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Abstract
Reliability of logic circuits is emerging as an important concern that
may limit the benefits of continued scaling of process technology
and the emergence of future technology alternatives. Reliability
analysis of logic circuits is NP-hard because of the exponential
number of inputs, combinations and correlations in gate failures,
and their propagation and interaction at multiple primary outputs.
By coupling probability theory with concepts from testing and logic
synthesis, this paper presents accurate and scalable algorithms for
reliability analysis of logic circuits. Simulation results for several
benchmark circuits demonstrate the accuracy, performance, and po-
tential applications of the proposed analysis technique.

1. Introduction
It is widely acknowledged that there will be a sharp increase in

manufacturing defect levels and transient fault rates in future elec-
tronic technologies, e.g., [1, 2]. Defects and faults impact perfor-
mance and limit the reliability of electronic systems. This has led
to considerable interest in practical techniques for reliability anal-
ysis that are accurate, robust, and scalable with design complexity.
Reliability analysis of logic circuits refers to the problem of eval-
uating the effects of errors due to noise at individual transistors,
gates, or logic blocks on the outputs of the circuit. The models
for noise range from highly specific decomposition of the sources,
e.g., single-event upsets, to highly abstract models that combine
the effects of different failure mechanisms. Reliability analysis is
NP-hard because of the exponential number of inputs, combina-
tions and correlations in gate failures, and their propagation and
interactions at multiple primary outputs.

Standard techniques for reliability analysis use fault injection
and simulation in a Monte Carlo framework. Although paralleliz-
able and scalable, they are still not efficient for use on large circuits.
Analytical methods for reliability analysis are applicable to very
simple structures such as 2-input and 3-input gates, and regular fab-
rics [3,4]. Although they can be applied to large multi-level circuits
with simplifying assumptions and compositional rules, there is a
significant loss in accuracy. Recent advances in reliability anal-
ysis are based on probabilistic transfer matrices (PTMs) [5] and
Bayesian networks [6]. However, both approaches require signifi-
cant runtimes for small benchmark circuits. This can be attributed
to the storage and manipulation overhead of large algebraic deci-
sion diagrams (ADDs) that support PTM operations, and large con-
ditional probability tables that support Bayesian networks.

To the best of our knowledge, this is the first work that describes
fast, accurate, and scalable algorithms for reliability analysis of
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logic circuits. The first algorithm described in this paper uses ob-
servability metrics to quantify the impact of a gate failure on the
output of the circuit. The observability-based approach provides
a closed-form expression for circuit reliability as a function of the
failure probabilities and observabilities of the gates. The closed-
form expression is accurate when the probability of a single gate
failure is significantly higher than the probability of multiple gate
failures, and has application to soft error rate estimation.

The observability-based approach provides useful insight into
the effects of multiple gate failures that is leveraged to develop a
single-pass algorithm for reliability analysis. Gates are topolog-
ically sorted and processed in a single pass from the inputs to the
outputs. Topological sorting ensures that before a gate is processed,
the effects of multiple gate failures in the transitive fanin cone of
the gate are computed and stored at the inputs of the gate. Us-
ing the joint signal probability distribution of the gate’s inputs, the
propagated error probabilities from its transitive fanin stored at its
inputs, and the error probability of the gate, the cumulative effect
of failures at the output of the gate are computed. The effects of re-
convergent fanout on error probabilities is addressed using correla-
tion co-efficients. Simulation results for several benchmark circuits
illustrate the accuracy, efficiency, and scalability of the proposed
technique.

This paper is organized as follows. Section 2 provides a back-
ground in reliability analysis. Section 3 describes an observability-
based algorithm for reliability analysis. Section 4 describes a single-
pass algorithm for reliability analysis. Section 5 discusses simula-
tion results and potential applications. Section 6 is a conclusion.

