasibility of the schedule.

We propose a Branch and Bound search algorithm to se-
lect appropriate configuration for each task such that the en-
tire task set is schedulable under Theorem 1 and the total
utilization of the task set is minimized. Branch-and-bound
deals with optimization problems over a search space that
can be presented as the leaves of a search tree. The search
is guaranteed to find the optimal solution, but its complexity
in the worst case is as high as that of exhaustive search. The
pseudo code is given as Algorithm 2.

Each level i in the branch-and-bound search tree corre-
sponds to the choice of configuration for the task Ti. Thus,
each node at level i corresponds to a partial solution with
the configurations about the tasks T1 up to Ti. Whenever
we reach a leaf node of the search tree, we have a complete
solution. The power of branch-and-bound algorithm comes
from the effective pruning of the design space. We prune
the design space under the following conditions.

First, during the traversal of the search tree, the mini-
mum utilization achieved so far at any leaf node is kept
as a bound MinU . At any non-leaf node m in the search
tree, we compute a lower bound, bound(m), on the min-
imum possible utilization at any leaf node in the subtree
rooted at m. The lower bound is computed by summing
up the utilization of the tasks that have been enhanced
with custom instructions and the minimum utilization of
the remaining tasks (which is the utilization when enhanced
with the best possible custom instruction configuration). If
bound(m) ≥ MinU , then the search space corresponding to

3



the subtree rooted at m can be pruned. Moreover, at any
level, the configuration with the minimum execution time
is considered first. This ensures greater possibility of ob-
taining a low utilization value MinU quickly and thereby
achieve effective pruning during the subsequent traversal.

Second, we select the appropriate configuration for each
task in the order of decreasing priority, i.e., the highest pri-
ority task is considered first. Recall that RMS is a static
priority preemptive schedule. A higher priority task can
preempt a lower priority task but not the other way round.
Suppose we have a partial solution where the configurations
corresponding to the first i−1 high priority tasks (T1 to Ti−1)
have been chosen. Suppose further that the tasks T1 to Ti−1
all meet their respective deadlines with the chosen configu-
rations. Any lower priority task, such as Ti, cannot preempt
the higher priority tasks and hence the higher priority tasks
will not miss their deadlines due to the introduction of Ti.
Thus, the task traversal order ensures that at level i of the
search tree we only need to check the schedulability of task
Ti (i.e., whether Li ≤ 1 in Theorem 1). Moreover, if Ti fails
to meet its deadline, we can prune the subtree rooted at the
corresponding node.

Finally, if the area constraint is violated at any node, then
the subtree rooted at the corresponding node is pruned.

Algorithm 2: Custom Instructions selection under RMS
Input: Task Set T1 to TN with configurations; Area constraint: AREA

Output: Minimum utilization
begin

U ← 0; optimalSoln ← /0; A ← AREA; MinU ← ∑N
i=1

Ci
Pi

;

/* T1 is highest priority task */;
search (T1, U, A, /0);
return MinU;

end

Function search (Ti, U, A, Soln)
for con f igi, j ( j ∈ 1 to ni) in increasing order of execution time do

if (areai, j ≤ A) and Ti is schedulable with cyclei, j then
partialSoln ← Soln∪ configi,j ; A ← A− areai,j;

U ← U+
cyclei,j

Pi
;

if Ti = TN then
if U < MinU then

MinU ← U; optimalSoln ← partialSoln;

return ;

if bound(partialSoln) < MinU then
search (Ti+1, U, A, partialSoln);

4 Experimental Evaluation

We use 8 benchmarks from MiBench and one benchmark
from Mediabench (g721 encoder) for our experiments.
We create six task sets using these benchmarks; each task
set consists of four benchmarks as shown in Table 1.

We choose the Xtensa [6] processor platform from Ten-
silica for our experiments. Xtensa is a configurable proces-
sor core allowing application-specific instruction-set exten-

Task set Benchmarks

1 crc32, sha, jpeg decoder, blowfish
2 blowfish, adpcm decoder, crc32, jpeg encoder
3 adpcm encoder, blowfish, jpeg decoder, crc32
4 sha, susan, crc32, g721 encoder
5 adpcm decoder, jpeg decoder, crc32, blowfish
6 crc32, sha, blowfish, susan

Table 1. Composition of Task sets

sions. We use the XPRES compiler provided by Tensilica
to generate the custom instructions from the C code corre-
sponding to a task. Multiple custom instruction configura-
tions are generated for each task based on the trade off be-
tween area and performance (see Figure 1). The maximum
performance gain for the individual tasks vary from 3.5% to
27% with area budget ranging from 1K to 23K logic gates.

