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Abstract 
 
We are concerned with the software implementation 
of baseband processing for the physical layer of radio 
standards (“Software Defined Radio - SDR”). Given 
the constraints for mobile terminals with respect to 
power consumption, chip area and performance, non-
standard architectures without compiler support are 
the targets a SDR implementation has to face. For this 
domain we present a way to safely move from a func-
tional model to the assembly level in order to come to 
a tested multithreaded optimized implementation in 
manageable time. 
We carried out this program for the standards WLAN 
IEEE 802.11b and 3GPP WCDMA exploiting various 
levels of parallelism: thread level parallelism 
("MIMD"), data level parallelism ("SIMD") and in-
struction level parallelism ("VLIW"). We came up 
with a software implementation running in real time 
on Infineon’s programmable Multiple SIMD Core 
(MuSIC) processor. 
 
1. Introduction 
 
Mobile terminals are facing very tight constraints with 
respect to chip area, power consumption and perform-
ance. This is especially true if the radio standard has 
to be implemented in software to cope with the ever 
raising demand for flexibility and the handling of 
multiple standards on the same platform. 
We take it for granted that the key to achieving high 
performance at low clock rates (low power consump-
tion) lies in the exploitation of parallelism. The physi-
cal layer of radio standards exposes inherent parallel-
ism at various levels: 

• the sequence of processing steps for transmission 
and reception is repeated for many data elements; 
repetitions can be overlapped in time 

• components of transmitters and receivers like FIR 
filters expose data parallelism in themselves 

• instructions for data transfers, arithmetic and 
communication can be issued in parallel (LIW) 

• special instructions finally address the bit-level 
parallelism 

An architecture correspondingly offering support for 
thread-, data-, instruction-, and bit-level parallelism at 
the same time will be all but standard. Capabilities 
and performance potential are great, but the price to 
be paid is a serious complication of the software 
development process. Notably the asynchronous 
nature of thread level parallelism is not easy to deal 
with. It is difficult to be exploited optimally and to 
have guaranteed maximal execution time. Above all, 
it is not easily tested for functional correctness [1]. 
It would be desirable to start from an abstract func-
tional description and system modeling of the respec-
tive radio standard and proceed through some map-
ping process to the final implementation - ideally 
supported by a compiler, with an automated extraction 
of the parallelism. 
Practically the development of a compiler would take 
a very long time and only should be considered if a 
final agreement on a feasible architecture for SDR has 
been found. 
The main difficulty is the wealth of possible mappings 
from a function to its implementation. An optimal 
mapping is defined in terms of a minimal number of 
arithmetical instructions and memory transfers and a 
minimal amount of processor communication - all at 
the same time. The mapping is highly sensitive to the 
underlying hardware capabilities. Therefore it is 
necessary to actually (manually) carry out and profile 
the implementation to get a reliable estimate of its run 
time. Such crude measures as arithmetical complexity 
of a function can largely fail to give a true picture. 
On the other hand, we do need a high level model: 
When a specific carefully optimized implementation 
reveals a performance bottleneck, we can not simply 
enhance the hardware. In fact the SDR promise is to 
keep the same hardware for many (new) radio stan-
dards. Rather, algorithms (or parameters of it like 
filter lengths or data precision) used in the application 
need to be reworked so that they allow for a more 
efficient mapping. To save development time, new 
algorithms are tested against requirements of a radio 
standard at the highest possible level before they are 
again mapped to the hardware. This whole process is 
iterated. 
We have followed the approach presented in this 
paper for the WLAN standard IEEE 802.11b and for 

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



3GPP WCDMA-FDD on the application side and for 
Infineon’s multiprocessor “MuSIC” on the architec-
ture side. 
In the next section we outline the MuSIC architecture 
and its implications on software. The following sec-
tion describes the considerations that drive our parti-
tioning and mapping decisions. Section 4 gives details 
on how we actually implement and test at different 
levels and how we assure a smooth and safe transition 
from higher to lower levels. The final section summa-
rizes the benefits achieved by our approach. 
 
2. Architecture and Programming Model 
 
We only consider baseband processing and omit all 
analog components of a communication system. 
An analysis carried out at Infineon Technologies [2] 
resulted in proposing the MuSIC processor as a 
versatile baseband processor meeting the perform-
ance, power, and area restrictions mentioned above. 
 

 
 
Figure 1: Baseband platform 
 
This processor chiefly consists of a cluster of four 
single-instruction multiple-data (SIMD) DSP cores 
(Figure 1). Each SIMD core contains four processing 
elements (PE) and operates with a clock frequency of 
300 MHz. To relax timing requirements for the mem-
ory and to resolve pipeline hazards each core runs 
four threads which are switched by a fixed time multi-
plexing mechanism. It can thus be assumed that in a 
whole we make use of 16 threads running at 75 MHz 
each. 
Long instruction words (LIW) of the PE array show 
memory, arithmetic, and communication components. 
The SIMD core controller in fact is a 32 bit general 
purpose processor (GP). The GP communicates with 
the other units via instruction and data FIFOs. 
The cluster of SIMD cores is accompanied by dedi-
cated configurable accelerators for channel encoding 
and decoding as well as filtering operations. In addi-

