
Verification-Guided Soft Error Resilience

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Wenchao Li
UC Berkeley

wenchao@berkeley.edu

Subhasish Mitra
Stanford University
subh@stanford.edu

Abstract

Algorithmic techniques for formal verification can be used
not just for bug-finding, but also to estimate vulnerability
to reliability problems and to reduce overheads of circuit
mechanisms for error resilience. We demonstrate this idea
of verification-guided error resilience in the context of soft
errors in latches. We show how model checking can be
used to identify latches in a circuit that must be protected
in order that the circuit satisfies a formal specification. Ex-
perimental results on a Verilog implementation of the ESA
SpaceWire communication protocol indicate that the power
overhead of soft error protection can be reduced by a fac-
tor of 4.35 by using our approach rather than protecting all
latches.

1. Introduction
Technology scaling to 65nm and below has caused relia-
bility problems to become a dominant design challenge.
In fact, design today can be seen as a process of achiev-
ing a trade-off between performance, power, and reliabil-
ity. Problems arise due to soft (transient) errors, aging, en-
vironmental and device parameter variations, and aggres-
sive deployment to reduce power and increase performance.
In particular, soft errors can be significant contributors to
system-level silent data corruption and have been the sub-
ject of much recent research [5, 16].
There is therefore a pressing need for error-resilient design
as well as estimation of the system-level impact of circuit-
level errors. For soft errors in latches and flip-flops, there
are many protection techniques already available; we point
the reader to recent papers [17, 16] for relevant references.
However, circuit mechanisms for error resilience come at
the price of increased power and area overheads, and pos-
sibly reduced performance. As an example, we cite recent
fault injection experiments on a microprocessor design [20].
The authors report that protecting 60% of latches against
soft errors sufficed to bring the chip-level soft error rate
down to 9%. However, further bringing the error rate down
to 0 incurred significant overheads, including increasing the
power penalty to 18.2% from 10.6%. There is therefore
a need to identify only those circuit resources that must be
protected against reliability problems in order for the circuit
to meet necessary specifications.
We present a verification-guided approach to error re-
silience, wherein algorithmic techniques for formal verifi-

cation are used to estimate system vulnerability to device
errors and reduce the overheads of circuit mechanisms for
error resilience (fault tolerance). The underlying idea is that
errors that do not affect circuit correctness, as given by a
formal specification, can be safely ignored. We demon-
strate our approach for dealing with soft errors in latches,
using the single-event upset (SEU) error model. Combin-
ing a formal SEU model with a formal circuit model, we
use the state-of-the-art Cadence SMV model checker [1] to
identify latches that must be protected as well as those that
don’t. (Note that our approach can be used with any verifi-
cation method and tool.) The problem of identifying latches
that need not be protected is different from classical sequen-
tial redundancy with respect to permanent stuck-at faults in
two ways. First, the error persists only for a single cycle.
Second, the “redundancy” of a latch is with respect to a for-
mal specification, generally captured by a set of assertions,
rather than only checking equivalence of a faulty and fault-
free circuit.
We present a case study of a publicly available Verilog
implementation of end-nodes in the SpaceWire spacecraft
communication protocol proposed as a standard by the Eu-
ropean Space Agency (ESA) [2]. The results of our ex-
periments show that most latches in the SpaceWire circuit
can be left unprotected even for a comprehensive formal
specification created from the ESA standards document [8],
resulting in a reduction in power overhead from 58% for
protecting all latches to just 13%.
Related Work. Our approach can also be viewed as an ex-
haustive way to perform fault injection, guided by a formal
specification. The approach has both pros and cons com-
pared to the alternative approaches of random fault injec-
tion [9, 19, 12, 11] and fault-free simulation (e.g., architec-
tural vulnerability factor estimation) [18], and complements
them and other techniques [4, 14]. A brief comparison with
these alternative approaches with respect to five key factors
is given in Table 1. In particular, the proposed formal ap-
proach is effective even for designs for which good work-
load estimates are unavailable. Krautz et al. [13] recently
presented a formal approach for analyzing the effectiveness
of error detection and correction logic; our work differs in
many ways, including in that it is applied to an arbitrary cir-
cuit, before fault tolerance is employed, in order to identify
which latches must be protected.
Our technique has a dual use: the results can be re-used
for computing mutation-based coverage metrics for formal

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



Factor Random Fault Injection Fault-Free Simulation Verification-Guided
Input coverage Not exhaustive Not exhaustive Exhaustive
Fault coverage Which signals to inject Non-issue Exhaustive

faults in? When?
Applicability General Application-specific General
Confidence Needs long simulation runs; High confidence can Very high, but needs

which outputs to compare? yield pessimistic results comprehensive formal spec.
Scalability Fair (accuracy can degrade) Variable Problem for large designs

(needs compositional reasoning)

Table 1. Comparison of verification-guided approach to others

verification [10, 6]. Thus, our approach can be seen as not
only meshing with an existing verification flow, but in fact
generating result used both to compute coverage and reduce
overheads of error resilience.