2. Background
The classical model for errors due to noise in a logic circuit was

introduced by von Neumann in 1956 [3]. Noise at a gate is modeled
as a binary symmetric channel (BSC), with a cross-over probabi-
lity ε. In other words, following the computation at the gate, the
BSC can cause the gate output to flip symmetrically (from 0 → 1
or 1 → 0) with the same probability of error, ε. Each gate has an
ε ∈ [0, 0.5] associated with it, where ε equals 0 for an error-free
gate and ε equals 0.5 for perfectly noisy gate (a gate with random
output). When ε > 0.5, it is equivalent to a gate with ε < 0.5, but
with the complement Boolean function. The BSC model allows
the effects of different sources of noise such as crosstalk, terrestrial
cosmic radiation, electromagnetic interference, etc. to be combined
into the failure probability ε. Note that gates are assumed to fail in-
dependently of each other. Although this may not be a realistic
assumption, it helps to simplify reliability analysis while still pro-
viding valuable insights into circuit reliability.

Reliability of a logic circuit is defined as the probability of error
at the output of the logic circuit, δ, as a function of failure proba-
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Figure 1: Circuit for illustrating the effect of noise and correlation on observability

bilities �ε of the gates, where �ε is the vector containing the failure
probabilities {ε1, ε2, ...} of the gates in the circuit. Reliability δ(�ε )
can lie in the interval from 0 to 1. Reliability analysis is NP-hard
because of the exponential number of inputs, combinations and cor-
relations in gate failures, and their propagation and interactions at
multiple primary outputs.

The traditional approach to reliability analysis uses fault injec-
tion and simulation in a Monte Carlo framework. Recent progress
in reliability analysis has seen the use of probabilistic transfer ma-
trices (PTMs) [5] and Bayesian networks [6]. Without exception,
these approaches suffer from the problem of scalability. Monte
Carlo simulations have the added disadvantage of inflexibility, since
the entire simulation has to be repeated for any change in circuit
structure or �ε. PTM-based reliability analysis uses transfer matri-
ces to represent input-output behavior of noisy circuits. PTMs store
the probability of occurrence of every input-output vector pair for
each level in the circuit to compute the probability of error at the
output of the circuit. This leads to massive matrix storage and ma-
nipulation overhead. Even with compaction of the matrices using
ADDs, the high runtimes for benchmark circuits with 20–50 gates
suggest their inapplicability to large circuits. Although this prob-
lem is somewhat mitigated in the Bayesian network approach for
small circuits, manipulating Bayesian networks for large circuits is
potentially intractable. Alternatively, analytical approaches devel-
oped to study fault-tolerant approaches like nand multiplexing and
majority voting can be used for reliability analysis [3,4]. However,
the simple compositional rules that these approaches use work best
on regular structures. When used on irregular multi-level structures
such as logic circuits, they suffer significant penalties in accuracy
even on small circuits. By coupling probability theory with con-
cepts from testing and logic synthesis, this paper presents accurate
and scalable algorithms for reliability analysis of logic circuits.

3. Observability-based reliability analysis
In this section, an intuitive approach to reliability analysis is de-

scribed. It is based upon the observation that a failure at a gate
close to the primary output has a greater probability of propagating
to the primary output than a gate several levels of logic away from
the primary outputs. This is because a failure that has to propagate
through several levels of logic has a higher probability of being
logically masked. This can be quantified by applying the concept
of observability, which has historically found use in the testing and
logic synthesis domains [7].

For reliability analysis, the observability of any wire in the circuit
can be defined as the probability that a 0 → 1 or 1 → 0 error at
that wire affects the output of the circuit. Consider a combinational
circuit with m inputs x1, x2, · · · , xm and n gates. Without loss of
generality, we assume that the circuit has a single output y. Denote
the error probability (observability) of the ith gate by εi(oi). Note

that the ois are the noiseless observabilities, i.e., all the gates are
assumed noise-free when the ois are calculated. Observabilities
can be calculated using Boolean differences, symbolic techniques
based on binary decision diagrams (BDDs), or simulation. Our
implementation uses BDDs to compute observabilities. Using the
observabilities oi, a closed-form expression for the reliability δy(�ε )
can be derived as follows.

