

A Low-SER Efficient Core Processor Architecture for Future Technologies

E. L. Rhod, C. A. Lisbôa, L. Carro

Universidade Federal do Rio Grande do Sul
Escola de Engenharia and Instituto de Informática

Porto Alegre, RS, Brazil
eduardo.rhod@ufrgs.br, calisboa@inf.ufrgs.br, carro@inf.ufrgs.br

Abstract
Device scaling in new and future technologies brings

along severe increase in the soft error rate of circuits, for
combinational and sequential logic. Although potential
solutions have started to be investigated by the
community, the full use of future resources in circuits
tolerant to SETs, without performance, area or power
penalties, is still an open research issue. This paper
introduces MemProc, an embedded core processor with
extra low SER sensitivity, and with no performance or
area penalty when compared to its RISC counterpart.
Central to the SER reduction are the use of new magnetic
memories (MRAM and FRAM) and the minimization of
the combinational logic area in the core. This paper
shows the results of fault injection in the MemProc core
processor and in a RISC machine, and compares
performance and area of both approaches. Experimental
results show a 29 times increase in fault tolerance, with
up to 3.75 times in performance gains and 14 times less
sensible area.

1. Introduction

Previously a concern only for mission critical

applications, errors due to the effects of transient pulses
produced by radiation and other interferences, called soft
errors, are now being generally considered by the design
community, since these errors are very likely to occur in
future technologies. While successful mitigation
techniques, and new memory technologies such as
MRAM and FRAM, have already been devised to protect
memories against soft errors, the protection of
combinational logic, mainly against multiple
simultaneous upsets, is a relatively recent concern and
still lacks efficient solutions [1].

Due to the variability of their vulnerability periods, the
SER of combinational logic is harder to quantify, and so
far the mitigation of soft errors in those circuits has been

dealt with through redundancy and larger transistor
architectures, with obvious costs in area, power and even
performance. The technology evolution towards
nanoscale leads to the possibility of manufacturing chips
with up to 1012 devices. Not only the number of
transistors, but also the speed of the circuits has increased
with the advent of deep sub-micron technology. All
together, the result is a higher sensitivity of combinational
logic to soft errors. As shown in Figure 1, from [2], while
the SER of SRAM memories remains almost stable with
technological scaling, the SER of logic has been always
increasing.

For future technologies, solutions that impose
redundancy or larger areas impair the ability to
explore the advantages of the technology evolution.
Therefore, new paradigms must be adopted in the
design of combinational circuits to be manufactured
using those technologies.

Figure 1. Evolution of SER: SRAM vs. logic [2]

Geometric regularity and the extensive use of

regular fabrics is being considered as a probable
solution to cope with parameter variations and
improve the overall yield in manufacturing with
future technologies, by using spare rows and columns
that can be activated to replace defective devices. [3].
Together with the proposal of using regular fabrics,
the introduction of new memory technologies that can
withstand the effects of transient faults, such as

978-3-9810801-2-4/DATE07 © 2007 EDAA

ferroelectric and magnetic RAMs [2], brings back the
concept of using memory to perform computations.
Already proposed in the past [4], but precluded as a
general purpose solution due to poor performance and
high cost, the use of memory now is proposed here as
a novel mitigation technique for transient faults, by
reducing the area of the circuits that can be affected
by soft errors.

In this paper, we try to cope with the SEU/SET
problem without imposing area or performance
overhead, at the same time that we favor a regular
architecture that can be used to enhance yield in
future manufacturing processes. We introduce a
memory-based embedded core processor architecture,
named MemProc, designed for use in control domain
applications as an embedded microcontroller. It is a
microcoded multicycle core processor that uses a
reduced combinational logic and some extra memory
to reduce the incidence of soft errors. Our technique
reduces the area of sequential logic, which is sensible
to faults, by using intrinsically protected memories.

The performance was evaluated by running in
MemProc different applications selected from the
targeted domain and comparing the results with those
obtained using a pipelined RISC architecture.

This paper is organized as follows: section 2
discusses related work and highlights the differences
between the proposed architecture and other
alternatives. Section 3 describes the MemProc
architecture, explaining how its simplified ALU
works. Section 4 describes the fault injection process.
In section 5 we comment the achieved results and also
future work.

2. Related Work

The reliability of circuits manufactured in future

technologies became a major topic of discussion and
research in recent years [5], imposing tolerance to
transient faults as a mandatory design concern.

