
Mapping the Physical Layer of Radio Standards to Multiprocessor
Architectures

Cyprian Grassmann*; Mathias Richter **; Mirko Sauermann*
*Infineon Technologies AG COM PS CE; **Siemens CT PP 2

Abstract

We are concerned with the software implementation
of baseband processing for the physical layer of radio
standards (“Software Defined Radio - SDR”). Given
the constraints for mobile terminals with respect to
power consumption, chip area and performance, non-
standard architectures without compiler support are
the targets a SDR implementation has to face. For this
domain we present a way to safely move from a func-
tional model to the assembly level in order to come to
a tested multithreaded optimized implementation in
manageable time.
We carried out this program for the standards WLAN
IEEE 802.11b and 3GPP WCDMA exploiting various
levels of parallelism: thread level parallelism
("MIMD"), data level parallelism ("SIMD") and in-
struction level parallelism ("VLIW"). We came up
with a software implementation running in real time
on Infineon’s programmable Multiple SIMD Core
(MuSIC) processor.

1. Introduction

Mobile terminals are facing very tight constraints with
respect to chip area, power consumption and perform-
ance. This is especially true if the radio standard has
to be implemented in software to cope with the ever
raising demand for flexibility and the handling of
multiple standards on the same platform.
We take it for granted that the key to achieving high
performance at low clock rates (low power consump-
tion) lies in the exploitation of parallelism. The physi-
cal layer of radio standards exposes inherent parallel-
ism at various levels:

• the sequence of processing steps for transmission
and reception is repeated for many data elements;
repetitions can be overlapped in time

• components of transmitters and receivers like FIR
filters expose data parallelism in themselves

• instructions for data transfers, arithmetic and
communication can be issued in parallel (LIW)

• special instructions finally address the bit-level
parallelism

An architecture correspondingly offering support for
thread-, data-, instruction-, and bit-level parallelism at
the same time will be all but standard. Capabilities
and performance potential are great, but the price to
be paid is a serious complication of the software
development process. Notably the asynchronous
nature of thread level parallelism is not easy to deal
with. It is difficult to be exploited optimally and to
have guaranteed maximal execution time. Above all,
it is not easily tested for functional correctness [1].
It would be desirable to start from an abstract func-
tional description and system modeling of the respec-
tive radio standard and proceed through some map-
ping process to the final implementation - ideally
supported by a compiler, with an automated extraction
of the parallelism.
Practically the development of a compiler would take
a very long time and only should be considered if a
final agreement on a feasible architecture for SDR has
been found.
The main difficulty is the wealth of possible mappings
from a function to its implementation. An optimal
mapping is defined in terms of a minimal number of
arithmetical instructions and memory transfers and a
minimal amount of processor communication - all at
the same time. The mapping is highly sensitive to the
underlying hardware capabilities. Therefore it is
necessary to actually (manually) carry out and profile
the implementation to get a reliable estimate of its run
time. Such crude measures as arithmetical complexity
of a function can largely fail to give a true picture.
On the other hand, we do need a high level model:
When a specific carefully optimized implementation
reveals a performance bottleneck, we can not simply
enhance the hardware. In fact the SDR promise is to
keep the same hardware for many (new) radio stan-
dards. Rather, algorithms (or parameters of it like
filter lengths or data precision) used in the application
need to be reworked so that they allow for a more
efficient mapping. To save development time, new
algorithms are tested against requirements of a radio
standard at the highest possible level before they are
again mapped to the hardware. This whole process is
iterated.
We have followed the approach presented in this
paper for the WLAN standard IEEE 802.11b and for

978-3-9810801-2-4/DATE07 © 2007 EDAA

3GPP WCDMA-FDD on the application side and for
Infineon’s multiprocessor “MuSIC” on the architec-
ture side.
In the next section we outline the MuSIC architecture
and its implications on software. The following sec-
tion describes the considerations that drive our parti-
tioning and mapping decisions. Section 4 gives details
on how we actually implement and test at different
levels and how we assure a smooth and safe transition
from higher to lower levels. The final section summa-
rizes the benefits achieved by our approach.

