

HW/SW Implementation from Abstract Architecture Models

Ahmed Amine Jerraya
TIMA Laboratory - 46, av. Félix Viallet - 38031 Grenoble – France

1. Embedded System Design Challenges both
System and Semiconductor Houses.

The evolution of technologies is enabling the
integration of complex platforms in a single chip; called
System-on-Chip, SoC. Modern SoC may include one or
several CPU subsystems to execute software and
sophisticated interconnect in addition to specific hardware
subsystems. This is no more an advanced research topic
for academia. 90% of SoCs designed since the start of the
130nm process include at least one CPU. Multimedia
platforms (e.g. Nomadik and Nexperia) are already multi-
processor systems-on-chip (MPSoCs) using different kinds
of programmable processors (e.g. DSPs and
microcontrollers). This trend of building heterogeneous
multi-processor SoCs will even accelerate. It is easy to
imagine that the design of a SoC with more than a hundred
processors will become a current practice in a few years
time, e.g. with 45nm technology in 2008. Compared with
conventional ASIC design, such a multi-processor SoC is
a fundamental change in chip design. These chips will
include very sophisticated interconnect such as networks-
on-chips (NoC). Moreover, to achieve the required
communication performances, each processor may use
different local architectures and communication schemes
(fast links, non standard memory organization and access).

The design of a system-on-a-chip generally requires
the development of complex software, entailing hundreds
of thousands of lines of code, to run on the SoC platform.
All that work must be accomplished within the context of
short time-to-market window constraints and ever
increasing functional complexity. Current ASIC design
approaches are hard to scale up to such a highly parallel
multi-processor SoC. Designing these new systems by
means of classical hardware methods gives unacceptable
realization costs and delays.

Mastering the design of these embedded systems is a
challenge for both system and semiconductor houses that
used to apply only software strategy or only hardware
strategy. In addition to classic software and hardware that
can be designed by software and hardware engineers, SoC
design requires the design of hardware-dependent software
and software-dependent hardware. In order to meet
performances requirements, these two parts need to be
jointly designed. This requires 2 key technologies (i) how

to abstract HW/SW interfaces to capture the high level
architecture model and (ii) how to design efficient
hardware/software interfaces, in addition to designing
hardware and software starting from this abstract
architecture model.

2. Traditional Design Methodologies Feature
Discontinuities.

Traditional SoC design approaches are based on serial
methodologies. After finishing the hardware platform
design, an operating system and/or middleware is chosen
and tested on the hardware platform, and then the
application software is ported to the operating system
and/or middleware. This means that the software design
can be finished only after finishing the hardware platform
design. This often leads to poor hardware designs, since
problems caught during software development cannot be
fixed in the platform. It also means that the design process
takes too much time.

SoC designers need abstract models of both software
and hardware components. Ideally one would like to have
a set of SW tasks communicating with a set of HW
subsystems. Because software components run on
processors, the abstraction needed to describe the
interconnection between software and hardware
components is totally different from the existing
abstraction of wires between hardware components as well
as the function call abstraction used to describe software.
The HW/SW interface needs to handle two different
interfaces: one on the software side using APIs and one on
the hardware side using wires. This heterogeneity makes
HW/SW interface design very difficult and time-
consuming because the design requires the knowledge of
both software and hardware and their interaction.

In SoC design, HW/SW interface abstraction must take
into account the fact that the ultimate hardware/software
interface is the CPU and thus any abstraction of HW/SW
interfaces requires the hiding of the CPU. A CPU is a
hardware module that executes a software program. From
a software side, the abstraction hides the CPU under a low
level software layer; examples range from basic drivers
and I/O functions to sophisticated operating systems and
middleware. From the hardware point of view, HW/SW
interface abstraction hides the details of the CPU bus

978-3-9810801-2-4/DATE07 © 2007 EDAA

through a hardware adaptation layer generally called the
CPU interface. This may range from simple registers to
sophisticated I/O peripherals including DMA queues and
sophisticated data conversion and buffering systems. This
double definition of HW/SW interfaces has created a great
confusion in the community and left HW/SW interfaces as
an unexplored no man’s land.