Among different approaches to cope with soft
errors found in the literature, the use of spatial or time
redundancy dominates as the major technique.

The use of time redundancy to avoid undesirable
errors, exploiting microarchitectural techniques that
are already incorporated in the processor due to
performance reasons, has been proposed in [6], and a
penalty of up to 30% in performance is incurred. The
use of simultaneous multithreading to detect transient
faults is also proposed in [7]. The area cost of such
duplication techniques is obviously high.

In [8], a self-repairing unit for microprogrammed
processors is proposed. In that work, the authors used
a dedicated built-in self-test (BIST) architecture to
provide an online status – either good or faulty – for
each block in the execution unit. For each processor
microinstruction, they defined a sequence of
microinstructions that can execute the same operation

using only fault-free units. This approach has a
significant area and performance overhead due to the
BIST and fault-free units added to the circuit.

In [9], the authors propose the use of a self-
stabilizing microprocessor to cope with any
combination of soft errors. The paper presents only
the initial studies of the behavior of the self-
stabilizing processor in the presence of soft errors.
Whenever affected by a transient fault, the processor
is able to converge to a safe state, from which the
normal fetch-decode-execute sequence can be
resumed during fault-free periods. Besides presenting
the design scheme for the processor, a new technique
for the analysis of the effects of soft errors is
introduced, which instead of using simulation is based
in an upper bound algorithm that does not take into
account the fault masking effects of the circuit.

The use of memory as a computing device, has
been subject of research in the past. In order to
explore the large internal memory bandwidth,
designers proposed to bring some functions executed
by the processor into memory [4]. This technique
apparently has been discarded due to its limited field
of application.

Back to the fault tolerance arena, another strong
argument to the use of memory to perform
computation functions is its intrinsic protection
against defects, due to the use of spare columns and
spare rows, such as in DRAMs. More recently, the
fact that new memory technologies, such as
ferroelectric RAMs (FRAMs), magnetic RAMs
(MRAMs), and flash memories, are virtually immune
to soft errors, due to their physical characteristics [2],
makes those types of memories an important
additional resource for the implementation of fault
tolerant systems. MRAMs are also more energy efficient
than other non-volatile memory technologies, since they
consume less power during read and write operations
[10]. Since memories are regular structures by nature,
memory systems will also benefit from the foreseen
advantages that regular fabrics will provide for future
technology.

The fact that the proposed MemProc processor
relies heavily in the use of memories adds the benefits
arising from regularity and immunity against soft
errors to the solution proposed in this paper. In order
to highlight the fault tolerance of the design, we
injected faults and compared the results with those
obtained for another core processor (MIPS), using the
same simulation tool. In this process, two
implementations of each architecture running in
parallel have been simulated and faults have been
injected in one of them, comparing the produced
results for each possible single event transient
occurrence. Therefore, all the possible fault incidence
cases have been considered, even those in which the
faults are masked by the architecture and do not
generate errors.

3. The Architecture of MemProc

The architecture proposed in this paper is a

microcoded multicycle 16-bit core processor with
Harvard architecture, in which part of the datapath has
been replaced with memory, thereby reducing the amount
of combinational logic. In Figure 2(a) the main functional
blocks of the proposed architecture are shown.

The application code, which is also called the
macroinstrucion code, is stored in the ROM memory.
The instructions in this code, as usual, indicate the
operations to be performed and their operands. The
microcode memory receives the initial microcode
address of the current operation from the ROM
memory, and generates the control signals for the data
memory, ALU and operation masks memory. The
operation masks memory is responsible for passing
the operation masks to the ALU. All arithmetic and
logic operations results are stored in the RAM
memory, and the register bank is also mapped into
this memory.

ROM

RAM

Microcode
MEM

PC

ALU

Operation
Masks
MEM

X Y Z M

3

8

RAM

8

Operation
code A

Operation
code B

shift
left shift

right

wired
or

 (a) (b)

8

X Y Z M

3A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1 8

Operation
code B
(Cout)

Operation
code A
(Sum)

2-bit addition:
Truth table

(c)

Figure 2. (a) MemProc architecture (b) ALU for
one bit operation (c) 2-bit addition using

MemProc ALU

In the MemProc ALU, operations are performed

by 8:1 multiplexors, which are able to generate all the
minterms for a given 3-bit boolean function,
according to the values of bits X, Y, and Z (or M).
Figure 2(b) depicts a MemProc ALU block for
processing 1-bit operands.

