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Abstract

In this paper we research an FPGA based Application
Specific Instruction Set Processor (ASIP) tailored to the
needs of a flow aware Ethernet access node using a retar-
getable compilation flow. The toolchain is used to develop
an initial processor design, asses the performance and iden-
tify the potential bottlenecks.

A second design iteration results in a fully optimized
ASIP with a VLIW instruction set which allows for high de-
gree of parallelism among the functional units inside the
ASIP and has dedicated instructions to accelerate typical
packet processing tasks. This way, a single processor is
capable of handling the complete throughput of a gigabit
Ethernet link.

To reach the target of a 10 Gbit/s Ethernet access node
several processors operate in parallel in a multicore envi-
ronment.

1. Introduction

Ethernet based access platforms are becoming the ve-
hicles to offer triple play services (voice, video, data), as
well as innovative and advanced services. Legacy networks
for voice, data and video are converging into a single net-
work, new services are emerging and Ethernet is becom-
ing the transport protocol of choice [1]. The drivers of the
success of Ethernet in enterprise networks are also driving
the access technology. It is hence expected that future high
bandwidth access infrastructures with fibre to the cabinet,
building or home will be Ethernet based.

A means to support existing and new services in Ethernet
based access is the introduction of ATM-like features such
as ‘flow awareness’. Traffic will be treated differently de-
pending on the subscriber to whom it belongs, and the type
of service it represents [2] [3].

In a flow based approach several features of packets are
extracted (layer 2 up to layer 4) in an access node and then

used as input for classification. The outcome of this process
reveals the service tied to the inspected packet, allowing it
to be further processed and routed accordingly.

The scope of this paper is the design of a processor active
in the data path of such a system. The researched solution
must be scalable, flexible, easy to program and maintain.
These design specifications resulted in the development of
a packet processing ASIP to be deployed in an FPGA based
multicore processing architecture supporting line rates up to
10 Gbit/s and corresponding packet rates as high as 14.88
MPacket/s.

In order to minimize the processing time, algorithms are
often described in custom languages or assembly. Here,
a retargetable C compiler allows easy ASIP code develop-
ment, while maintaining efficiency. The development is tar-
geted at a Xilinx Virtex4 LX200-11 FPGA.

2. Data Plane of a Flow Aware Access Node

A complete flow aware Ethernet based access node con-
sists of several building blocks each dedicated to spe-
cific tasks such as parsing, classification, filtering, queu-
ing, statistics, traffic engineering, packet manipulation, etc.
The scope of this paper is the development of an ASIP op-
timized for the three key building blocks: parser, classifier
and packet manipulator. The specifications of the internal
architecture of the ASIP are derived from a survey of typi-
cal algorithms running within the aforementioned building
blocks.

Parsing is targeted at IPv4/IPv6 encapsulated in Eth-
ernet with TCP or UDP as transport protocol. The algo-
rithm supports a wide variety of Ethernet standards such as
(stacked) VLANs and even the upcoming envelope format
defined in IEEE 802.3as with frames up to 2 KB. PPPoE,
often used in xDSL access networks as authentication pro-
tocol, is also supported.

The parsing algorithm decodes the protocol stack, ex-
tracts fields used to define a flow and stores them in a data
structure called a ‘ticket’. Control plane traffic such as
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ICMP, IGMP, ARP and others will be identified and flagged
in the ticket to be forwarded to a dedicated control plane
processor. The verification of checksums is not part of the
algorithm. At Layer 2 the CRC can easily be verified at wire
rate before assigning the packet to an ASIP. The verification
of Layer 3 and 4 checksums requires in depth knowledge
such as the type of payload, optional headers, etc. There-
fore it is performed in a dedicated hardware block using the
information gathered during parsing and classification.

The classification algorithm transforms the extracted
header fields into a search key which will be applied to an
external TCAM (Ternary Content Addressable Memory).
The result of this process is a ‘flow identifier’, used through-
out the system to perform further processing.

Based on the flow identifier, the packet manipulator
can alter header or payload fields and recalculate the check-
sums. Typical operations are the insertion of a VLAN tag,
the decrement of the IP TTL field, etc...