tion, there is an ARM processor for the execution of 
the protocol stacks. 
For a detailed discussion of the MuSIC processor, see 
[3], [4], and [5]. 
The programming model for this architecture is that of 
multithreaded programming in C. Wrapped into func-
tions called by threads, the purely data parallel parts 
(associated with SIMD cores) are programmed in a 
data parallel language extension of C.  
To support multithreaded programming, we have 
developed our own light weight operating system 
(“ILTOS”). It provides the means to create and syn-
chronize threads, to asynchronously send and query 
messages between them and to allocate and free 
shared memory. 
Functions to be executed on a SIMD core are written 
in DPCE, the Data Parallel C Extension language [6], 
a superset of the C language. DPCE offers parallel 
data types and operations on them. We have devel-
oped a compiler which takes a DPCE source and 
produces synchronized C code for GP core and DMA 
transfers between shared and local memories (to be 
translated further by a C compiler for the GP) as well 
as PE assembly. This compiler is not yet optimizing, 
though. To achieve best performance we use inline 
assembly for the PE array and explicit DMA 
configuration. What remains is chiefly the C language 
with some intrinsic functions for PE and DMA control 
plus an assembly source code library for the PE. 
Implementations can be done completely without PE 
by writing pure C programs. These will then run on 
the GP core alone. This feature is of importance for 
testing assembly implementations, as shown later. 
At Infineon, we also have developed a virtual proto-
type of the entire MuSIC platform based on SystemC. 
The virtual prototype is a cycle- and bit-accurate 
software-based simulator. It contains models of all 
processors, accelerators, busses, memories, and 
peripherals which will be available in the real hard-
ware. Therefore the same software can be run on the 
virtual prototype as on the real hardware. 
 
3. Modeling and Mapping Radio Stan-

dards 
 
We start with a dataflow diagram of the application. A 
dataflow diagram or DFD consists of processes, 
denoted by rectangles, data flow, denoted by arches 
and external entities. The direction of the arch repre-
sents the flow of data from producer to consumer. The 
semantic is that a process can fire when all its inputs 
are available [7]. In addition to other modeling 
approaches with DFDs we require that all processes 
are free of side effects (referentially transparent). Due 
to this restriction we will further refer to processes as 
functions. To convert a process with state into a func-
tion, we make internal states externally visible. 



As example take a FIR filter process, which continu-
ously filters incoming samples. Such a filter process 
usually has internal state, which stores the history of 
the incoming signal. In order to get rid of this state, 
the filter gets an additional output, which is fed back 
as input. The feed back signal needs to be delayed, 
such that it is used along with the next input block. 
For this reason we introduce a delay element. 
 

 
Figure 2: From Process to Function 
 
The restriction to functions is actually no real restric-
tion of the computational model, as a functional 
model is equally expressive. On the contrary, by 
making states externally visible we model the flow of 
state data explicitly, which was hidden in the black 
box of the processes in the original DFD. This 
important change allows us to get a complete depend-
ence relation between functions. 
Let’s take the following DFD as an example for 
further discussion 
 

 
 
Figure 3: Example 
 
The next step towards a multithreaded program is the 
analysis of the dependence relation between functions, 
since only dependences restrict the schedule and thus 
the available parallelism within the application. Since 
we are talking about streaming applications, which 
work on blocks of continuous data, we map each 
chain of producer-consumer functions in the DFD into 
a two dimensional linear space. One dimension is, like 
the original DFD, the chain of different functions. The 
other dimension represents the function instance, 
which is associated with the incoming data block. 
Note that delay elements now become superfluous as 
the producer instance is now directly connected with 
the according consumer instance. 
 

 
 
Figure 4: Expanded DFD 
 

Each arrow represents an element of the dependence 
relation on the set of function instances. The depend-
ence relation can be expressed as set of vectors: 
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The goal of the mapping step is to find two functions, 
commonly referred to as Time Mapping (Schedule) 
and Space Mapping, which map the function instances 
in a particular order to a particular thread or proces-
sor. Both mappings can be summarized as a function 
M from our two dimensional linear space Functions x 
Block(Instances) into the two dimensional linear 
space Time x Processors. 
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Apparently such a mapping is only valid if it respects 
the dependences. That is a function instance is only 
allowed to be evaluated if all functions which are 
smaller (with respect to the order induced by D) are 
already evaluated. More formally: 
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In our implementation we particularly look at linear 
mappings, for linear mappings M can be represented 
as matrices. Of particular interest are mappings which 
minimize execution time and thus throughput. For the 
given example there are two such mappings. 
The first one is characterized by the following trans-
formation: 
 

 
 
Figure 5: Affine Mapping I 
 
Such a mapping is well suited, if the processors are 
fixed function ASICs, because there are only different 
instances of the same function mapped to a particular 
processor.  
Indeed, in our 802.11b project we used this kind of 
mapping for functions which are destined to run on 
hardware accelerators. 
The second mapping is characterized by the following 
transformation: 
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Figure 6: Affine Mapping II 
 