The complete MemProc ALU is 16-bit wide and
their 16 blocks work in parallel, being able to perform
bit serial arithmetic and logic operations. All
operation mask values are independent from each
other, so each processing element of the ALU can
perform a different Boolean function. To accelerate

addition operations, we use two 8:1 multiplexors
instead of a single one; one multiplexor is used to
calculate the sum and the other to calculate the carry
out. An extra flip-flop, called “M”, was also added, to
accelerate multiplications.

In figure 2(c) the addition of two 1-bit operands is
used to illustrate how the ALU works. We can see
from the truth table the operation masks for the “sum”
and the “cout” (carry out) outputs of the multiplexors.
Also in figure 2(c), we can se the presence of a wired-
or bus. This bus implements an “or” operation of all
the multiplexors’ outputs. This wired-or bus is an
extremely important element in what we call
“compute only the necessary to get the result”, which
will be discussed in the following paragraph.

The way MemProc achieves its high performance
is based on the fact that it computes just the necessary
cycles to get the operation result. In traditional
computer architectures, the ALU does its arithmetic
and logic operations using combinational hardware
that always takes the same time to compute the
operation, regardless of the value of the operands.
MemProc executes only the number of cycles required
to get the result, depending on the carry propagation
chain.

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used
not used

A = 5
B = 11

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used
not used

A = 5
B = 11

Figure 3. 8-bit Addition paradigm.

In Figure 3 we can see that MemProc requires only

5 of the 8 operation units to perform the addition of
two 8-bit operands, which means that it takes 5/8 of
the time required by traditional architectures to
perform this operation. To detect when the operation
is finished, MemProc uses the wired-or bus to
evaluate when there are no more carry-outs to
propagate, which means that the addition has finished.
This way, we can say that the proposed architecture
takes advantage on the value of the operands. For
instance, one addition can require from 3 to 18 cycles
to be performed, depending on the number of carries
to be propagated. On the other hand, store operations
require only 2 cycles.

In multiplications, the number of cycles depends
on the number of bits equal to zero in the operands.
The number of required cycles decreases as the
number of bits equal to zero in the operands
increases. One could say that if the values of the
operands are high the proposed approach would not
have any advantage. However, as shown in [11], the

transition activity for some multimedia benchmarks is
more intense in the 8 least significant bits.

4. Experimental Results: fault tolerance, area
and performance metrics

The fault rate of a circuit, also known as soft error rate,

can be expressed by the amount of errors that affect the
circuit in a certain period of time.

The soft-error rate of a design can also be expressed by
the nominal soft-error rate of the individual circuit
elements that compose the design, like memory structures
such as SRAMs, sequential elements such as flip-flops
and latches, combinational logic and its architectural and
timing vulnerability characteristics [12] as follows:

(2)

where i represents the ith element of the design.
The SERnominal for the ith element is defined as the soft

failure rate of a circuit or node under static conditions,
assuming that all the inputs and outputs are driven by a
constant voltage. The TVFi, time vulnerability factor (also
known as time derating) stands for the fraction of the time
that the element is susceptible to SEUs, which will cause
an error in the ith element. The AVFi, architectural
vulnerability factor (also known as logic derating)
represents the probability that and error in the ith element
will cause a system-level error. In this study the time
vulnerability factor was not taken into account [12].

One of the most usual ways to measure the SER of a
circuit is evaluating the number of Failures in Time (FIT),
which means one error every 109 hours [12, 13]. A soft
error rate of 10 FIT means that the device will generate 10
errors in 1 million years. Another commonly used
metric to express SER is the Mean Time to Failure
(MTTF). As an example, a MTTF of 1000 hours
means that, in average, one error occurs after 1000
hours of device operation. FIT and MTTF are
inversely related, i.e., less FIT means better SER,
while higher MTTF means better SER [13]. In this
paper we use the MTTF metric to measure the fault
tolerance of the proposed architecture and MIPS.

In order to evaluate the feasibility of the architecture
proposed in this paper, both in terms of fault tolerance,
area, and performance, extensive simulations have been
executed, using an in-house developed simulation tool
named CACO-PS (a System C-like simulator) [14]. The
comparisons have been made against the well-known
MIPS 16-bit RISC architecture, with a 5-stage pipeline
and forwarding unit [15], widely used in real-world
embedded processors.