Let Ω be the set of all the gates in the circuit. Consider a set
G ⊆ Ω of gates that have failed. The output y will be in error when
an odd number of gates in G are observable. This is because if an
even number of gates in G are observable, the errors of these failed
gates will mask each other at y. Given G, the probability that y is
in error is given by

Pr(yerror|G) =
1

2
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mes the probability that an odd number of gates in G are observ-
able at y (if the product terms are expanded, the even terms cancel).
When this is generalized by considering all sub-sets of Ω of size k,
Sk, the probability that y is in error is given by

Pr(yerror|Sk) =
X
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Here,
Q

i∈G εi

Q

j∈Gc(1 − εj) is the probability that the gates in
G are in error and that the gates in Gc (Ω\G) are error-free. Com-
bining Eqns. (1) and (2) and summing Sk over all k yields the fol-
lowing expression for the probability of error δy(�ε ):

δy(�ε ) = 1/2
“

1 −
Y

i∈Ω
(1 − 2εioi)

”

(3)

Eqn. (3) is a closed-form expression for the reliability of the output
of a circuit as a function of error probabilities at each gate. Since
the product of (1 − 2εioi) is over all gates in the circuit, it can
be computed very efficiently once the observability of each gate is
known. Eqn. (3) is intuitive because the error probability of each
gate εi is scaled by oi. Hence, errors at gates close to the primary
outputs (high oi) are more likely to cause output errors than errors
at gates that are several levels of logic deep (low oi).

3.1 Noise and correlation distort observability
Simulation results indicate that the closed-form expression for

δ(�ε ) is highly accurate for small circuits, and deviates by a small
margin for ε close to 0.5. Note that the same value of gate failure
probability has been used for each gate, and hence �ε is replaced



by ε. For example, the Monte Carlo and observability-based curves
for δ(�ε ) for the circuit in Fig. 1(a) are shown in Fig. 1(b). Simula-
tion results also indicate that the closed-form expression performs
well for small values of ε in large circuits, and that the accuracy
depends on the number of gates in the circuit with ε > 0. For ex-
ample, Fig. 1(c) compares the δ(�ε ) curves for a single output of the
benchmark circuit b9, where a large error is observed as ε increases.

The observability-based reliability analysis is accurate for small
ε because the probability of single gate failures is significantly high-
er than the probability of multiple gate failures. Since the effect
of an error at a single gate is given by the gate failure probabil-
ity scaled by its observability, it is exactly accounted for in the
closed-form expression for reliability. As ε increases, the effect
of multiple gate failures starts becoming significant and a deviation
of the observability-based curve from the Monte Carlo curve is ob-
served. There are two reasons for the inaccuracy of observability-
based analysis in computing the effects of multiple gate failures.
Both are related to the fact that the observability calculations are
done statically:

i) On individual gates in the circuit: When observability compu-
tation is performed on gates one-at-a-time in the derivation of the
closed-form expression for δ(�ε ), the events of two or more gates
being simultaneously observable is computed assuming that the
events are independent. For instance, consider gates Gx and Gy

in the circuit of Fig. 1(a). Assuming independence suggests that
Gx is observable even when Gy is not because ox(1 − oy) > 0.
However, since Gx is in the transitive fanin of Gy , it is clear that
Gx is observable only if Gy is observable. Assuming independence
thus introduces inaccuracies in the closed-form expression.

ii) In the absence of noise: When the observability calculations are
performed in the absence of noise, it is assumed that a path remains
sensitized irrespective of failures at gates that contribute to sensi-
tizing that path. However, a failure at one or more of these gates
may increase or decrease the observability of the original gate. For
instance, consider gates Gx and Gz in the circuit of Fig. 1(a). Ex-
haustive analysis indicates that if both Gx and Gz fail, the prob-
ability of an output failure is 46/256. However, the closed-form
expression ignores the effects of how failures at Gz influence the
propagation of failures from Gx and estimates this probability to
be 19/256. This problem is further exacerbated by the effects of
reconvergent fanout that is common in logic circuits, since observ-
ability calculation at the source of reconvergent fanouts becomes
more complex and expensive.