2. Background
We give some background on the formal verification tech-
nique of model checking that is used in this paper.
Model checking is a highly automated formal verification
technique, that uses algorithmic methods to exhaustively
explore all states reachable from the initial circuit states.
Model checking algorithms form the basis of many recent
industry tools for assertion-based verification, sequential
equivalence checking, and property checking. Further de-
tails may be found in the book by Clarke et al. [7].
Formal specifications can be provided in a variety of ways.
For sequential equivalence checking, the specification is
captured by a simpler version of the circuit that is consid-
ered correct; e.g., a simple, non-pipelined processor can
serve as a specification for a complex, pipelined, super-
scalar version. However, for arbitrary control logic, ASICs,
and whole systems, design requirements are often most eas-
ily captured as partial specifications, and formalized using
temporal logic. Temporal logic forms the basis for the re-
cent IEEE standard 1850 property specification language
(PSL) [3].
The experiments reported in this paper use Cadence SMV,
a state-of-the-art model checker based on the technique of
symbolic model checking [15]. Formal specifications for the
main case study were written in linear temporal logic [7].
3. Approach
We describe our approach in this section, including the
overall flow (Sec. 3.1), underlying formal notions (Sec. 3.2),
and relation to coverage metrics for verification (Sec. 3.3).

3.1. Tool Flow
The overall flow of our approach is depicted in Figure 1.
Although we have shown this flow for SEUs, it is also ap-
plicable for other classes of circuit reliability problems.
The inputs to the process are the RTL description of the

Compile formal SEU
model for each latch

Synthesize
Circuit

list of latches
to be protected

against SEU

overhead
Estimate Power

Area, Performance, etc.

latches
list of

SYNTHESIZED CIRCUIT

Verification
Formal
Perform

VE
RI

FI
CA

TI
O

N 
FL

O
W

INPUTS

SY
NT

HE
SI

S 
FL

O
W

up
da

te
 R

TL
 a

nd
/o

r s
pe

c.

good
enough

VERIFICATION OUTPUT, INCLUDING COVERAGE

Formal
SEU Model

Formal
Model

too high

RTLFormal 
Spec.

Figure 1. Flow of verification-guided soft error re-
silience

circuit, a formal specification (possibly comprising many
properties/assertions), and a formal model of how the circuit
reliability problem affects its system-level behavior. We
elaborate on the latter point, for SEUs, in Section 3.2. The
formal SEU model is automatically compiled into n finite-
state machines, each one corresponding to the effect of an
SEU on a latch (state variable).
The RTL is translated into a formal model of the circuit, ei-
ther manually or using automated tools. For the work in this
paper, this is a description in the input language of a model
checker. (The model checker Cadence SMV includes an au-
tomated translator from Verilog to its input format.) How-
ever, in general it would depend on the formal verification
(FV) tool that is used. Then, for each latch vi, the corre-



sponding formal SEU model is composed with the formal
circuit model, to obtain the combined model for the FV tool
for vi. The combined model is fed to the FV tool along with
the formal specification.
A total of n + 1 runs of the FV tool are performed: one
for each of n latches, as well as a single run to verify that
the formal specification holds for the original circuit model
in the absence of an SEU. If the combined model for latch
vi fails to satisfy the formal specification, we conclude that
vi must be protected against an SEU; otherwise, not. Thus,
the output of these n runs is a list of latches that must be
protected against SEUs.
The RTL is then synthesized, using the appropriate cell
libraries for the list of latches that need to be protected.
Power, performance, area, and other circuit parameters are
estimated. If the overhead of circuit protection is accept-
able, the process stops. Otherwise, the designer must ad-
just the circuit and/or the specification to meet design ob-
jectives.
Although Figure 1 illustrates our approach for SEUs, the
flow is likely to be largely unchanged for dealing with other
kinds of errors. It is independent of the formal verifica-
tion technique used, and involves few changes to existing
synthesis and verification flows. In fact, as we note in Sec-
tion 3.3, it can be viewed as a way to compute mutation-
based coverage metrics for verification, so it can even aug-
ment existing verification flows.
Note further that the result of this process is highly depen-
dent on the formal specification. A specification that places
no constraints on the design will generate results indicating
that all latches can be left unprotected! Thus, the results of
our approach have a dual use: one of computing the cover-
age of a formal specification. If all (or almost all) latches
can be left unprotected, it indicates that we might need to
strengthen the specification. We discuss this point further
in Section 3.3.
3.2. Formal Model
As is standard in formal verification, a sequential circuit is
formally modeled as a triple (V, δ, S0), where V is the set
of Boolean state variables (latches) {v1, v2, . . . , vn}, δ is
the transition relation of the system defining how the sys-
tem evolves over time, and S0 is a Boolean formula over
V denoting the set of initial states in which the circuit can
begin operation. The transition relation specifies, for each
state variable vi, how its value in the next cycle v′