4.1 Fault Rate Evaluation

To evaluate the fault rate of the processors, random

faults were injected in both MIPS and MemProc
during their operation. During fault injection, the

behavior of each processor was compared to the
behavior of its fault free version when executing the
same application with the same data.

Since some faults may hit parts of the circuit which
are not being used at a specific moment in time, to
detect if a fault has been propagated or not it is not
necessary to compare the value of all functional units
or registers. It is only necessary to compare those
components that are vital for the correct operation of
the system. For the MIPS processor, the units to be
checked are the program counter, in order to detect
wrong branches, and wrong data or address values
during write operations, to identify silent data
corruption (SDC). In the case of MemProc, besides
the program counter, the microcode counter was
checked to identify wrong branches, and the write
address and write data contents were checked to
identify SDC. The CACO-PS tool has also been used
to implement the fault injection and detection circuits.

It is clear that the probability of a component being
hit by a fault increases with the area of the
component. So, to be as realistic as possible, we have
implemented the random fault injector following this
probabilistic fault behavior. To do so, we have
created a file with all the important information about
the components, such as component size, number of
outputs and outputs widths. Then, when the fault
injection process starts, this component information
file is loaded by the random fault injector and is used
to determine which is the component that fails in each
fault injection cycle, according to a probability based
on its area.

Another important variable in the fault injection
process is the amount of faults that are injected in
every cycle. In this work, we decided to use a
technique called environmental acceleration [16],
otherwise, we would have to wait for long simulation
times in order to get an error. To make calculations
easier, we assumed that the particle flow is able to
produce 1 SEU or SET every 2 cycles in the MIPS
processor, which is indeed a high rate assumption. To
calculate the corresponding number of faults per cycle
for the MemProc processor, we have used the
Leonardo Spectrum tool [17] to generate area and
timing information from the VHDL descriptions of
both processors. Table 1 shows those results and the
corresponding time gap between faults for both
processors. As one can see, this time gap is inversely
proportional to the number of SET sensible gates of
the processors, showing that the lower the sensible
area of a circuit, the lower is the probability of a
particle hit affecting that circuit.

As shown in Table 1, the combinational circuit (#
of sensible gates) in the MemProc architecture is very
small when compared to the size of its memory
elements. In our approach, the memory elements are
considered to be immune to soft errors, since we are
supposing the use of new memory technologies, such

as MRAM, FRAM, and flash memories, as mentioned
before. In order to allow a fair comparison, during the
fault injection process all memory elements of both
architectures have been considered immune to soft
errors.

Table 1. Area and number of faults per cycle.
Architecture MemProc MIPS
ROM (bits) 1,792 2,720
RAM (bits) 512 512
Op. Masks Mem. (bits) 128 x 256 -×-
Microcode Mem. (bits) 1024 x 68 -×-
of sensible gates 679 9,619
Frequency (MHz) 254 54
time between faults (ns) 523.62 37.04

The fault injection process injected random faults

according to the probability of the component being
hit and also the calculated number of faults per cycle.
In this process, faults were injected until one error or
a silent data corruption (SDC) was detected, in order
to determine the time to failure. This process was
repeated 100 times, and the mean time to failure
calculated as the average time to failure in the 100
experiments. The results are shown in Table 2, which
lists the fault injection results for the MemProc and
MIPS processors.

Table 2. Fault rates for both architectures.
Architecture MemProc MIPS
of cycles 585,945 4,320
of injected faults 4,404 2,160
of errors + SDCs 100 100
MTTF (µs) 23.068 0.798

The first line of Table 2 shows the number of

cycles each processor had to execute until 100 errors
or SDCs were detected. The second line presents the
number of faults injected during the process. The
third line shows the total number of errors and SDCs
that occurred during this process. The fourth line
shows the corresponding Mean Time To Failure
value, showing that the MTTF of the MemProc
architecture is almost 29 times bigger than the
MIPS’s one. These results show the significant
reduction in the MTTF that can be obtained by using
the proposed architecture.