In conclusion, the observability-based closed-form expression is
highly suitable for reliability analysis of small circuits and for small
values of gate failure probabilities in large circuits. The algorithm
is simple, yet efficient and flexible because a change in the value of
noise at any gate(s) just requires recomputation of the closed-form
expression (3). Since gate failure rates in current CMOS technolo-
gies are of the order of 10−6–10−2, it can easily be applied to reli-
ability analysis and design optimization to enhance reliability.

4. Single-pass reliability analysis
The efficient single-pass reliability analysis technique described

here addresses the accuracy drawbacks of the observability-based
algorithm. At the core of this algorithm is the observation that an
error at the output of any gate is the cumulative effect of a local
error component attributed to the ε of the gate, and a propagated er-
ror component attributed to the failure of gates in its transitive fanin
cone. When the components are combined, the total error probabil-
ity at gate g is given by (i) a 0 → 1 error probability given that its
error-free value is 0, Pr(g0→1) and (ii) a 1 → 0 error probability

Input vector Weight Weighted 0 → 1 input error component
00 W00 Pr(i0→1) Pr(j0→1)W00

01 W01 Pr(i0→1)(1 − Pr(j1→0))W01

10 W10 (1 − Pr(i1→0)) Pr(j0→1)W10

Total W(0) PW(0)

Input vector Weight Weighted 1 → 0 input error component
`

Pr(i1→0) + Pr(j1→0)−
11 W11

Pr(i1→0) Pr(j1→0)
´

W11

Total W(1) PW(1)

Table 1: Expressions for weighted input error components

given that its error-free value is 1, Pr(g1→0).
In general, Pr(g0→1) �= Pr(g1→0) for an internal gate in a cir-

cuit. Initially, Pr(xi,0→1) and Pr(xi,1→0) are known for the pri-
mary inputs xi of the circuit. In the core computational step of the
algorithm, the 0 → 1 and 1 → 0 error components at the inputs to
a gate are combined using a weight vector W to obtain a weighted
input error vector PW . The PW vector is then combined with the
local gate failure probability ε to obtain Pr(g0→1) and Pr(g1→0)
at the output of the gate. Computation of the (i) weight vector and
(ii) weighted input error vector is described below.

Single-pass reliability analysis is performed by applying the core
computational step of the algorithm recursively to the gates in a
topological order. At the end of the single-pass, Pr(y0→1) and
Pr(y1→0) is obtained for the output y of the circuit. The reliability
δy of an output y is then given by the weighted sum of Pr(y0→1)
and Pr(y1→0) as follows:

δy(ε) = Pr(y = 0)Pr(y0→1) + Pr(y = 1) Pr(y1→0)

Given the weight vectors at all gates, the time complexity of the
algorithm is O(n), where n is the number of gates in the circuit.
Note that single-pass reliability analysis gives the exact values of
probability of error at the output in the absence of reconvergent
fanout.

i) Weight vector: The weight vector for a gate stores the probabil-
ity of occurrence of every combination of inputs at that gate. For
instance, the weight vector of a 2-input (3-input) gate consists of
4 (8) entries. Since the weight vector is just the joint signal prob-
ability distribution of the inputs of a gate, it can be computed by
random pattern simulation or symbolic techniques based on BDDs.
Weight vectors are independent of�ε and change only if the structure
of the logic circuit changes. To improve the efficiency of the algo-
rithm, weight vector computation may be performed once at the
beginning and used over several runs of reliability analysis. The
BDDs for the gates in the circuit are manipulated to compute the
components W00, W01, etc. of W . For example, if b1 and b2 are
the inputs to a gate, W00 is given by the number of minterms in
b1b2 divided by the total number of input vectors to the circuit.

ii) Expressions for weighted input error vector: Expressions for
the components of PW , for a 2-input AND gate with inputs i and
j, are given in Table 1. The calculation of PW(0) to propagate
the 0 → 1 error component using the entries in the upper part of
Table 1 is described here. Propagation of the 1 → 0 input error
component is similar, using the entries in the lower part of Table 1.

