
 

A Low-SER Efficient Core Processor Architecture for Future Technologies  
 
 

E. L. Rhod, C. A. Lisbôa, L. Carro 
 

Universidade Federal do Rio Grande do Sul 
Escola de Engenharia and Instituto de Informática 

Porto Alegre, RS, Brazil 
eduardo.rhod@ufrgs.br, calisboa@inf.ufrgs.br, carro@inf.ufrgs.br 

 
 

Abstract 
Device scaling in new and future technologies brings 

along severe increase in the soft error rate of circuits, for 
combinational and sequential logic. Although potential 
solutions have started to be investigated by the 
community, the full use of future resources in circuits 
tolerant to SETs, without performance, area or power 
penalties, is still an open research issue. This paper 
introduces MemProc, an embedded core processor with 
extra low SER sensitivity, and with no performance or 
area penalty when compared to its RISC counterpart. 
Central to the SER reduction are the use of new magnetic 
memories (MRAM and FRAM) and the minimization of 
the combinational logic area in the core. This paper 
shows the results of fault injection in the MemProc core 
processor and in a RISC machine, and compares 
performance and area of both approaches. Experimental 
results show a 29  times increase in fault tolerance, with 
up to 3.75 times in performance gains and 14 times less 
sensible area. 

 
 

1. Introduction 
 
Previously a concern only for mission critical 

applications, errors due to the effects of transient pulses 
produced by radiation and other interferences, called soft 
errors, are now being generally considered by the design 
community, since these errors are very likely to occur in 
future technologies. While successful mitigation 
techniques, and new memory technologies such as 
MRAM and FRAM, have already been devised to protect 
memories against soft errors, the protection of 
combinational logic, mainly against multiple 
simultaneous upsets, is a relatively recent concern and 
still lacks efficient solutions [1]. 

Due to the variability of their vulnerability periods, the 
SER of combinational logic is harder to quantify, and so 
far the mitigation of soft errors in those circuits has been 

dealt with through redundancy and larger transistor 
architectures, with obvious costs in area, power and even 
performance. The technology evolution towards 
nanoscale leads to the possibility of manufacturing chips 
with up to 1012 devices. Not only the number of 
transistors, but also the speed of the circuits has increased 
with the advent of deep sub-micron technology. All 
together, the result is a higher sensitivity of combinational 
logic to soft errors. As shown in Figure 1, from [2], while 
the SER of SRAM memories remains almost stable with 
technological scaling, the SER of logic has been always 
increasing. 

For future technologies, solutions that impose 
redundancy or larger areas impair the ability to 
explore the advantages of the technology evolution. 
Therefore, new paradigms must be adopted in the 
design of combinational circuits to be manufactured 
using those technologies. 

 
Figure 1. Evolution of SER: SRAM vs. logic [2] 

 
Geometric regularity and the extensive use of 

regular fabrics is being considered as a probable 
solution to cope with parameter variations and 
improve the overall yield in manufacturing with 
future technologies, by using spare rows and columns 
that can be activated to replace defective devices. [3]. 
Together with the proposal of using regular fabrics, 
the introduction of new memory technologies that can 
withstand the effects of transient faults, such as 
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ferroelectric and magnetic RAMs [2], brings back the 
concept of using memory to perform computations. 
Already proposed in the past [4], but precluded as a 
general purpose solution due to poor performance and 
high cost, the use of memory now is proposed here as 
a novel mitigation technique for transient faults, by 
reducing the area of the circuits that can be affected 
by soft errors. 

In this paper, we try to cope with the SEU/SET 
problem without imposing area or performance 
overhead, at the same time that we favor a regular 
architecture that can be used to enhance yield in 
future manufacturing processes. We introduce a 
memory-based embedded core processor architecture, 
named MemProc, designed for use in control domain 
applications as an embedded microcontroller. It is a 
microcoded multicycle core processor that uses a 
reduced combinational logic and some extra memory 
to reduce the incidence of soft errors. Our technique 
reduces the area of sequential logic, which is sensible 
to faults, by using intrinsically protected memories.  

The performance was evaluated by running in 
MemProc different applications selected from the 
targeted domain and comparing the results with those 
obtained using a pipelined RISC architecture.  

This paper is organized as follows: section 2 
discusses related work and highlights the differences 
between the proposed architecture and other 
alternatives. Section 3 describes the MemProc 
architecture, explaining how its simplified ALU 
works. Section 4 describes the fault injection process. 
In section 5 we comment the achieved results and also 
future work. 

 
2. Related Work 

 
The reliability of circuits manufactured in future 

technologies became a major topic of discussion and 
research in recent years [5], imposing tolerance to 
transient faults as a mandatory design concern. 