4.2 Performance Evaluation

The performance of MemProc was evaluated using a

cycle accurate simulation tool (CACO-PS [14]) to
measure the number of cycles required to execute a set of
benchmarks. Using the description language of CACO-
PS, which is similar to System C, both MemProc and
MIPS architectures were described and simulated. The
performance evaluation was done using four different
application programs, with different processing
characteristics: three sort algorithms and the IMDCT

(Inverse Modified Discrete Cosine Transform, part of the
MP3 coding/decoding algorithm) function, which were
executed both in MemProc and MIPS. Those applications
have been selected because are widely used in the target
domain (control applications), and also because they use
most of the operations implemented in the MemProc
instruction set.

The maximum frequency of operation for both
architectures was evaluated using VHDL descriptions,
and the Leonardo Spectrum tool. The obtained results are
shown it Table 3, in which we can see that MemProc
executes the bubble sort algorithm in approximately 4.7
thousand cycles, while MIPS takes half this number of
cycles to perform the same. As stated before, MemProc
requires several cycles to perform arithmetic (bit serial)
operations, and the number of cycles also depends on the
value of the operands. That is the reason why the number
of cycles spent by MemProc is higher than that of MIPS.
On the other hand, the critical path of MemProc is
determined by the access time of the microcode memory,
while in MIPS the critical path is determined by the
multiplier delay. So, the maximum frequency of
MemProc is more than 4 times higher than that of MIPS,
and, as consequence, the MemProc is almost 3 times
faster than MIPS running the sort algorithms.

Table 3. Performance when executing

benchmark applications
MIPS (54 MHz)

Application
of Cycles Computation

Time (µs)
Bubble Sort 2,280 42.2
Insert Sort 1,905 35.3
Select Sort 1,968 36.4
IMDCT 38,786 718.3

MemProc (254 MHz)
Application

of Cycles Computation
Time (µs)

Perform.
Ratio

Bubble Sort 4,720 18.4 2.29
Insert Sort 2,508 9.8 3.60
Select Sort 2,501 9.7 3.75
IMDCT 142,961 562.8 1.28

The analysis of the results when executing IMDCT

shows that MemProc was only 1.28 times faster. That
happens because this algorithm uses the multiply
instruction, which can take up to 48 cycles to be executed
in MemProc. It is important to mention here that
MemProc is a multicycle machine, while MIPS is a
pipelined one, which is expected to be faster than its
multicycle version. So, we can conclude that if we were
comparing MemProc with MIPS multicycle version,
performance results would be even better. The perfor-
mance gains of MemProc come from the fact that the
number of cycles it takes to perform an operation depends
both on the operation and on the values of the operands.
For instance, let us consider that MIPS needs 1 cycle to
perform an add operation. Since the frequency of
MemProc is almost 5 times higher, if the operands are

such that the number of carry cycles are less than 5,
MemProc will finish the addition operation earlier than
MIPS. Also, store operations take only 2 cycles in
MemProc, which is more than 2 times faster than in
MIPS.

In order to stress that the primary goal of the proposed
technique is fault tolerance, and not performance, the
execution of the IMDCT application has been executed
once again, this time with MemProc running at 198.44
MHz, which gives the same computation time for both
MIPS and MemProc running that application. The fault
injection process was then repeated for MemProc running
at that frequency and the MTTF has been recomputed.
The resulting MTTF was 18.7 µs, which is still more than
23 times longer than that of MIPS. This confirms our
claim, that the approach proposed in this paper is well
suited to a higher reliability embedded processor.

5. Conclusions and Future Work

This work proposes a novel fault tolerant architecture

for embedded core processors for use in control
applications, which uses microcoded memory to execute
macroinstructions, and uses as ALU sixteen 8:1
multiplexors to perform all logic and arithmetic
operations. Simulation results have shown that the Mean
Time to Failure of the proposed architecture is more than
29 times longer than the MIPS one, due to the reduction
of the area sensitive to faults, without having any
performance degradation, on the contrary, with improved
performance. Also, results showed that, despite requiring
several cycles to execute its bit serial operations,
MemProc was 1.28 times faster than MIPS. While the
main goal of this work was to propose a new fault tolerant
architecture, the performance gains come from the fact
that MemProc exploits the benefits of using bit serial
operations, and differently from MIPS, it can require less
cycles to make the same operation, depending on the
value of the operands.

The proposed architecture, while not being a final
solution, reflects our focus in the search for new
processor design alternatives that might be used in the
future, when current ones will start to fail due to the
weaknesses of new technologies. It innovates in
several design features, even providing better
performance when compared to a well known
architecture for embedded applications, while
providing much more reliability against transient
faults. In order to stress that fault tolerance is the
major goal of this work, a lower frequency version of
MemProc, which delivers exactly the same
performance of the alternative architecture for the
sample application, has been used in one experiment.