These three algorithms were translated into C code and
served as a starting point for the ASIP architecture. From
then on several iterations were performed exploring archi-
tectural aspects such as instruction level parallelism (ILP)
and extensions of the C language with compiler known
functions (aka intrinsics) to minimize the execution time.

3. Design Flow

The ASIP was built using the Chess/Checkers retar-
getable tool suite of Target Compiler Technologies [4] for
the design, programming and verification of the ASIP cores.
The environment consists of the following toolchain:

Chess: a retargetable C compiler using graph-based
modelling and optimisation techniques [5], to deliver highly
optimised code for specialised architectures. The com-
piler comes with a retargetable assembler and disassembler
called Darts, and a retargetable linker called Bridge.

Checkers: a retargetable instruction-set simulator (ISS)
generator that produces a cycle and bit accurate ISS for the
target processor. Source-level debugging and code profiling
are supported.

Go: a hardware description language (HDL) generator
that produces a synthesisable register transfer level HDL
model of the target processor core. Through APIs, users
can plug in their own HDL implementations of functional
units and of the memory architecture.

Risk: a retargetable test-program generator that can gen-
erate assembly-level test-programs for the target processor
with a high fault coverage. These test programs can then
be executed both in the ISS and in the HDL model of the
processor, to check for the consistency of both models.

The instruction-set architecture of the processor is de-
scribed in a high level language called nML. This descrip-
tion is then used to generate the compiler and ISS in order

to get quantitative information about the performance of the
architecture. The impact of design choices such as ILP and
the extension of the compiler with compiler known func-
tions can be easily evaluated. The next step is the automatic
generation of VHDL for the architecture, which can be syn-
thesized and verified against the instruction set simulator.

4. Multicore Support

The requirement of handling the maximum frame rate
(14.88 Mpackets/s) of a 10 Gbit/s Ethernet link leaves an
ASIP only 67 ns to finish its tasks. When running at 120
MHz only 8 clock cycles are available. Clearly a multi-
core architecture is needed to handle the complete through-
put. Multiple cores can be put in a pipeline, each perform-
ing a part of the complete processing algorithm of the same
packet. While easy to implement, this architecture requires
the packet algorithm to be split in equal parts to avoid idle
time on the ASIPs. An alternative is to use a pool of pro-
cessors all working in parallel on different packets. ASIPs
running idle are avoided, but each ASIP must have access
to all external peripherals and high speed busses will need
to traverse the FPGA fabric. A mixture of both approaches,
a pipeline of ASIP pools, combines the best of both worlds.
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Figure 1. External ASIP interfaces

To support any of the aforementioned setups, a suitable
memory architecture, taking optimal advantage of the re-
sources scattered over the FPGA fabric, was developed.
Each ASIP has access to two 4 KiB dual ported memories,
implemented in on-chip Block RAMs. One port is exclu-
sively reserved for the ASIP and the other one interfaces
with the multicore environment. The two physical mem-
ories are divided into regions, according to their function.
The Packet Memory (PKM) consists of two equal banks of
2 KiB and stores the packet to be processed. The organiza-
tion of the remaining memory is somewhat different: 256
bytes Ticket Memory (TKM) and 3840 bytes Data Mem-



ory (DM). The ticket memory itself is further divided into
two equal banks of 128 bytes each. This memory stores
the ticket data structure containing the context linked to a
packet. Each ASIP can add results to it or use it as input for
its own tasks. Apart from these two physical memories, a
dedicated 32 bit memory interface is available used to map
external peripherals onto its memory space.

The goal of the memory architecture is to keep the pro-
cessor occupied at all times. The bank select signal makes
the processor operate on a specific bank. While packet pro-
cessing is ongoing, the second memory port can be accessed
to write new data into, or read previous results from the in-
active bank, without the risk of data corruption. Buffers for
rate adaptation are not needed in the system as each DMA
engine interfaces with two 32 bit wide Block RAMs com-
bined into a single 64 bit wide bus running at 160 MHz.
The DMA engine of each ASIP in the pool interfaces with
a dispatcher and a collector block. The latter assigns new
data to the individual ASIPs and the former reads out the
results to be transferred to the next processing step. The dis-
patch/collect mechanism ensures that the order of the pack-
ets leaving the ASIP pool remains unchanged.