i
is ob-

tained. Note that since δ is a relation, not just a function,
non-determinism in the system can be easily modeled. For-
mally, there is a next-state assignment v′

i
:= fi(V ) for each

i, where fi is a set-valued function.
Given an RTL-level circuit description, such as in Verilog,
we manually create a formal model of it as given above.
Timing-related details in the RTL are modeled using non-
determinism, so that the resulting formal model exhibits a
superset of the actual system behaviors. Any verification

performed on the formal model will then be conservative.
In the SEU fault model, there is a single bit flip during an ar-
bitrary cycle of circuit operation. Figure 2 shows the formal
model of an SEU in latch vi.

SEU = 1SEU = 0
v′

i
:= fi(V )

Figure 2. Formal model of impact of an SEU on
Boolean state variable vi

This model comprises a state variable SEU that records
whether an SEU has occurred. If SEU is 0, the model non-
deterministically chooses whether to stay in the same state,
or to flip the value of latch vi in the next cycle as shown
by the label on the transition v′

i
:= fi(V ). The use of non-

determinism allows us to check in a single model checking
run the impact of a soft error in vi at an arbitrary cycle of
operation. Thus, the two-state automaton shown in Figure 2
models an SEU in vi.

3.3. Relation to Coverage Metrics

Several coverage metrics have been proposed for formal
verification [10, 6]. The main ones, some of which are in
industrial use, are based on mutating the circuit model and
checking whether the specification continues to be satisfied.
If yes, then the specification is not exhaustive enough, and
the verification engineer must extend it. The intuition is that
an exhaustive formal specification should closely character-
ize the set of correct circuit behaviors.
Consider our formal model of an SEU in latch vi, shown
in Figure 2. An SEU is a form of mutation, in fact very
similar to those considered in the literature [10, 6]. Thus, if
the list of latches to be protected against an SEU (indicated
in Figure 1 as an input to synthesis) is empty, it is cause for
suspecting the coverage of the specification.
Thus, our approach is not only useful for analyzing the im-
pact of soft errors, but the results can also be re-used for
computing coverage metrics. In fact, extending our ap-
proach beyond soft errors might even help define and com-
pute new kinds of coverage metrics for formal verification.

4. Case Study: SpaceWire
Our main case study, to date, is a third-party Verilog
implementation of a node in the SpaceWire network.
SpaceWire [8] is a network for space applications composed
of nodes and routers interconnected through bi-directional