6. References

[1] Rossi, D., Omaña, M., Toma, F. and Metra, C., “Multiple
Transient Faults in Logic: An Issue for Next Generation ICs ?”,

in Proceedings of th 20th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT 2005), pp.
352-360, IEEE Computer Society, Los Alamitos, CA, Oct ‘05.
[2] Baumann, R., “Soft Errors in Advanced Computer Systems”,
IEEE Design and Test of Computers, vol. 22, no. 3, pp 258-266,
IEEE Computer Society, May-June 2005.
[3] Sherlekar, D., “Design Considerations for Regular Fabrics”,
in Proceedings of the 2004 International Symposium on
Physical Design (ISPD 2004), pp. 97-102.
[4] Elliott, D.G., Stumm, M., Snelgrove, W.M., Cojocaru, C.,
Mckenzie, R., “Computational RAM: implementing processors
in memory”, Design & Test of Computers, IEEE, vol. 16, no. 1,
pp. 32-41, IEEE Computer Society, Jan/Mar 1999.
[5] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors – ITRS 2005, last
access July, 2006. http://www.itrs.net/Common/2005ITRS/
Home2005.htm.
[6] Rotenberg, E., “AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors,” in Digest of Papers of the
29th Annual International Symposium on Fault-Tolerant
Computing, pp. 84-91, IEEE Computer Society, New York-
London, 1999, ISBN: 0-7695-0213-X.
[7] Reinhardt, S. K., and Mukherjee, S. S., “Transient Fault
Detection via Simultaneous Multithreading,” in Proceedings of
the 27th Annual International Symposium on Computer
Architecture (ISCA 2000), pp. 25-36, ACM Press, May 2000.
[8] Benso, A.; Chiusano, S.; Prinetto, P.,”A self-repairing
execution unit for microprogrammed processors”, in IEEE
Micro, vol. 21, issue 5, pp. 16-22, IEEE Computer Society, New
York-London, sept-oct 2001.
[9] Dolev, S.; Haviv, Y.A., “Self-Stabilizing Microprocessor:
Analyzing and Overcoming Soft Errors” in IEEE Transactions
on Computers, vol. 55, no. 4, pp. 385-399, IEEE Computer
Society, New York-London, April 2006, ISSN: 0018-9340.
[10] Tehrani, S. et al., “Magnetoresistive Random Access
Memory using Magnetic Tunnel Junctions”, in Proceedings of
the IEEE, vol. 91, no. 5, pp 703-714, IEEE Computer Society,
London-New York, May 2003. ISSN: 0018-9219.
[11] Ramprasad, S., Shanbhag, N. R., Hajj, I. N., “Analytical
Estimation of Transition Activity from Word-level Signal
Statistics”, in Proc. of the 34th Design Automation Conference
(DAC’97), pp. 582-587, IEEE Comp. Soc., June 1997.
[12] N. Seifert and N. Tam, “Timing Vulnerability Factors of
Sequentials,” IEEE Trans. Device and Materials Reliability, V4,
N3, Sept. 2004, pp. 516-522.
[13] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, "The Soft
Error Problem: An Architectural Perspective," in Proceedings of
the 11th International Symposium on High-Performance
Computer Architecture (HPCA), pp. 243-247, IEEE Computer
Society, Los Alamitos, CA, Feb. 2005, San Francisco.
[14] A. C. S. Beck Fo, J. C. B. Mattos, F. R. Wagner, and L.
Carro, “CACO-PS: A General Purpose Cycle-Accurate
Configurable Power-Simulator”, in Proceedings of the 16th
Brazilian Symposium on Integrated Circuits and Systems
Design (SBCCI 2003), Sep. 2003.
[15] Patterson, D.A., and Hennessy, J. L.. Computer
Architecture: a Quantitative Approach, 3rd Edition, Elsevier
Science & Technology Books, June 2002. ISBN: 1558605967.
[16] Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.,
“Robust system design with built-in soft-error resilience”, in
Computer, vol. 38, issue 2 pp. 43-52, feb 2005.
[17] Last access: July, 2006. http://www.mentor.com/products/
fpga_pld/synthesis/leonardo_spectrum/.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