2. Architecture and Programming Model

We only consider baseband processing and omit all
analog components of a communication system.
An analysis carried out at Infineon Technologies [2]
resulted in proposing the MuSIC processor as a
versatile baseband processor meeting the perform-
ance, power, and area restrictions mentioned above.

Figure 1: Baseband platform

This processor chiefly consists of a cluster of four
single-instruction multiple-data (SIMD) DSP cores
(Figure 1). Each SIMD core contains four processing
elements (PE) and operates with a clock frequency of
300 MHz. To relax timing requirements for the mem-
ory and to resolve pipeline hazards each core runs
four threads which are switched by a fixed time multi-
plexing mechanism. It can thus be assumed that in a
whole we make use of 16 threads running at 75 MHz
each.
Long instruction words (LIW) of the PE array show
memory, arithmetic, and communication components.
The SIMD core controller in fact is a 32 bit general
purpose processor (GP). The GP communicates with
the other units via instruction and data FIFOs.
The cluster of SIMD cores is accompanied by dedi-
cated configurable accelerators for channel encoding
and decoding as well as filtering operations. In addi-

tion, there is an ARM processor for the execution of
the protocol stacks.
For a detailed discussion of the MuSIC processor, see
[3], [4], and [5].
The programming model for this architecture is that of
multithreaded programming in C. Wrapped into func-
tions called by threads, the purely data parallel parts
(associated with SIMD cores) are programmed in a
data parallel language extension of C.
To support multithreaded programming, we have
developed our own light weight operating system
(“ILTOS”). It provides the means to create and syn-
chronize threads, to asynchronously send and query
messages between them and to allocate and free
shared memory.
Functions to be executed on a SIMD core are written
in DPCE, the Data Parallel C Extension language [6],
a superset of the C language. DPCE offers parallel
data types and operations on them. We have devel-
oped a compiler which takes a DPCE source and
produces synchronized C code for GP core and DMA
transfers between shared and local memories (to be
translated further by a C compiler for the GP) as well
as PE assembly. This compiler is not yet optimizing,
though. To achieve best performance we use inline
assembly for the PE array and explicit DMA
configuration. What remains is chiefly the C language
with some intrinsic functions for PE and DMA control
plus an assembly source code library for the PE.
Implementations can be done completely without PE
by writing pure C programs. These will then run on
the GP core alone. This feature is of importance for
testing assembly implementations, as shown later.
At Infineon, we also have developed a virtual proto-
type of the entire MuSIC platform based on SystemC.
The virtual prototype is a cycle- and bit-accurate
software-based simulator. It contains models of all
processors, accelerators, busses, memories, and
peripherals which will be available in the real hard-
ware. Therefore the same software can be run on the
virtual prototype as on the real hardware.

3. Modeling and Mapping Radio Stan-

dards

We start with a dataflow diagram of the application. A
dataflow diagram or DFD consists of processes,
denoted by rectangles, data flow, denoted by arches
and external entities. The direction of the arch repre-
sents the flow of data from producer to consumer. The
semantic is that a process can fire when all its inputs
are available [7]. In addition to other modeling
approaches with DFDs we require that all processes
are free of side effects (referentially transparent). Due
to this restriction we will further refer to processes as
functions. To convert a process with state into a func-
tion, we make internal states externally visible.

As example take a FIR filter process, which continu-
ously filters incoming samples. Such a filter process
usually has internal state, which stores the history of
the incoming signal. In order to get rid of this state,
the filter gets an additional output, which is fed back
as input. The feed back signal needs to be delayed,
such that it is used along with the next input block.
For this reason we introduce a delay element.