For the programmer, bank switches are transparent and
the mechanism needs minimal support in the code. Each
time the running algorithm concludes its work on a packet,
a ‘halt’ instruction must be issued. This instruction drives
the external halted signal, flushes the processor pipeline,
stops the issuing of new instructions and resets the program
counter to the beginning of the algorithm.

The main advantage of this memory architecture is that
it hides latency. The use of a central memory would require
aggregation and arbitration logic, which inevitably leads to
processor stalls. Cache memories can try to improve on this,
but as the required amount of storage for each ASIP is quite
low, the memory can be kept local entirely. Furthermore,
the use of banks removes the time needed to copy out the
results and take in new data. The architecture also allows for
excellent scalability: in our setup three pools of 10 ASIPs
have been implemented, processing the data of a 10 Gbit/s
Ethernet connection.

5. Initial Design Phase

5.1. Introduction

The use of a retargetable tool suite allowed us to explore
several design options for an ASIP using the top level mem-
ory architecture described in the previous paragraph. Two
major revisions of the ASIP were designed. An overview of
our initial architecture will be given in this section together
with the insights gained. The remainder of the paper will
discuss the enhancements to the architecture and compare it
performance wise to the original design.

5.2. Data Path

A schematic overview of the ASIP data path is shown in
Fig. 2. The ASIP contains several functional units such as
the Arithmetic and Logical Unit (ALU), a Checksum Unit,
a Content Addressable Memory (CAM) and the Address
Generation Units (AGUs).

The general register file (REG) and the functional units
are both 16 bit wide. As most packet header fields manip-
ulated in the functional units do not need more than 16 bit,
the cost for a complete 32 bit architecture is rather high.
Only copy operations directly between memories can be 32
bit wide.
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Figure 2. Initial ASIP Data Path

The memory addresses are calculated in two Address
Generation Units (AGUs), one for PKM and another one for
DM/TKM. Each AGU works on a dedicated pointer register
file with two entries and supports immediate and postincre-
ment addressing.

5.3. Program Control

The performance of packet processing code depends
largely on the efficiency (cycle consumption) of control in-
structions. The processor and compiler support delayed
jump and branch instructions. The code is reordered to fill
delay slots with meaningful instructions, if no instruction
can be inserted a ‘NOP’ is executed in the delay slots [6].

To minimize the impact of delay slots, the Program
Counter (PC) is set as early a possible in the pipeline. Un-
conditional jumps and branch instructions to an immedi-
ate address set the PC in the second pipeline stage, requir-
ing only one delay slot. Conditional jumps or computed
branches are taken one cycle later, as their execution de-
pends on the result of the status register, which is set in
second pipeline stage.

Next to these general purpose branch and jump instruc-
tions, some special instructions were added targeted at ac-
celerating C-style switch-case constructs, as often seen in
protocol stack decoding. A 16 bit wide Content Address-
able Memory (CAM) based approach was chosen. This



lookup mechanism can be area-efficiently implemented in
an FPGA based on SRL16 shift registers [7]. The CAM de-
livers an offset to a lookup table in memory, containing the
actual branch target address, which is then applied to the
program memory.

5.4. Checksum Calculation

Packet manipulation algorithms also need to deal with
the checksum. Efficient algorithms have been developed
to incrementally recalculate the checksums used throughout
the TCP/IP stack [8]. Essentially, the checksum is updated
with the ones complement subtraction of the new and the
old contents, taking into account that packet headers con-
tain the bitwise inversion of the actual checksum value. A
dedicated functional unit was added to the ASIP providing
hardware support for this mechanism.

5.5. Conclusion

In DSP applications it is often possible to identify a clear
bottleneck. The nature of the algorithms running on our
ASIPs is quite different and a global ASIP optimization is
needed to reach the performance goals. The proposed ar-
chitecture was able to run the desired parsing, classification
and packet manipulation algorithms, but profiling data and
analysis of the assembly code revealed a number of possible
optimizations, which are listen below.

1. The ASIP has a rather complex load/store architecture
with several busses between the functional units, mem-
ories and registers, yet some interesting paths are still
missing. A more generic approach, where any two
storages are interconnected, provides a far more flexi-
ble solution.