high speed data links. According to the SpaceWire website
hosted by the ESA, it has been used in missions of the ESA
as well as space agencies NASA and JAXA.
The SpaceWire standard [8] describes 6 protocol levels –
physical, signal, character, exchange, packet, and network.
In this paper, we are concerned with the exchange level that
defines the protocol for link initialization, flow control, and
link error detection and recovery (similar to the more widely
known Transmission Control Protocol, TCP). We down-
loaded a specific Verilog implementation of a SpaceWire
end node from opencores.org [2] which was not written by
our group. The Verilog was manually translated into the in-
put language for the Cadence SMV model checker. English
language specifications from the standards document [8]
were translated into formal specifications in linear tempo-
ral logic and inserted into the SMV file as assertions to be
checked. The Verilog (and the corresponding SMV model)
had to be fixed in a few places as a result of our initial ex-
periments to formally verify it. All results discussed below
are with respect to this fixed SMV model.
Overview and Model
For purposes of reasoning about the exchange layer control
protocol, a SpaceWire end node comprises three modules: a
transmitter (TX), a receiver (RX), and a state machine that
sends control signals to them (FSM). Generating a SMV
model from Verilog involved straightforward transliteration
for the most part, retaining the control structure, and only
abstracting away some data and timing. The end node in-
cludes logic for parity error detection and correction on the
data (which can be used for communication channel errors
as well as SEUs), so it is the control which is left unpro-
tected and is of particular interest to our analysis of SEUs.
We briefly describe below the operation of the FSM, TX,
and RX modules, indicating where state was abstracted
away in going to a SMV model. Further details may be
found in the standards document [8].
The FSM controls the overall operation of the end node. Its
operation is shown in Figure 3. The sequence of ErrorReset,
ErrorWait, and Ready provides a mechanism of initializing
the SpaceWire node, either coming from a whole system
reset or triggered by an error. During this sequence of op-
eration, RX is enabled to receive, but TX is prohibited from
sending. In the Started state, TX can send NULL signals to
the other end, to establish a connection. Next, the FSM en-
ters the Connecting state where TX is enabled to send flow
control tokens (FCTs). When RX receives FCTs, it indi-
cates that the other end has space in its receive buffer for
data. The Run state is the state for normal operation where
packets flow freely in both directions across the link. The
node remains in the Run state until an error occurs or until
the link is disabled.
The end nodes communicate over a channel that was mod-
eled in SMV to be capable of dropping or creating parity
errors in both control and data packets. (Appropriate “fair-

Figure 3. Operation of control finite-state ma-
chine in a SpaceWire end node. Reproduced from
page 60 of [8].

ness” constraints [7] were imposed on the channel to ensure
that a packet would eventually get to its destination, even if
dropped several times.)
The transmitter TX is responsible for encoding data (ab-
stracted away in SMV) and transmitting it across the link.
Packets are sent according to the following priority, from
highest to lowest - Time-Code (system time information),
FCT, N-Char (normal characters including data, EOP and
EEP) and Null. If there is nothing to send, the transmitter
sends NULL to maintain an active link. The transmitter also
keeps a credit count of the number of characters that it has
been given permission to send. The credit count roughly
indicates the space of the opposite receiver buffer.
The receiver RX is responsible for buffering data and pass-
ing it on to the host system (abstracted away). It is also
responsible for detecting disconnect errors, parity errors,
escape errors and credit errors, and reporting these errors
to the FSM. When an FCT is received, RX informs TX so
that TX can update its credit count accordingly. RX also
keeps an outstanding count of the number of characters that
it expects to receive.
Formal Specifications
We wrote a total of 39 SMV assertions in linear temporal
logic, each corresponding to an English-language specifica-
tion in the standards document [8].
Table 2 lists representative assertions. Specifications we
wrote fall into five categories, with each category repre-
sented in the table. The first set of specifications (row nos.
1 and 2) is on the FSM operation, indicating how and when
the system can move between FSM states, as shown in Fig-
ure 3. The second is on the interaction between FSM, TX,
and RX, exemplified by row 3 in the table that deals with
error handling.1 The next two sets, exemplified by rows 4

1Note that row 3 refers to both internal FSM state and the inputs it
receives from TX and RX, ending in i.



No. Reference in [8] Assertion
1 Sec. 8.5.2.2(b) LTL: G(FSM.state = ErrorReset =⇒

X(RX.stateRX = RXRESET∧ TX.state = Reset))
English: In the ErrorReset state the Transmitter and Receiver shall both be reset.

2 Sec. 8.5.2.5 (e) LTL: G((FSM.state = Started∧ FSM.gotNULL i ∧ X(FSM.state 6= ErrorReset))
=⇒ X(FSM.state = Connecting))

English: The state machine shall move on into the Connecting state from the Started state, if RX
indicates that a NULL was received and no other condition forces the state machine to go back to
the ErrorReset state.

3 Sec. 8.5.2.3 (e) LTL: G(FSM.state = ErrorWait ∧ (FSM.Lnk dsc i ∨ FSM.HASgotNULL ∧ (FSM.err par i ∨
FSM.err esc i ∨ FSM.gotFCT i ∨ FSM.gotNchar i ∨ FSM.gotTime i))

=⇒ X (FSM.state = ErrorReset))
English: If, while in the ErrorWait state, a disconnection error is detected, or if after the gotNULL
condition is set (HASgotNULL), a parity error or escape error or any character other than a NULL
is received, then the state machine shall move back to the ErrorReset state.