Figure 2: From Process to Function

The restriction to functions is actually no real restric-
tion of the computational model, as a functional
model is equally expressive. On the contrary, by
making states externally visible we model the flow of
state data explicitly, which was hidden in the black
box of the processes in the original DFD. This
important change allows us to get a complete depend-
ence relation between functions.
Let’s take the following DFD as an example for
further discussion

Figure 3: Example

The next step towards a multithreaded program is the
analysis of the dependence relation between functions,
since only dependences restrict the schedule and thus
the available parallelism within the application. Since
we are talking about streaming applications, which
work on blocks of continuous data, we map each
chain of producer-consumer functions in the DFD into
a two dimensional linear space. One dimension is, like
the original DFD, the chain of different functions. The
other dimension represents the function instance,
which is associated with the incoming data block.
Note that delay elements now become superfluous as
the producer instance is now directly connected with
the according consumer instance.

Figure 4: Expanded DFD

Each arrow represents an element of the dependence
relation on the set of function instances. The depend-
ence relation can be expressed as set of vectors:

}:{ jiji FondependsFfunctionFFdD −==

The goal of the mapping step is to find two functions,
commonly referred to as Time Mapping (Schedule)
and Space Mapping, which map the function instances
in a particular order to a particular thread or proces-
sor. Both mappings can be summarized as a function
M from our two dimensional linear space Functions x
Block(Instances) into the two dimensional linear
space Time x Processors.

PTBFM ×→×:

Apparently such a mapping is only valid if it respects
the dependences. That is a function instance is only
allowed to be evaluated if all functions which are
smaller (with respect to the order induced by D) are
already evaluated. More formally:

dimension theto
projection theis where 0))((

T
PDddMP TT ∈∀>

In our implementation we particularly look at linear
mappings, for linear mappings M can be represented
as matrices. Of particular interest are mappings which
minimize execution time and thus throughput. For the
given example there are two such mappings.
The first one is characterized by the following trans-
formation:

Figure 5: Affine Mapping I

Such a mapping is well suited, if the processors are
fixed function ASICs, because there are only different
instances of the same function mapped to a particular
processor.
Indeed, in our 802.11b project we used this kind of
mapping for functions which are destined to run on
hardware accelerators.
The second mapping is characterized by the following
transformation:

a1 b1 c1 d1

a2 b2 c2 d2

data blocks
(B)

a b c d

Z-1 Z-1

FIR Filter FIR Filter

Z-1 state

Process Function

a b c d

a b c d

a b c d

… … … …

F

B

a a a

b b b

d d d

T

P

c c c

… a
















=







B
F

B
F

M
01
11

Functions
(F)

Figure 6: Affine Mapping II

It may seem that this mapping requires more proces-
sors. However processor 1 will get idle once it fin-
ished evaluating function d for the first time and can
then proceed with a next evaluation. This is formal-
ized by a second mapping, nPPP mod , where Pn is
the number of physical processors. M then becomes
piecewise linear.
The second mapping will often be preferable for pro-
grammable hardware because it can be better load
balanced when, in contrast to our abstraction, func-
tions do not have equal execution time. As an exam-
ple assume the execution time of function b is three
times as long as that of each function a, c, and d. In
this case it is sufficient to use only 2 processors as any
more would only increase the idle time.
In addition this mapping may reduce communication,
since all data but “states” stay local on a processor.
A last important mapping parameter is the size of
input blocks for the streaming application. For
instance a filter function can process one or more
input samples and produce a corresponding number of
output samples at each call. It is plausible that the
synchronization overhead of a multithreaded imple-
mentation decreases linearly with the size of the input
blocks. One would like to choose as large blocks as
possible. On the other hand the communication stan-
dard may restrict the latency from antenna to final bit
detection. It is clear that latency increases with block
size. The best solution here is to pick a block size as
large as possible, which still fulfills the latency
requirements. A good block size can only be found by
profiling the functions on target hardware.
Summarizing, we found that a mapping consists of
two parameters. One is the mapping function M,
which determines parallelism and communication
costs and thus throughput. The other is the block size,
which determines latency.