Since the probability of a 0 → 1 error is actually the probability
of a 0 → 1 error given that the error-free output of the gate is 0,
there are only 3 rows in the upper table, one for each input vector
for which the output of the AND gate is 0. The first column in
the table is the input vector under consideration. The input vector
has been ordered as ij. The second column is the probability of
occurrence of the input vector, i.e., the weight vector. The third
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Figure 2: Illustration of single-pass reliability analysis

column is the probability of a 0 → 1 error at g, caused only due to
errors at its inputs (when g itself does not fail). The entries in the
third column are computed using Pr(i0→1), Pr(i1→0), Pr(j0→1),
and Pr(j1→0) as illustrated below with an example.

Consider the input 10, whose error-free output is 0. For g to
be in error only due to errors at the inputs, j has to fail and i has
to be error-free so that the input to the gate is 11 instead of 10.
Thus, the probability of a 0 → 1 error at g due to this input vector
is (1 − Pr(i1→0)) Pr(j0→1). To compute the effect of the input
vector 10, this probability of error is weighted by its probability of
occurrence, i.e., by W10. Thus, the value in the third column for the
vector 10 is W10(1−Pr(i0→1)) Pr(j0→1). Similar entries for the
inputs 00 and 01 are derived, and summed to obtain an expression
for the weighted input error probability PW(0).

Since we are calculating the weighted 0 → 1 input error prob-
ability at g given that the error-free output is 0, PW(0) has to be
divided by W(0) to restrict the inputs to a set for which the error-
free output is 0. Thus, the weighted 0 → 1 and 1 → 0 input error
probability at g are given by

Pr(g0→1|g does not fail) = PW(0)/W(0)

Pr(g1→0|g does not fail) = PW(1)/W(1)

iii) Expressions for Pr(g0→1) and Pr(g1→0): If g fails with a
probability of ε, Pr(g0→1) is given by

Pr(g0→1) = (1 − ε)

„

PW(0)

W(0)

«

+ ε

„

1 − PW(0)

W(0)

«

Similarly, Pr(g1→0) is given by

Pr(g1→0) = (1 − ε)

„

PW(1)

W(1)

«

+ ε

„

1 − PW(1)

W(1)

«

Note that the two terms (1 − Pr(i1→0)) and Pr(j0→1)) are mul-
tiplied in the computation of the entries in the third column of Ta-
ble 1. This implies that the events of i being correct and j failing
are assumed independent. This assumption is valid if the gate is not
a site for reconvergence of fanout. Since reconvergence causes the
two events to be correlated, it is handled separately in Sec. 4.1.

Although the computation has been illustrated for an AND gate,
the computation for an OR gate is symmetric, i.e., there are 3 rows
for the probability of 1 → 0 error table and a single row for the
probability of 0 → 1 error table. Inverters, nands, nors, and xors
are all handled in a similar manner and the tables have been ex-
cluded for brevity.

Single-pass reliability analysis is illustrated for the circuit shown
in Fig. 2. The weight vector, gate failure probability (ε), and prob-
ability of 0 → 1 and 1 → 0 error are indicated for each gate. The
gates are numbered in the order in which they are processed. Since
all the gates in the circuit have only 2-inputs, the weight vector for
each gate consists of 4 entries. All entries of the weight vector for
gate 1 are 0.25 because the primary input vectors are equally likely.

The fanout at gate 2 reconverges at gate 6 via gates 4 and 5. Thus,
the event of 0 → 1 and 1 → 0 error at the outputs of gates 4 and
5 are correlated. However, independence is assumed and the prob-
ability of these events are used in the computation of 0 → 1 and
1 → 0 probability of error values for the output of gate 6.

4.1 Handling reconvergent fanout
The presence of reconvergent fanout renders the single-pass reli-

ability analysis approximate because the events of 0 → 1 or 1 → 0
error for the inputs of a gate may not be independent at the point
of reconvergence. Handling reconvergent fanout has been the sub-
ject of extensive research in signal probability computation. In this
section, the theory of correlation co-efficients used in signal prob-
ability computation [8], is extended to make single-pass reliability
analysis more accurate in the presence of reconvergent fanout.