To set the periods for the tasks, we choose a total utiliza-
tion for the task set (without any custom instructions) and
then select the periods to achieve the corresponding utiliza-
tion. Let Ci be the execution time of task Ti without using
custom instructions. Then we set the period Pi for each task

Ti as Pi = αi ×Ci such that ∑N
i=1

Ci
Pi

= U . We choose five
different utilization factors U = 0.80, 1.00, 1.05, 1.08 and
1.10. A task set is EDF-schedulable if U = 0.8 or 1.0; but
may or may not be RMS-schedulable. In this case, we are
interested in finding out how much we can reduce the uti-
lization by using custom instructions. For U > 1.0, a task
set can only become schedulable by using custom instruc-
tions. The greater the original utilization factor, the more
difficult it is to schedule the tasks using custom instructions.

For each task set, we vary the hardware area constraint
from 0 to Max Area at an interval of 0.01 × Max Area.
The Max Area for each task set is simply the summation
of the maximum area requirements of the constituent tasks.
A task set enhanced with custom instructions at Max Area
explores the limit of speedup achievable. The stricter the
area constraint, the more difficult it is to schedule a task set
and/or achieve lower utilization.

The average runtime of our configuration selection algo-
rithm is 0.4 sec and 0.068 sec under EDF or RMS schedul-
ing policy, respectively. The experiments are performed on
a Pentium 4 3GHz CPU with 1GB of RAM.

4.1 Performance

Figure 2 shows the utilization versus hardware area
trade-off for the different task sets. For each task set and
an original utilization factor, we apply both RMS and EDF
scheduling policies. Our algorithms take less than 0.1 sec
to return the solution for any task set and scheduling pol-
icy. The Y-axis shows the reduced utilizations. The utiliza-
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(a) Task Set 1 (b) Task Set 2 (c) Task Set 3

(d) Task Set 4 (e) Task Set 5 (f) Task Set 6

Figure 2. Utilization versus Area for different task sets under EDF and RMS scheduling policies.

(a) EDF Policy (b) RMS Policy

Figure 3. Area versus Energy for Task Set 3 under EDF and RMS scheduling policies.
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tion of a task set decreases with increasing hardware area
because we can accommodate more custom instructions.
Overall, we get up to 19% reduction in utilization. On an
average, we get about 14% (13%) reduction in utilization at
roughly 75% (50%) of Max Area .

The reduced utilization values for a given area constraint
are mostly identical for RMS and EDF. At original utiliza-
tion U = 0.8, all our task sets are RMS-schedulable (they
are, by definition, EDF schedulable). As adding custom in-
structions strictly improves the execution time of each task,
the task sets remain scheduable for all possible configura-
tions. We choose configurations for each task such that the
total utilization is minimized and the task set is schedula-
ble. Therefore, RMS and EDF scheduling policies select
identical custom instruction configurations at a given area.

However, at original utilization U = 1.0, a task set with-
out custom instructions enhancements may not be RMS-
schedulable. Indeed, all our task sets are not schedulable
under RMS policy at U = 1.0. Therefore, given a strict area
budget, we fail to schedule the task sets under RMS pol-
icy even using custom instructions. As the area budget in-
creases, a task set becomes RMS-schedulable and produces
identical reduced utilization for both policies. In general, at
any original utilization value greater than 1.0, a task set un-
der the EDF policy becomes schedulable earlier compared
to the RMS policy. The highlighted portions in the figure
shows the design points where a task set is schedulable un-
der both EDF and RMS policy; but produces different re-
duced utilization values.

4.2 Energy

A lower processor utilization opens up the opportunity
to lower the operating frequency/voltage of the processor
through voltage scaling technology. This may result in sub-
stantial energy savings. We employ the static voltage scal-
ing algorithms for read-time systems proposed in [9]. Given
a scheduling policy (RMS or EDF), the voltage scaling al-
gorithm chooses the lowest operating voltage, frequency
pair such that the task set still remains schedulable.

We first select the optimal customization for the task set
under an area constraint. We apply static voltage scaling to
obtain the lowest operating voltage/frequency correspond-
ing to the original (no custom instructions) and the optimal
configuration. We compare the energy consumptions corre-
sponding to these two configurations over the hyper-period
(the least common multiple of the task periods) of the task
set. At some original utilizations, the task set is not schedu-
lable without customization. In these cases, we perform the
comparison w.r.t the first schedulable solution. We scale the
frequency values from 300MHz (1.2 Volt) to 633MHz (1.6
Volt).

Figure 3 shows the relation between the hardware area

and energy consumption under RMS and EDF scheduling
policies. We can obtain up to 30% energy reduction. On an
average, the energy reduction is 10% for RMS and 14% for
EDF at 75% of Max Area. Better energy savings for EDF
is an artifact of the voltage scaling algorithm [9]. It can use
aggressive voltage scaling for EDF policy due to its simpler
schedulability test (U ≤ 1.0). But for RMS, it uses a con-
servative schedulability condition that is sufficient but not
necessary. In other words, it misses out certain opportuni-
ties and may select a higher operating frequency.

5 Conclusion

We explore instruction-set customization for multi-
tasking real-time embedded systems. We propose algo-
rithms to select inter-task optimal customizations under
EDF and RMS scheduling that achieve significant reduction
in processor utilization and overall energy consumption.
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