4 Sec. 8.5.2.6 (c)
Sec. 8.4.2

LTL: G(TX.state = Send Null ∧ TX.state connecting ∧ TX.nedsFCT ∧ ¬TX.TXReset
=⇒ X TX.state = Send FCT)

English: If TX is enabled to send NULLs, FSM is in the Connecting state, and TX is not getting
reset, it will send out FCT upon a request to send FCT (nedsFCT) from the Receiver.

5 Sec. 8.4.4
Sec. 8.8

LTL: G(RX.C Send FCT i ∧ RX.osd cnt < 49 ∧ ¬RX.reset ∧ ¬RX.Lnk dsc o

=⇒ XRX.osd cnt = RX.n osd cnt1)
English: RX’s outstanding counter (osd cnt) represents the number of N-Chars that it expects to
receive. An outgoing FCT represents a request for 8 more N-Chars from the opposite side. Hence,
if the current osd cnt indicates enough space left, and the system is not getting reset, and the link
between the two nodes is not disconnected, then osd cnt should update to n osd cnt1 which is an
increment by 8.

6 Sec. 8.7,
Table 8,
Figure 23

LTL: ¬F((FSM1.state = ErrorReset ∧ FSM2.state = ErrorReset) ∧ ((FSM2.state ∈
{ErrorReset, ErrorWait, Ready})U((FSM2.state ∈ {ErrorReset, ErrorWait, Ready}) ∧
FSM1.state = Connecting)))
English: The following condition should never occur: With both nodes starting from the Error-
Reset state, Node 1’s FSM should not move into the Connecting state if Node 2’s FSM is still in
{ErrorReset, ErrorWait, Ready}. (A symmetric condition holds with 1 and 2 switched.)

Table 2. Selected formal specifications. LTL indicates a specification in linear temporal logic.

and 5, are on transmitter and receiver operation. The final
set of specifications (e.g., row 6) are on the end-to-end com-
munication between two nodes in the SpaceWire network.
Our formal specification is as comprehensive as the corre-
sponding English language specifications in the standards
documents. Moreover, note that we have assertions that
place safety conditions on the system’s behavior as well as
state progress conditions indicating that the system is ”do-
ing what it should”.
Results
An SMV model 987 lines long (including assertions and
fairness constraints) was generated from 1393 lines of Ver-
ilog. The synthesized circuit contains 130 latches. Using
the formal specifications created from the standards docu-
ment, we found that all but 28 of the latches could be left un-
protected. These latches correspond to 14 state variables in

the SMV model. (Some variables, for example, correspond-
ing to counters and FSM state, generate multiple latches in
the synthesized circuit.)
An example of a state variable that must be protected is
FSM.state. On a bit flip, this can arbitrarily change the
state of the FSM, leading to failure of many assertions, in-
cluding row 6 in Table 2.
An example of a state variable that need not be protected
is FSM.HASgotBit which is an internal FSM flag that indi-
cates that the end node has received a bit. This flag is used
in the FSM logic for state transitions and error handling, so
it was initially somewhat surprising to us that an SEU in it
allowed the end node to continue to satisfy all its assertions.
It appears that the correlations between values of signals in
the error handling logic are responsible for this inherent ro-
bustness to an SEU in FSM.HASgotBit.



Our experiments were performed using the Cadence SMV
model checker [1]. For scalability, all categories of speci-
fications except for the end-to-end assertions were verified
on a model of a single node communicating with a chan-
nel that could generate any message (a conservative check).
The total time for our SMV runs for these specifications
was 27 minutes with a maximum of 4.5 minutes for a sin-
gle run (SMV caches results, thus optimizing overall run-
time). The end-to-end assertions were verified on a model
comprising two nodes communicating over a lossy channel.
This experiment took much longer due to the larger state
space – 166 minutes with a maximum time of 109 minutes
for a single run.
Synopsys Design Compiler was used to generate the final
circuit. Latches that did not map to any state variable in
Verilog were protected or not based on a structural depen-
dency analysis. Three power consumption numbers were
then estimated: for the synthesized circuit without any SEU
protection at all, with the BISER protection [20] for all
latches, and with BISER protection using our verification-
guided classification. The following results were obtained:

Technique Power(mW) Overhead
No SEU protection 1.160 –
SEU protection for all latches 1.832 57.9%
Verification-guided SEU protection 1.314 13.3%

Thus, using a verification-guided approach one can obtain
a 4.35 X reduction in power overhead of protecting from
SEUs using the BISER technique. We believe similar re-
sults can be obtained for other SEU protection methods as
well, since the fraction of latches to be protected is small.