This approach relies on the propagation of the correlation co-
efficients for a pair of wires from the source of fanout to the point of
reconvergence. Note that the word “wire” has been used as opposed
to “node” because for a gate with fanout > 1, each fanout is treated
as a separate wire, but they constitute the same node. The correla-
tion co-efficient for events on a pair of wires is defined as the joint
probability of the events divided by the product of their marginal
probabilities. For signal probability computation, an event on a
wire is defined as the value of the wire being 1. Thus, for a pair of
wires, a single correlation co-efficient is sufficient to compute the
joint probability of a 1 on both the wires.

In our analysis, an event is a defined as a 0 → 1 or 1 → 0 error
on a wire. Hence, instead of a single correlation co-efficient, 4 cor-
relation co-efficients for a pair of wires, one for every combination
of events on the pair of wires. If v and w are two wires, the 4 corre-
lation co-efficients for this pair are denoted by Cvw, Cvw̃, Cṽw, and
Cṽw̃, where v, w, ṽ, and w̃ refers to the event of a 0 → 1, 0 → 1,
1 → 0, and 1 → 0 error at v and w respectively.

The correlation co-efficients come into play at the the gates whose
inputs are the site of reconvergence of fanout. At such gates, the
events of 0 → 1 or 1 → 0 error at the inputs are not independent.
Thus, the entries in the third column of Table 1 are weighted by the
appropriate correlation co-efficient, e.g., Pr(i0→1)(1−Pr(j1→0))
becomes Pr(i0→1)(1 − Pr(j1→0)Cij̃).

Correlation co-efficient computation: The correlation co-efficient
for a pair of wires can be calculated by first computing the cor-
relation co-efficients for the wires in the fanout source that cause
the correlation, and then propagating these correlation co-efficients
along the appropriate paths leading to the pair of wires. Note that
all four correlation co-efficients for two independent wires are 1.
The computation of correlation co-efficients for the fanout source
and the propagation of correlation co-efficients at a 2-input AND
gate are described below.

i
l

m

l

k
j
i

(a) (b)

Figure 3: Computation/propagation of correlation co-efficient

i) Computation at fanout source node: The fanout source node i
is shown in Fig. 3(a). The correlation co-efficient for the pair of
wires {l, m} is computed as follows:

Pr(l0→1) = Pr(l0→1, m0→1) = Pr(l0→1) Pr(m0→1)Clm

i.e., Clm =
1

Pr(m0→1)



Pr(l0→1|k0→1) = ε +
(1 − 2ε)

W(0)

`

W00 Pr(i0→1|k0→1) Pr(j0→1|k0→1)Cij + W01 Pr(i0→1|k0→1)(1 − Pr(j1→0|k0→1)Cij̃)

+W10(1 − Pr(i1→0|k0→1)Cĩj) Pr(j0→1|k0→1)
´

= ε +
(1 − 2ε)

W(0)

`

W00 Pr(i0→1)Cik Pr(j0→1)CjkCij + W01 Pr(i0→1)Cik(1 − Pr(j1→0)Cj̃kCij̃)

+W10(1 − Pr(i1→0)CĩkCĩj) Pr(j1→0)Cjk

´

Figure 4: Derivation of Pr(l0→1|k0→1) in terms of correlation co-efficients of its inputs.

Cl̃m̃ can be computed in a similar manner. Cl̃m and Clm̃ are zero
because it is not possible to have a 0 → 1 error on m and a 1 → 0
error on l, or vice-versa.

ii) Propagation at an AND gate: Propagation of correlation co-
efficients is illustrated for the AND gate in Fig. 3(b). Let i, j, k
be three wires whose pairwise correlation co-efficients are known.
Computation of the correlation co-efficients for the pair {l, k} in-
volves propagation of the correlation co-efficients through the AND
gate, using the correlation co-efficients of i, j with k.