Among different approaches to cope with soft 
errors found in the literature, the use of spatial or time 
redundancy dominates as the major technique. 

The use of time redundancy to avoid undesirable 
errors, exploiting microarchitectural techniques that 
are already incorporated in the processor due to 
performance reasons, has been proposed in [6], and a 
penalty of up to 30% in performance is incurred. The 
use of simultaneous multithreading to detect transient 
faults is also proposed in [7]. The area cost of such 
duplication techniques is obviously high. 

In [8], a self-repairing unit for microprogrammed 
processors is proposed. In that work, the authors used 
a dedicated built-in self-test (BIST) architecture to 
provide an online status – either good or faulty – for 
each block in the execution unit. For each processor 
microinstruction, they defined a sequence of 
microinstructions that can execute the same operation 

using only fault-free units. This approach has a 
significant area and performance overhead due to the 
BIST and fault-free units added to the circuit. 

In [9], the authors propose the use of a self-
stabilizing microprocessor to cope with any 
combination of soft errors. The paper presents only 
the initial studies of the behavior of the self-
stabilizing processor in the presence of soft errors. 
Whenever affected by a transient fault, the processor 
is able to converge to a safe state, from which the 
normal fetch-decode-execute sequence can be 
resumed during fault-free periods. Besides presenting 
the design scheme for the processor, a new technique 
for the analysis of the effects of soft errors is 
introduced, which instead of using simulation is based 
in an upper bound algorithm that does not take into 
account the fault masking effects of the circuit. 

The use of memory as a computing device, has 
been subject of research in the past. In order to 
explore the large internal memory bandwidth, 
designers proposed to bring some functions executed 
by the processor into memory [4]. This technique 
apparently has been discarded due to its limited field 
of application. 

Back to the fault tolerance arena, another strong 
argument to the use of memory to perform 
computation functions is its intrinsic protection 
against defects, due to the use of spare columns and 
spare rows, such as in DRAMs. More recently, the 
fact that new memory technologies, such as 
ferroelectric RAMs (FRAMs), magnetic RAMs 
(MRAMs), and flash memories, are virtually immune 
to soft errors, due to their physical characteristics [2], 
makes those types of memories an important 
additional resource for the implementation of fault 
tolerant systems. MRAMs are also more energy efficient 
than other non-volatile memory technologies, since they 
consume less power during read and write operations 
[10]. Since memories are regular structures by nature, 
memory systems will also benefit from the foreseen  
advantages that regular fabrics will provide for future 
technology. 

The fact that the proposed MemProc processor 
relies heavily in the use of memories adds the benefits 
arising from regularity and immunity against soft 
errors to the solution proposed in this paper. In order 
to highlight the fault tolerance of the design, we 
injected faults and compared the results with those 
obtained for another core processor (MIPS), using the 
same simulation tool. In this process, two 
implementations of each architecture running in 
parallel have been simulated and faults have been 
injected in one of them, comparing the produced 
results for each possible single event transient 
occurrence. Therefore, all the possible fault incidence 
cases have been considered, even those in which the 
faults are masked by the architecture and do not 
generate errors. 



 

3. The Architecture of MemProc  
 
The architecture proposed in this paper is a 

microcoded multicycle 16-bit core processor with 
Harvard architecture, in which part of the datapath has 
been replaced with memory, thereby reducing the amount 
of combinational logic. In Figure 2(a) the main functional 
blocks of the proposed architecture are shown. 

The application code, which is also called the 
macroinstrucion code, is stored in the ROM memory. 
The instructions in this code, as usual, indicate the 
operations to be performed and their operands. The 
microcode memory receives the initial microcode 
address of the current operation from the ROM 
memory, and generates the control signals for the data 
memory, ALU and operation masks memory. The 
operation masks memory is responsible for passing 
the operation masks to the ALU. All arithmetic and 
logic operations results are stored in the RAM 
memory, and the register bank is also mapped into 
this memory. 
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Figure 2. (a) MemProc architecture (b) ALU for 
one bit operation (c) 2-bit addition using 

MemProc ALU 
 
In the MemProc ALU, operations are performed 

by 8:1 multiplexors, which are able to generate all the 
minterms for a given 3-bit boolean function, 
according to the values of bits X, Y, and Z (or M). 
Figure 2(b) depicts a MemProc ALU block for 
processing 1-bit operands. 