4. Implementation of the Iterative Design

Flow

We advocate a three level approach, tacitly assuming
a hierarchy of parallelism, comprising a high level
functional system model for algorithmic testing, a
multi threaded reference model (in C language) run-
ning on a workstation to cope with the problems of
asynchrony and nondeterminism and an assembly

implementation running on the target hardware or a
simulator of it for exploitation of data level, instruc-
tion word and bit-level parallelism. All levels are kept
throughout the iterative software design process.
At the high level system model signal processing
algorithms exposing sufficient parallelism are se-
lected, arithmetical (fixed/floating point, division,
square root, ...) and data precision (bit width) restric-
tions of the hardware are considered and the model is
tested against the functional requirements of a stan-
dard (e.g. maximal error rates of a receiver).
The analysis of the model, as it is described in section
3 then leads to a partitioning of the application into
multiple threads - the multithreaded reference model.
Again this multithreaded reference program is tested
for functional equivalence with the functional system
model.

signal
processing
C functions

Executable model of the radio standard
e.g. UML, CoCentric, Simulink, C-prog

1b Single
Function
Verification
(Windows)

1c – functional
verification
(Windows)

Multithreaded C-program of the radio standard
uses ILTOS on MuSIC

3b – system
verification
& profiling on
(virtual prototype)

Multithreaded C-program of the radio standard
uses ILTOS API on Windows platform

C & Assembly
functions

2c – system
verification
& profiling
(Windows)

2b – Single function
verification &profiling
(SIMD simulator)

1a – Build functional system model

2a – analysis of algorithms w.r.t architecture
Extraction of parallelism

3a – re-compilation re-linking

Ite
ra

te
Ite

ra
te

SPEC of Radio Standard (e.g. WLAN 802.11b)
signal
processing
C functions

Executable model of the radio standard
e.g. UML, CoCentric, Simulink, C-prog
Executable model of the radio standard
e.g. UML, CoCentric, Simulink, C-prog

1b Single
Function
Verification
(Windows)

1c – functional
verification
(Windows)

Multithreaded C-program of the radio standard
uses ILTOS on MuSIC

3b – system
verification
& profiling on
(virtual prototype)

Multithreaded C-program of the radio standard
uses ILTOS API on Windows platform

C & Assembly
functions

2c – system
verification
& profiling
(Windows)

2b – Single function
verification &profiling
(SIMD simulator)

1a – Build functional system model

2a – analysis of algorithms w.r.t architecture
Extraction of parallelism

3a – re-compilation re-linking

Ite
ra

te
Ite

ra
te

SPEC of Radio Standard (e.g. WLAN 802.11b)

Figure 7: Software design flow

Based on experience and profiling of the multi-
threaded reference model, critical functions of the
implementation are picked to be implemented as an
optimized assembly implementation by exploiting the
given data level and instruction level parallelism
within a thread function. The functional correctness is
tested against the reference function of the model. The
final implementation, including the assembly func-
tions is then profiled on the hardware or a simulator of
it for testing against the real time requirements im-
posed by the radio standard under investigation. In
this case the profiling can be limited to the critical use
cases to save simulation time.
It is important to point out that we could create a
hardware independent functional model without
caring about algorithmic details, like using only “sig-
nal processing exposing parallelism” or hardware
preferences for certain arithmetical operations, but
this usually leads to a decoupling of the functional
model from the rest of the development and substan-
tially reduces the benefit of that model. We rather also
iterate over the functional model, as it has to be a
concrete algorithm that has to be proven feasible to