Clk =
Pr(l0→1|k0→1)

Pr(l0→1)

The expression for Pr(l0→1|k0→1) in terms of the correlation co-
efficients of the inputs i, j with k is shown in Fig. 4. The terms in
the expression for Pr(l0→1|k0→1) are similar to the terms in the
third column of the upper part of Table 1. The only difference is
that the probability of 0 → 1 and 1 → 0 errors have been multi-
plied by appropriate correlation co-efficients. Note that the terms
of the weight vector W include the signal probability of k. The
expression for Cl̃k is derived in a similar manner using the lower
part of Table 1, and is left out for brevity. Expressions for Clk̃ and
Cl̃k̃ are derived by replacing k by k̃ in the expressions for Clk and
Cl̃k respectively. In Fig. 5, the consolidated probability of error at
two correlated primary outputs of benchmark circuit b9 is used to
illustrate the accuracy achieved with correlation co-efficients.
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5. Results
Simulation results comparing single-pass reliability analysis with

Monte Carlo simulations are reported in Table 2. The simulations
were run on a 2.4 GHz Opteron-based system with 4 GB of mem-
ory. A 64-bit parallel pattern simulator was used to implement a
Monte Carlo framework for reliability analysis based upon fault
injection. The sample size used for reliability analysis was 6.4 mil-
lion random patterns. In the table, columns 1 and 2 give the name
and number of gates in the benchmark circuit. Both the Monte
Carlo and single-pass reliability frameworks were used to compute
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Figure 6: δ(�ε ) curves for two outputs of i10.

δ(�ε ) for 50 different values of ε over the range 0 to 0.5. Note that
the same value of ε has been used for all the gates in the circuit,
and hence �ε is replaced by ε. The third column reports the percent-
age error in single-pass reliability analysis for 6 values of ε ranging
from 0.05 to 0.3. For each entry, the error in δ(�ε ) with respect to
Monte Carlo simulation is measured, and the average error over all
outputs is reported. For ε > 0.3, δ(�ε ) saturates at 0.5 for several
outputs and is hence not reported here. The cumulative run-time
for 50 runs is reported in the fourth column.

The maximum percentage error in δ(�ε ) is less than 3% for the
largest benchmark circuit, i10. For circuits with significant recon-
vergent fanout, e.g., c499 and c1355, the maximum percentage er-
ror in δ(�ε ) is 12.16% and 8.91% respectively. It is clear from the
results that the proposed single-pass reliability analysis technique is
highly accurate. Although a head-to-head performance comparison
with approaches based on PTMs and Bayesian networks was not
possible, it is our belief based on the results reported in [6] that the
proposed technique affords at least a 500X speed-up over Bayesian
networks on the largest circuit b9 (2.5s versus 0.005s (0.25/50s))
reported therein. Note also that results reported in [6] show that
Bayesian networks afford a 1000X speed-up over PTMs. In sum-
mary, it is reasonable to conclude that the strengths of the proposed
single-pass reliability analysis algorithm are its accuracy, scalabil-
ity to large circuits, and speed-up in performance.

Fig. 6 presents δ(�ε ) for two outputs of benchmark i10. The cone
sizes of the two outputs are 662 and 1034 gates respectively. Each
graph has two curves, one from Monte Carlo reliability analysis
and one from single-pass reliability analysis. The two curves are
indistinguishable as seen in the figure. The diverse shapes of the
curves illustrates not only the complexity of the relation between δ
and �ε, but also the accuracy of single-pass reliability analysis.

Fig. 7 shows the percentage error in δ(�ε ) for each of the 32 out-
puts of benchmark circuit c499. On each run, the ε for each gate
was derived from a uniform random distribution over the interval
[0, 0.5]. The percentage error in δ(�ε ) for each output, averaged
over 1000 runs, is 1.5–3.5%. This illustrates that the single-pass
reliability analysis is highly accurate even when the ε values are
allowed to vary independently at every gate.



Table 2: Simulation results for reliability analysis. Six values of ε are used for comparison.