The complete MemProc ALU is 16-bit wide and 
their 16 blocks work in parallel, being able to perform 
bit serial arithmetic and logic operations. All 
operation mask values are independent from each 
other, so each processing element of the ALU can 
perform a different Boolean function. To accelerate 

addition operations, we use two 8:1 multiplexors 
instead of a single one; one multiplexor is used to 
calculate the sum and the other to calculate the carry 
out. An extra flip-flop, called “M”, was also added, to 
accelerate multiplications. 

In figure 2(c) the addition of two 1-bit operands is 
used to illustrate how the ALU works. We can see 
from the truth table the operation masks for the “sum” 
and the “cout” (carry out) outputs of the multiplexors. 
Also in figure 2(c), we can se the presence of a wired-
or bus. This bus implements an “or” operation of all 
the multiplexors’ outputs. This wired-or bus is an 
extremely important element in what we call 
“compute only the necessary to get the result”, which 
will be discussed in the following paragraph. 

The way MemProc achieves its high performance 
is based on the fact that it computes just the necessary 
cycles to get the operation result. In traditional 
computer architectures, the ALU does its arithmetic 
and logic operations using combinational hardware 
that always takes the same time to compute the 
operation, regardless of the value of the operands. 
MemProc executes only the number of cycles required 
to get the result, depending on the carry propagation 
chain. 
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Figure 3. 8-bit Addition paradigm. 

 
In Figure 3 we can see that MemProc requires only 

5 of the 8 operation units to perform the addition of 
two 8-bit operands, which means that it takes 5/8 of 
the time required by traditional architectures to 
perform this operation. To detect when the operation 
is finished, MemProc uses the wired-or bus to 
evaluate when there are no more carry-outs to 
propagate, which means that the addition has finished. 
This way, we can say that the proposed architecture 
takes advantage on the value of the operands. For 
instance, one addition can require from 3 to 18 cycles 
to be performed, depending on the number of carries 
to be propagated. On the other hand, store operations 
require only 2 cycles.  

In multiplications, the number of cycles depends 
on the number of bits equal to zero in the operands. 
The number of required cycles decreases as the 
number of bits equal to zero in the operands 
increases. One could say that if the values of the 
operands are high the proposed approach would not 
have any advantage. However, as shown in [11], the 



 

transition activity for some multimedia benchmarks is 
more intense in the 8 least significant bits. 

 
4. Experimental Results: fault tolerance, area 
and performance metrics 

 
The fault rate of a circuit, also known as soft error rate, 

can be expressed by the amount of errors that affect the 
circuit in a certain period of time. 

The soft-error rate of a design can also be expressed by 
the nominal soft-error rate of the individual circuit 
elements that compose the design, like memory structures 
such as SRAMs, sequential elements such as flip-flops 
and latches, combinational logic and its architectural and 
timing vulnerability characteristics [12] as follows: 

(2) 

where i represents the ith element of the design. 
The SERnominal for the ith element is defined as the soft 

failure rate of a circuit or node under static conditions, 
assuming that all the inputs and outputs are driven by a 
constant voltage. The TVFi, time vulnerability factor (also 
known as time derating) stands for the fraction of the time 
that the element is susceptible to SEUs, which will cause 
an error in the ith element. The AVFi, architectural 
vulnerability factor (also known as logic derating) 
represents the probability that and error in the ith element 
will cause a system-level error. In this study the time 
vulnerability factor was not taken into account [12]. 

One of the most usual ways to measure the SER of a 
circuit is evaluating the number of Failures in Time (FIT), 
which means one error every 109 hours [12, 13]. A soft 
error rate of 10 FIT means that the device will generate 10 
errors in 1 million years. Another commonly used 
metric to express SER is the Mean Time to Failure 
(MTTF). As an example, a MTTF of 1000 hours 
means that, in average, one error occurs after 1000 
hours of device operation. FIT and MTTF are 
inversely related, i.e., less FIT means better SER, 
while higher MTTF means better SER [13]. In this 
paper we use the MTTF metric to measure the fault 
tolerance of the proposed architecture and MIPS. 

In order to evaluate the feasibility of the architecture 
proposed in this paper, both in terms of fault tolerance, 
area, and performance, extensive simulations have been 
executed, using an in-house developed simulation tool 
named CACO-PS (a System C-like simulator) [14]. The 
comparisons have been made against the well-known 
MIPS 16-bit RISC architecture, with a 5-stage pipeline 
and forwarding unit [15], widely used in real-world 
embedded processors. 

 
4.1 Fault Rate Evaluation 

 
To evaluate the fault rate of the processors, random 

faults were injected in both MIPS and MemProc 
during their operation. During fault injection, the 

behavior of each processor was compared to the 
behavior of its fault free version when executing the 
same application with the same data. 