a b c d

a b c d

a b c d

…

…

…

…

F

B

a b c

a b

d

a b c

T

P

a b c

c d

d

d

a b c d

a b c d
















=







B
F

B
F

M
10
11

cope with the requirements of a standard and that has
to be mapped to hardware.
Our highest level of abstraction is a dataflow diagram.
C implementations (e.g. S functions in case of
Simulink models) of DFD nodes have to be furnished
to capture algorithmic details and the block size
parameter. Implementation decisions are tentative
when they rely on performance measurements not yet
available and must eventually be reconsidered. The
block size parameter is an example for this, as already
pointed out in section 3. Nevertheless we will already
profile at this level to get an idea of how well C
functions would meet performance requirements and
where optimized assembly implementations will be
inevitable.
The next step consists in mapping to a multithreaded
reference program, our second level of abstraction.
We use exactly the same function implementations as
for the DFD to assure functional equivalence.
Where it seems appropriate we finally go down to the
lowest level, namely assembly implementations.
Assembly usually is frowned upon as a programming
model. From our experience we argue, though, that
assembly programming is tedious, but manageable in
terms of development time (as compared to the devel-
opment of dedicated hardware for every new commu-
nication standard) and safe in terms of provable func-
tional correctness – especially if it is limited to critical
sections identified beforehand, by profiling the appli-
cation.
Compared to this, ensuring correctness of a multi-
threaded program is a much more challenging task
because of the effects of nondeterminism. It is abso-
lutely hopeless to test a multithreaded program on a
non-standard hardware (simulator) when only
restricted debugging support is available. This is true
all the more when simulation speed is a concern.
From these experiences we have drawn the following
conclusions:

1. We develop and test a multithreaded program on a
standard platform with good tool support. We have
chosen the Windows operating system. It must be
ensured that an application tested on Windows
will also run correctly on the target hardware.

2. We develop assembly code only for single func-
tions called from within a thread. We test assem-
bly functions for correctness against their C refer-
ence counterpart, using the virtual prototype
simulator of the hardware.

3. We profile only tested applications to find out
about timing correctness.

When the profiling results are satisfactory, we are
done. Otherwise we have to rethink about assembly
implementation, multithreading, or even the func-
tional model, and go again through the list of corre-
sponding lower level steps in the design flow. In the

rest of this section we describe how we actually carry
out the steps 1 to 3 described above.

4.1 Migration from Windows to target system

The key to a quick and safe transition from Windows
to our target system lies in the ILTOS operating sys-
tem. The underlying simple idea is to restrict ILTOS
to a minimal and portable API offering support for
multithreaded programming. As already mentioned in
section 2 the API consists of functions for thread
administration, memory management, communica-
tion, and synchronization.
All API functions can easily be mapped (by a pre-
processor) to corresponding Windows operating sys-
tem calls. A multithreaded program can then be com-
piled for Windows as well as for MuSIC (as described
in section 2, this program will run on the GP core only
and won’t make use of the PE array). Testing and
debugging will be done under Windows, using the
Visual C++ development system and additional tools
like Intel thread checker. Correctness of the transition
to MuSIC depends only on the correctness of ILTOS
and the MuSIC C compiler. But these are developed
and tested once and for all and have already evolved
into a steady and reliable state.
We cannot stress enough that testing the correctness
of a multithreaded program is the most difficult part
of the software development process. It is a great
advantage that this part can be carried out on a well
established system with all possible tool support and
has not to be done for a special target system.

4.2 Assembly implementations

Extracting data parallelism contained in functional
units is the next step to take, where this is necessary to
meet real time requirements.
Assembly code is wrapped into a function in form of
inline assembly together with C code for the general
purpose (GP) core. These functions are compiled for
MuSIC and run on the virtual prototype (VP) simula-
tor. The VP provides several tools for analyzing soft-
ware. GP cores can be debugged by using a graphical
debugger. Further, internal state, instructions, and data
transfers of all modules (GP, PE array, DMA trans-
fers) can be traced and logged. We rely on the virtual
prototype behaving exactly like the hardware. A proof
of this is not part of the software development
process.
For testing purposes, functions are called for various
sets of input data and corresponding outputs (which
can be complete sets of states) are saved. The pro-
duced outputs are then compared with those produced
by corresponding C reference function.
We mention explicitly that testing assembly imple-
mentations is alleviated by the fact that it has not to be

done for the full application but only for parts of it
having a clear interface in terms of input and output
data.
When this is accomplished, we can deliberately link
either pure C functions or functions containing inline
assembly together with the multithreaded skeleton of
our application. Only the first version will run on both
platforms (Windows and MuSIC), but both will
deliver the same result for MuSIC.