Average error over all outputs (in %) Runtimes (for 50 runs)
Benchmark Size

ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3 Monte Carlo Single-pass analysis

x2 56 1.3 0.92 0.52 0.28 0.15 0.08 8m 41s 0.065s
cu 59 1.58 0.83 0.37 0.14 0.09 0.06 9m 50s 0.107s
b9 210 0.3 0.22 0.12 0.07 0.06 0.03 37m 15s 0.25s

c499 650 12.16 9.63 6.97 4.61 2.75 1.43 134m 55s 1.91s
c1355 653 8.91 7.48 5.58 3.79 2.32 1.24 135m 7s 2.09s
c1908 699 8.67 6.06 4.42 3 1.84 1 145m 5s 0.781s
c2670 756 3.04 1.99 1.35 0.88 0.54 0.31 208m 41s 2m 51.2s
frg2 1024 2.4 1.53 0.94 0.54 0.3 0.15 286m 38s 0.533s

c3540 1466 6.2 2.67 1.18 0.53 0.23 0.11 431m 5m 42s
i10 2643 2.43 1.58 1.01 0.62 0.37 0.21 1668m 44s 5.42s

0 10 20 30 40
1.5

2

2.5

3

3.5

Outputs

Pe
rc

en
ta

ge
 e

rr
or

Figure 7: Average error in δ(�ε ) per output of circuit c499 over
1000 runs. On each run, εi ∈ Uniform(0, 0.5) for each gate.
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Figure 8: Redundancy-free improvements in reliability

5.1 Applications
Single-pass reliability analysis can be used in redundancy-free

design space exploration. It is called redundancy-free because no
redundancy is used in the circuit to achieve improvements in relia-
bility. This is illustrated using two synthesized versions of bench-
mark b9: (i) a low fanout version with a maximum fanout of 2 and
(ii) a high fanout version with a maximum fanout of 6. Fig. 8 com-
pares the consolidated output error curves for the two versions of
b9. The consolidated output error curve gives the probability that
at least one of the outputs is in error, and is obtained by performing
correlation-based analysis described in Sec. 4.1 on the individual
δ(�ε ) curves. In Fig. 8, ε ∈ [0, 0.15] because δ(�ε ) for both circuits
saturates at 1 for ε > 0.15. Note that the same value of ε has been
used for all the gates, and hence �ε is replaced by ε. It is clear from
the figure that the low fanout version of b9 has higher reliability
than the high fanout version. This can be explained by examining
the levels of logic present in both circuits. The high (low) fanout
version of b9 has a maximum of 12 (9) levels of logic and a total
of 164 (111) levels of logic over all the outputs. As the number of
levels of logic increase, the noise-free inputs have to pass through
more levels of noise before they reach the primary outputs. This
results in a higher consolidated output error probability.

Single-pass reliability analysis also provides δ(�ε ) curves for each
node in the circuit. This information can be used to introduce re-
dundancy at selected gates, instead of introducing redundancy at
every gate in the circuit. The proposed analysis technique also pro-
vides information about the 0 → 1 and 1 → 0 probability of error
separately at each node in the circuit. This is valuable information
for explicit introduction of asymmetric redundancy. For instance,
in quadded logic, the redundancy introduced for mitigating a 0 → 1
and 1 → 0 error are different by construction. Single-pass relia-
bility analysis can be used to direct such fine-grained insertion of
asymmetric redundancy to enhance reliability at a lower cost.

Observability-based reliability analysis is accurate when the prob-
ability of a single gate failure is significantly higher than the prob-
ability of multiple gate failures. This makes it directly applicable
for soft-error rate estimation in logic circuits because failures due
to single-event upsets are usually localized to the gate that is the
site of the strike.

6. Conclusions
Even as reliability gains wide acceptance as a significant de-

sign challenge, there is a lack of effective techniques for its anal-
ysis and optimization. This paper described two accurate, scal-
able, and highly efficient techniques for reliability analysis of logic
circuits. These techniques have several potential applications, in-
cluding redundancy-free reliability optimization, asymmetric and
fine-grained redundancy insertion, and reliability-driven design op-
timization.
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