Since some faults may hit parts of the circuit which 
are not being used at a specific moment in time, to 
detect if a fault has been propagated or not it is not 
necessary to compare the value of all functional units 
or registers. It is only necessary to compare those 
components that are vital for the correct operation of 
the system. For the MIPS processor, the units to be 
checked are the program counter, in order to detect 
wrong branches, and wrong data or address values 
during write operations, to identify silent data 
corruption (SDC). In the case of MemProc, besides 
the program counter, the microcode counter was 
checked to identify wrong branches, and the write 
address and write data contents were checked to 
identify SDC. The CACO-PS tool has also been used 
to implement the fault injection and detection circuits. 

It is clear that the probability of a component being 
hit by a fault increases with the area of the 
component. So, to be as realistic as possible, we have 
implemented the random fault injector following this 
probabilistic fault behavior. To do so, we have 
created a file with all the important information about 
the components, such as component size, number of 
outputs and outputs widths. Then, when the fault 
injection process starts, this component information 
file is loaded by the random fault injector and is used 
to determine which is the component that fails in each 
fault injection cycle, according to a probability based 
on its area. 

Another important variable in the fault injection 
process is the amount of faults that are injected in 
every cycle. In this work, we decided to use a 
technique called environmental acceleration [16], 
otherwise, we would have to wait for long simulation 
times in order to get an error. To make calculations 
easier, we assumed that the particle flow is able to 
produce 1 SEU or SET every 2 cycles in the MIPS 
processor, which is indeed a high rate assumption. To 
calculate the corresponding number of faults per cycle 
for the MemProc processor, we have used the 
Leonardo Spectrum tool [17] to generate area and 
timing information from the VHDL descriptions of 
both processors. Table 1 shows those results and the 
corresponding time gap between faults for both 
processors. As one can see, this time gap is inversely 
proportional to the number of SET sensible gates of 
the processors, showing that the lower the sensible 
area of a circuit, the lower is the probability of a 
particle hit affecting that circuit. 

As shown in Table 1, the combinational circuit (# 
of sensible gates) in the MemProc architecture is very 
small when compared to the size of its memory 
elements. In our approach, the memory elements are 
considered to be immune to soft errors, since we are 
supposing the use of new memory technologies, such 



 

as MRAM, FRAM, and flash memories, as mentioned 
before. In order to allow a fair comparison, during the 
fault injection process all memory elements of both 
architectures have been considered immune to soft 
errors. 

 
Table 1. Area and number of faults per cycle.  
Architecture MemProc MIPS 
ROM (bits) 1,792 2,720 
RAM (bits) 512 512 
Op. Masks Mem. (bits) 128 x 256 -×- 
Microcode Mem. (bits) 1024 x 68 -×- 
# of sensible gates 679 9,619 
Frequency (MHz) 254 54 
time between faults (ns) 523.62 37.04 

 
The fault injection process injected random faults 

according to the probability of the component being 
hit and also the calculated number of faults per cycle. 
In this process, faults were injected until one error or 
a silent data corruption (SDC) was detected, in order 
to determine the time to failure. This process was 
repeated 100 times, and the mean time to failure 
calculated as the average time to failure in the 100 
experiments. The results are shown in Table 2, which 
lists the fault injection results for the MemProc and 
MIPS processors. 

 
Table 2. Fault rates for both architectures. 
Architecture MemProc MIPS 
# of cycles 585,945 4,320 
# of injected faults 4,404 2,160 
# of errors + SDCs 100 100 
MTTF (µs) 23.068 0.798 

 
The first line of Table 2 shows the number of 

cycles each processor had to execute until 100 errors 
or SDCs were detected. The second line presents the 
number of faults injected during the process. The 
third line shows the total number of errors and SDCs 
that occurred during this process. The fourth line 
shows the corresponding Mean Time To Failure 
value, showing that the MTTF of the MemProc 
architecture is almost 29 times bigger than the 
MIPS’s one. These results show the significant 
reduction in the MTTF that can be obtained by using 
the proposed architecture. 

 
4.2 Performance Evaluation 

 
The performance of MemProc was evaluated using a 

cycle accurate simulation tool (CACO-PS [14]) to 
measure the number of cycles required to execute a set of 
benchmarks. Using the description language of CACO-
PS, which is similar to System C, both MemProc and 
MIPS architectures were described and simulated. The 
performance evaluation was done using four different 
application programs, with different processing 
characteristics: three sort algorithms and the IMDCT 

(Inverse Modified Discrete Cosine Transform, part of the 
MP3 coding/decoding algorithm) function, which were 
executed both in MemProc and MIPS. Those applications 
have been selected because are widely used in the target 
domain (control applications), and also because they use 
most of the operations implemented in the MemProc 
instruction set. 