2. A register file with eight entries is sufficient to let the
envisaged algorithms execute without register spilling.

3. More pointer registers are needed. Often cycles are
lost to save and restore the register contents. (register
spilling)

4. Updating packet fields and the associated checksum is
too time consuming as at least three steps are needed.
First, old packet data has to be fetched from memory
and subtracted from the current checksum. Next, the
packet can be overwritten with new data. And as a
last step the modified packet contents has to be fetched
again to add it to the checksum.

5. A CAM is used to accelerate C-style switch case state-
ments. A speed gain can be achieved for wide switch-
case statements, but typically the number of jump tar-
gets is rather low. The architecture should be opti-
mized for this typical usage.

6. The AGUs are the only units capable of operating in
parallel with other functional units. An instruction set
with a higher degree of instruction level parallelism
can reduce the cycle consumption.

7. An analysis of the place and route results in the FPGA
revealed that the instruction set decoding is one of the
critical paths. An instruction set with straightforward
decoding can save area and increase speed.

6. Final Design Phase

6.1. Data Path
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Figure 3. ASIP Data path final design

Fig. 3 shows the new design. The ASIP no longer has
several busses between memories and registers. The sin-
gle 32 bit Load/Store bus is a far more generic and flexible
solution as it interconnects any two storages in the design.
The single Load/Store bus also required the AGUs to be re-
designed. They are no longer dedicated to a specific mem-
ory. In stead, the first AGU is used to calculate source ad-
dresses and the second one is used to provide the destination
addresses. Both AGUs now access a larger, shared pointer
register file capable of storing eight addresses. Furthermore,
three addressing mechanisms are now supported: immedi-
ate addressing, postincrement addressing and indexed im-
mediate addressing. The size of the general register file
was cut in half as this is sufficient for most real life algo-
rithms running on the ASIP. On a whole, the register files
have a comparable area cost to the first design, but are bet-
ter dimensioned for the envisaged algorithms and can reach
higher speeds because the 16 to 1 multiplexers on the out-
puts were replaced with 8 to 1 multiplexers.

The instruction set has a higher degree of instruction
level parallelism, resulting in a VLIW ASIP with 72 bit
instruction words stored in a dedicated program memory



(Harvard architecture). The wide instruction word allows
for a Load/Store operation to be combined with two AGUs
updating the pointer registers, a checksum update and an
ALU operation. Compared to the previous design 31 addi-
tional instruction bits are used, but they have been traded
for simplified instruction decoding and a higher degree of
instruction level parallelism.

6.2. Program Control

A CAM unit is an efficient means to accelerate wide C-
style switch-case constructs. However, next to these wide
branches, the code contains a higher number of switch-case
constructs with a relatively low number of branch targets.
The CAM fails to provide a significant acceleration com-
pared to standard if-then-else constructs in these cases. An
alternative to the CAM based solution, performing better for
smaller switch-case constructs, has been implemented with
two new instructions: multicompare and multibranch.

The multicompare instruction compares a value residing
in the general register file with three 16-bit immediates en-
coded in the instruction word. If a match is found the sta-
tus register (SREG) will be updated accordingly, as would
happen with any logical operation. The multicompare in-
struction also has a second output, called the branch register
(BREG). In case of a hit, this register will store the index of
the matching immediate. In case of multiple hits, the first
hit has priority.

Next to this basic mode of operation, two multicompare
instructions can also be cascaded. The first instruction will
overwrite the contents of SREG and BREG. The second one
will only update the output registers of the instruction if no
previous hit is detected. This way the priority encoding is
kept in case of multiple hits. This cascade allows to store
the result of up to six comparisons in the BREG.

If we are dealing with byte values, the execution of a
cascade of two multicompares would be inefficient. To al-
leviate this problem, the three 16 bit immediates in the in-
struction word can also be interpreted as six bytes. This way
the comparison is done in a single instruction.

Once the multicompare instruction is executed, a branch
has to be chosen based on the outcome of the comparison.
This is the task of the multibranch instruction. A multi-
branch instruction carries seven branch targets in the in-
struction word. The output of the branch register acts as
a selector to set the PC. If no hit is found, BREG is zero and
the default branch target is selected.