The same discontinuity existed in computing design
where system designers must also consider both hardware
and software, but the two are generally more loosely
coupled than in SoC design. As a result, computing
systems generally model HW/SW interfaces twice. HW
designers use a HW/SW interface model to test their
hardware design, and software designers use a HW/SW
interface model to validate the functionality of their
software. Using two separate models induces a
discontinuity between hardware and software. The
result is not only a waste of design time but also less
efficient, lower-quality hardware and software. This
overhead in cost and loss in efficiency are not acceptable
for SoC design. A single HW/SW reference model needs
to be shared between both hardware and software
designers in order to create the hardware-software
continuum required for efficient SoC design.

3. Combining ARTEMIS & ENIAC to Create
a Design Continuum

The combination of both strategic agendas of ENIAC
and ARTEMIS is aimed to create a design continuum from
system level down to Silicon. The concept of “cross-
domain architecture” proposed by ARTEMIS is aimed to
abstract both software and hardware aspects of embedded
systems in a unified platform model. Such a platform will
be made of software and hardware components interacting
through abstract hardware/software interfaces. This
concept opens new vistas that will bring fundamental
improvements to the design process:
• concurrent design of both hardware and embedded

software, leading to a shorter time-to-market;
• modular design of hardware and software components,

leading to clearer design choices when building complex
systems; and

• easier global validation of embedded systems including
hardware and embedded software, leading to increased
reliability and improved quality of service.

ENIAC complements this agenda by offering a path to
Silicon starting from these abstract architecture models by
providing all the tasks related to hardware implementation
of the abstract platform. It also provides the Hardware
dependent Software (HdS) required to run the software
components of the abstract architecture model on the final
hardware platform.

Thus a seamless integration is achieved between the

higher level of abstraction dealt with by ARTEMIS and
those dealt with by ENIAC. This continuous flow will
allow better architecture exploration at system level (e.g.
different partitioning and component selection) and at
implementation level (e.g. different organization to
achieve different performances requirements).

For example, a car maker would like to use a standard
cross-domain architecture model to develop the car’s
software while keeping the right to select the hardware
implementation as late as possible. This scheme opens the
design process to several new optimizations that were not
possible when using the classical design scheme. The most
obvious optimization is a better adaptation of the CPU to
both HW and SW interfaces. For example, new flexible
processor technologies can be used to optimize
performances of the HW/SW interfaces by introducing an
application-specific I/O operation. Another example may
be the use of the capabilities of reconfigurable hardware to
optimize hardware interfaces to an embedded CPU.

4. Summary

Early HW/SW codesign research concentrated on
HW/SW partitioning, but without solving the problem of
abstracting the hardware/software interfaces. Rather than
using ad-hoc models of hardware as has been done with
traditional design approaches, system-on-chip designs
demand a well-thought-out approach to the
hardware/software interface. Architecture models can
abstract HW/SW interfaces at different abstraction levels
such as data transfer, synchronization, interconnect,
communication and finally HW/SW partitioning. These
different abstraction levels correspond to different
refinement processes that require specific cooperation
between hardware and software designers. Separate SW
and HW design methodologies do not meet the
requirements of complex SoC design. Thus the key
challenge is the creation of continuum between hardware
platform and embedded software. The combination of
ENIAC and ARTEMIS platform provides such a
continuum and opens new vistas leading to master the ever
growing complexity of embedded systems.

5. Bibliography

[1] ENIAC Strategic Research Agenda 2005,
<http://www.eurosfaire.prd.fr/7pc/doc/1147246667_eniac_
strategic_research_agenda_full__2005.pdf>

[2] ARTEMIS Strategic Research Agenda 2005,
<http://www.artemis-office.org/DotNetNuke/Portals/0/
Documents/sra.pdf>

[3] MEDEA+ Design Automation Roadmap 2005,
<http://www.medeaplus.org/web/communication/publ_
eda.php>

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