The maximum frequency of operation for both 
architectures was evaluated using VHDL descriptions, 
and the Leonardo Spectrum tool. The obtained results are 
shown it Table 3, in which we can see that MemProc 
executes the bubble sort algorithm in approximately 4.7 
thousand cycles, while MIPS takes half this number of 
cycles to perform the same. As stated before, MemProc 
requires several cycles to perform arithmetic (bit serial) 
operations, and the number of cycles also depends on the 
value of the operands. That is the reason why the number 
of cycles spent by MemProc is higher than that of MIPS. 
On the other hand, the critical path of MemProc is 
determined by the access time of the microcode memory, 
while in MIPS the critical path is determined by the 
multiplier delay. So, the maximum frequency of 
MemProc is more than 4 times higher than that of MIPS, 
and, as consequence, the MemProc is almost 3 times 
faster than MIPS running the sort algorithms. 

 
Table 3. Performance when executing 

benchmark applications 
MIPS (54 MHz)  

Application 
# of Cycles Computation

Time (µs) 
Bubble Sort 2,280 42.2 
Insert Sort 1,905 35.3 
Select Sort 1,968 36.4 
IMDCT 38,786 718.3 

 

MemProc (254 MHz)  
Application 

# of Cycles Computation
Time (µs) 

Perform. 
Ratio 

Bubble Sort 4,720 18.4 2.29 
Insert Sort 2,508 9.8 3.60 
Select Sort 2,501 9.7 3.75 
IMDCT 142,961 562.8 1.28 

 
The analysis of the results when executing IMDCT 

shows that MemProc was only 1.28 times faster. That 
happens because this algorithm uses the multiply 
instruction, which can take up to 48 cycles to be executed 
in MemProc. It is important to mention here that 
MemProc is a multicycle machine, while MIPS is a 
pipelined one, which is expected to be faster than its 
multicycle version. So, we can conclude that if we were 
comparing MemProc with MIPS multicycle version, 
performance results would be even better. The perfor-
mance gains of MemProc come from the fact that the 
number of cycles it takes to perform an operation depends 
both on the operation and on the values of the operands. 
For instance, let us consider that MIPS needs 1 cycle to 
perform an add operation. Since the frequency of 
MemProc is almost 5 times higher, if the operands are 



 

such that the number of carry cycles are less than 5, 
MemProc will finish the addition operation earlier than 
MIPS. Also, store operations take only 2 cycles in 
MemProc, which is more than 2 times faster than in 
MIPS. 

In order to stress that the primary goal of the proposed 
technique is fault tolerance, and not performance, the 
execution of the IMDCT application has been executed 
once again, this time with MemProc running at 198.44 
MHz, which gives the same computation time for both 
MIPS and MemProc running that application. The fault 
injection process was then repeated for MemProc running 
at that frequency and the MTTF has been recomputed. 
The resulting MTTF was 18.7 µs, which is still more than 
23 times longer than that of MIPS. This confirms our 
claim, that the approach proposed in this paper is well 
suited to a higher reliability embedded processor. 

 
5. Conclusions and Future Work 

 
This work proposes a novel fault tolerant architecture 

for embedded core processors for use in control 
applications, which uses microcoded memory to execute 
macroinstructions, and uses as ALU sixteen 8:1 
multiplexors to perform all logic and arithmetic 
operations. Simulation results have shown that the Mean 
Time to Failure of the proposed architecture is more than 
29 times longer than the MIPS one, due to the reduction 
of the area sensitive to faults, without having any 
performance degradation, on the contrary, with improved 
performance. Also, results showed that, despite requiring 
several cycles to execute its bit serial operations, 
MemProc was 1.28 times faster than MIPS. While the 
main goal of this work was to propose a new fault tolerant 
architecture, the performance gains come from the fact 
that MemProc exploits the benefits of using bit serial 
operations, and differently from MIPS, it can require less 
cycles to make the same operation, depending on the 
value of the operands. 

The proposed architecture, while not being a final 
solution, reflects our focus in the search for new 
processor design alternatives that might be used in the 
future, when current ones will start to fail due to the 
weaknesses of new technologies. It innovates in 
several design features, even providing better 
performance when compared to a well known 
architecture for embedded applications, while 
providing much more reliability against transient 
faults. In order to stress that fault tolerance is the 
major goal of this work, a lower frequency version of 
MemProc, which delivers exactly the same 
performance of the alternative architecture for the 
sample application, has been used in one experiment. 
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