The combined multicompare- multibranch mechanism
provides an efficient mechanism to accelerate switch-case
structures of up to six branch targets. The main difference
is that the code for each case needs to be a function and a
default branch target must always be present. Despite these
restrictions, these instructions prove to be very useful, espe-

cially for decoding protocol stacks.
The main advantage of the CAM based approach of

the initial design is the ability to efficiently support wide
switch-case constructs, as shown in Fig. 4: The cycle con-
sumption remains constant. The main disadvantage is the
poorer performance for smaller switch-case constructs due
to the time needed to access the lookup table. An analysis
of the code shows that the majority of the switch-case con-
structs have less then six entries. Therefore, the multibranch
instruction is the optimal solution.
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Figure 4. Multibranch solutions compared

6.3. Checksum Calculation

The performance of the incremental checksum update
mechanism is greatly increased using the ‘read-before-
write’ mode of the Xilinx BRAMs. This feature makes the
old memory contents appear at the read port every time new
data is written in. Using this feature we update a dedicated
bus (Read-Before-Write Bus) each time data is written to
a memory. A single 8, 16 or 32 bit wide store instruction
to memory is sufficient to produce all necessary data to up-
date the checksum: The new data appears on the Load/Store
bus and the old data is made available on the Read-Before-
Write Bus one cycle later (Fig. 3). Both values then can
be combined to update one of the two dedicated checksum
registers.

7. Performance Analysis

7.1. Area and Speed

The design was implemented in a Xilinx Virtex 4
LX200-11 FPGA. The final design of the ASIP core uses
about 1344 slices, which is about 200 slices smaller than
the original design. The total design, including the con-
trollers supporting the interaction with the top level takes
about 1600 slices. This allows for 48 ASIPs to be placed



Packet Type Design 1 Design 2
IPv4 + UDP/TCP 85 57
IPv6 + UDP/TCP - 57
VLAN + IPv4 + TCP 88 59
ICMP echo request 83 56
ARP 43 28

Table 1. Parser performance (cycles)

inside the FPGA, if extra logic for external interfaces is not
taken into account. The biggest entities in the final design
of the ASIP are the register files (32%), the checksum en-
gine (10%), the ALU (9%), the decoder (8%) and the global
load/store bus (4%).

A post place and route frequency of 120 MHz can be
reached, which is a significant improvement over the ini-
tial design, reaching only 100 MHz. An ASIP spending 60
cycles on a packet will be able to process 2 MPackets/s at
these clock rates, which is sufficient to handle the maximum
throughput of 1.488 MPackets/s of a gigabit Ethernet link.
The subsequent paragraphs will show that a single ASIP is
capable of handling the parsing, classification or packet ma-
nipulation for a Gigabit Ethernet link.

7.2. Cycle consumption

Various types of packets have been processed by the
parsing algorithm, up to layer 4 if applicable. Table 1
shows a cycle performance increase of 33% for all types
of packets. It is worth noting that the IPv6 performance is
on par with IPv4 thanks to the high degree of parallelism in
the processor.

The classification algorithm transforms the information
stored in the ticket into a search key, applies it to the TCAM
and reads back the result. The total operation, including
TCAM latency, takes 40 clock cycles in the final design.
The relative performance increase compared to the initial
design is minor as the TCAM latency consumes about half
of the cycle budget. Further optimization should focus on
mechanism to hide this latency.

Table 2 shows the performance figures for three typical
packet manipulation scenarios, modifying the packets up
to layer 4. Performance gains up to 47% are observed, es-
pecially for more complex packet manipulation scenarios.

8. Conclusion

A processor architecture for a packet processing ASIP,
tailored to the needs of a flow aware access node, was pre-
sented. The processor was developed using a retargetable
design flow, allowing to asses the performance of a given

Scenario Design 1 Design 2
Insert VLAN tag 27 23
Replace MAC Addresses 33 24
Decrement IP TTL
Update IP Checksum
Replace MAC Addresses 51 27
Decrement IP TTL
Change IP Source Address
Change TCP Source Port
Update IP + TCP Checksum

Table 2. PacMan performance (cycles)

architecture and easily adapt it to alleviate shortcomings.
The result is an ASIP capable of handling parsing, classi-
fication or packet manipulation functionality for 1 Gbit/s
Ethernet links. Furthermore, the ASIP can work seamlessly
in a multi core environment, allowing excellent scalability
to build a 10 Gbit/s flow aware access node.
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