5. Conclusions and Future Work
We have proposed a verification-guided approach to esti-
mating and reducing the overheads of circuit mechanisms
for soft error resilience. Our approach has been demon-
strated on a real case study of a third-party Verilog im-
plementation of a component of the ESA SpaceWire net-
work with specifications covering the specified behavior in
the standards document [8]. The resulting power savings
demonstrate the utility of our approach.
This paper has only taken a first step. Scalability of model
checking (and formal verification, in general) is a concern,
which we plan to address by using a modular (composi-
tional) approach to verification. Our approach can also
be combined with complementary methods such as random
fault injection. Finally, our work has direct connections to
the problem of computing coverage metrics for formal ver-
ification, which we plan to explore further.
Acknowledgments. We are grateful to K. McMillan for
help with Cadence SMV. T. Loo and L. Wang created an
initial version of the SpaceWire SMV model, and S. Chu
helped with synthesis and power estimation. S. Malik,
T. Austin, V. Bertacco, and K. Sakallah provided valu-
able feedback. This research was supported in part by the
MARCO Gigascale Systems Research Center.

References

[1] Cadence SMV model checker. http://www.kenmcmil.com/
smv.html.

[2] SpaceWire Verilog. http://www.opencores.org/projects.cgi/
web/spacewire/overview, July 2005.

[3] IEEE P1850 - standard for PSL - property specification lan-
guage. http://www.eda.org/ieee-1850/, URL circa Sep.’06.

[4] H. Asadi and M. B. Tahoori. Soft error modeling and protec-
tion for sequential elements. In Proc. of the IEEE Intl. Symp.
On Defect and Fault Tolerance in VLSI Systems (DFT),
pages 463–471, October 2005.

[5] R. C. Baumann. The impact of technology scaling on soft
error rate performance and limits to the efficiency of error
correction. In Proc. IEDM, pages 329–332, 2002.

[6] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage
metrics for formal verification. In Proc. CHARME, LNCS
2860, pages 111–125, 2003.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 2000.

[8] European Cooperation for Space Standardization. Space en-
gineering – SpaceWire – links, nodes, routers, and networks
(draft ECSS-E-50-12A). http://www.spacewire.esa.int/tech/
spacewire/standards/, November 2002.

[9] K. Goswami, R. Iyer, and L. Young. DEPEND: a
simulation-based environment for system-level dependabil-
ity analysis. IEEE Trans. Computers, pages 60–74, Jan.
1997.

[10] Y. V. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage es-
timation for symbolic model checking. In Design Automa-
tion Conference (DAC), pages 300–305, 1999.

[11] M. Hsueh, T. Tsai, and R. Iyer. Fault injection techniques
and tools. IEEE Computer, pages 75–82, April 1997.

[12] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. FER-
RARI: A flexible software-based fault and error injection
system. IEEE Trans. on Computers, 44(2):248–260, 1995.

[13] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and
H. T. Vierhaus. Evaluating coverage of error detection logic
for soft errors using formal methods. In Proc. DATE 2006,
pages 176–181, 2006.

[14] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P.
Hayes. Accurate reliablity evaluation and enhancement via
probabilistic transfer matrices. In Proc. Design Automation
and Test in Europe (DATE), pages 282–287, 2005.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1992.

[16] S. Mitra, T. Karnik, N. Seifert, and M. Zhang. Logic soft er-
rors in sub-65nm technologies design and CAD challenges.
In Design Automation Conference (DAC), pages 2–4, 2005.

[17] M. Nicolaidis. Design for soft error mitigation. IEEE Trans.
Device and Matl. Reliability, 5(3):405–418, Sept. 2005.

[18] S. S. Mukherjee et al. A systematic methodology to
compute the architectural vulnerability factors for a high-
performance microprocessor. In Proc. Int’l Symp. Microar-
chitecture (MICRO), pages 29–40, 2003.

[19] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Charac-
terizing the effects of transient faults on a high-performance
processor pipeline. In Proc. Int’l Conf. Dependable Systems
and Networks (DSN), pages 61–70. IEEE Press, 2004.

[20] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, Q. Shi, K. Kim,
N. Shanbhag, N. Wang, and S. Patel. Sequential element
design with built-in soft error resilience. IEEE Transactions
on VLSI, Dec. 2006.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