4.3 Profiling

The final task is testing for real time behaviour of the
application by profiling it. This is done again using
the VP.
The VP can track the execution status of threads on
the general purpose processors by monitoring calls of
ILTOS synchronization functions. It is not necessary
to change the application software for this. The results
can be displayed graphically. An example of an
802.11b implementation running on the MuSIC DSP
cluster is shown in Figure 8. The traces show single
threads running, blocking, and synchronizing.

Figure 8: Traces of parallel WLAN 802.11b
implementation.

For a more detailed analysis, the virtual prototype can
gather statistical data on the utilization of the shared
modules like busses and memories. From the trace
files written we can also get a cycle accurate picture
of the relative timing behaviour of PE, GP and DMA
transfers.
Having these analysis tools we come quickly to a very
accurate analysis of the performance of an application
and can spot out performance bottlenecks and balance
the usage of the system resources.

5. Conclusion

The presented development methodology leads to a
reduction and an essential acceleration of the un-
avoidable design iterations for the implementation of
radio standards on non-standard architectures. Espe-
cially the well specified method to identify the right

block size and to find suitable mappings, as described
in section 3, leads to a reduction of the design search
space.
Remaining design iterations are accelerated by early
testing on standard platforms (with good tool support)
and by the reuse of implementations and test beds
from the functional system model down to the assem-
bly implementation level. This is possible by provid-
ing a portable OS API, by incorporating C-reference
functions already within the functional system model,
and by keeping the model within the iteration loop.
By consequent usage of this model based approach in
conjunction with concrete implementations of the
functions involved, interface contracts can be worked
out at an early stage of the design process. Hence the
approach also substantially supports the distribution
of the implementation onto multiple developers and
lays the foundation for automated generation of the
error prune multithreaded control code. We experi-
enced this in the case of WCDMA, where three sepa-
rate development teams worked on functional model-
ling and on C and assembly implementations.

6. References

[1] E.A. Lee, The Problem with Threads, IEEE Computer,
39(5):33-42, May 2006
[2] H.-M. Blüthgen, C. Sauer, M. Gries, W. Raab, D.
Langen, A. Schackow, M. Loew, U. Hachmann, N. Bruels,
U. Ramacher, Finding the Optimum Partitioning for Multi-
Standard Radio Systems, SDR’05 technical conference,
Orange County, California, 2005.
[3] W. Raab, H.-M. Blüthgen, U. Ramacher, A Low-Power
Memory Hierarchy for a Fully Programmable Baseband
Processor, WMPI 2004.
[4] H.-M. Blüthgen, C. Grassmann, W. Raab, U. Ramacher,
J. Hausner, A Programmable Baseband Platform For
Software-Defined Radio, SDR’04, Phoenix Arizona.
[5] H.-M. Blüthgen, C. Grassmann, U. Ramacher, A
Software Programmable Multiple-Standard Radio Platform,
IST Mobile Summit, Dresden, 2005.
[6] DPCE 1.6 Technical Reference,
www.crescentbaysoftware.com/dpce/index.html
[7] W.P.Stevens, G.J.Myers, L.L Constantine, Structured
Design, IBM Systems J., 1974, 13 (2) pp. 115—139
[8] C. Grassmann, A. Troya, M. Sauermann, M. Richter, U.
Ramacher, Mapping waveforms to mobile processor
architectures, SDR’05 technical conference, Orange
County, California, 2005.
[9] M.Sauermann, ILTOS API Reference v0.7
Documentation, Infineon internal report, 2006

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