It may seem that this mapping requires more proces-
sors. However processor 1 will get idle once it fin-
ished evaluating function d for the first time and can 
then proceed with a next evaluation. This is formal-
ized by a second mapping, nPPP mod , where Pn is 
the number of physical processors. M then becomes 
piecewise linear. 
The second mapping will often be preferable for pro-
grammable hardware because it can be better load 
balanced when, in contrast to our abstraction, func-
tions do not have equal execution time. As an exam-
ple assume the execution time of function b is three 
times as long as that of each function a, c, and d. In 
this case it is sufficient to use only 2 processors as any 
more would only increase the idle time. 
In addition this mapping may reduce communication, 
since all data but “states” stay local on a processor. 
A last important mapping parameter is the size of 
input blocks for the streaming application. For 
instance a filter function can process one or more 
input samples and produce a corresponding number of 
output samples at each call. It is plausible that the 
synchronization overhead of a multithreaded imple-
mentation decreases linearly with the size of the input 
blocks. One would like to choose as large blocks as 
possible. On the other hand the communication stan-
dard may restrict the latency from antenna to final bit 
detection. It is clear that latency increases with block 
size. The best solution here is to pick a block size as 
large as possible, which still fulfills the latency 
requirements. A good block size can only be found by 
profiling the functions on target hardware. 
Summarizing, we found that a mapping consists of 
two parameters. One is the mapping function M, 
which determines parallelism and communication 
costs and thus throughput. The other is the block size, 
which determines latency. 
 
4. Implementation of the Iterative Design 

Flow 
 
We advocate a three level approach, tacitly assuming 
a hierarchy of parallelism, comprising a high level 
functional system model for algorithmic testing, a 
multi threaded reference model (in C language) run-
ning on a workstation to cope with the problems of 
asynchrony and nondeterminism and an assembly 

implementation running on the target hardware or a 
simulator of it for exploitation of data level, instruc-
tion word and bit-level parallelism. All levels are kept 
throughout the iterative software design process. 
At the high level system model signal processing 
algorithms exposing sufficient parallelism are se-
lected, arithmetical (fixed/floating point, division, 
square root, ...) and data precision (bit width) restric-
tions of the hardware are considered and the model is 
tested against the functional requirements of a stan-
dard (e.g. maximal error rates of a receiver). 
The analysis of the model, as it is described in section 
3 then leads to a partitioning of the application into 
multiple threads - the multithreaded reference model. 
Again this multithreaded reference program is tested 
for functional equivalence with the functional system 
model. 
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Figure 7: Software design flow 
 
Based on experience and profiling of the multi-
threaded reference model, critical functions of the 
implementation are picked to be implemented as an 
optimized assembly implementation by exploiting the 
given data level and instruction level parallelism 
within a thread function. The functional correctness is 
tested against the reference function of the model. The 
final implementation, including the assembly func-
tions is then profiled on the hardware or a simulator of 
it for testing against the real time requirements im-
posed by the radio standard under investigation. In 
this case the profiling can be limited to the critical use 
cases to save simulation time. 
It is important to point out that we could create a 
hardware independent functional model without 
caring about algorithmic details, like using only “sig-
nal processing exposing parallelism” or hardware 
preferences for certain arithmetical operations, but 
this usually leads to a decoupling of the functional 
model from the rest of the development and substan-
tially reduces the benefit of that model. We rather also 
iterate over the functional model, as it has to be a 
concrete algorithm that has to be proven feasible to 
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cope with the requirements of a standard and that has 
to be mapped to hardware. 
Our highest level of abstraction is a dataflow diagram. 
C implementations (e.g. S functions in case of 
Simulink models) of DFD nodes have to be furnished 
to capture algorithmic details and the block size 
parameter. Implementation decisions are tentative 
when they rely on performance measurements not yet 
available and must eventually be reconsidered. The 
block size parameter is an example for this, as already 
pointed out in section 3. Nevertheless we will already 
profile at this level to get an idea of how well C 
functions would meet performance requirements and 
where optimized assembly implementations will be 
inevitable. 
The next step consists in mapping to a multithreaded 
reference program, our second level of abstraction. 
We use exactly the same function implementations as 
for the DFD to assure functional equivalence.  
Where it seems appropriate we finally go down to the 
lowest level, namely assembly implementations. 
Assembly usually is frowned upon as a programming 
model. From our experience we argue, though, that 
assembly programming is tedious, but manageable in 
terms of development time (as compared to the devel-
opment of dedicated hardware for every new commu-
nication standard) and safe in terms of provable func-
tional correctness – especially if it is limited to critical 
sections identified beforehand, by profiling the appli-
cation. 
Compared to this, ensuring correctness of a multi-
threaded program is a much more challenging task 
because of the effects of nondeterminism. It is abso-
lutely hopeless to test a multithreaded program on a 
non-standard hardware (simulator) when only 
restricted debugging support is available. This is true 
all the more when simulation speed is a concern. 
From these experiences we have drawn the following 
conclusions: 

1. We develop and test a multithreaded program on a 
standard platform with good tool support. We have 
chosen the Windows operating system. It must be 
ensured that an application tested on Windows 
will also run correctly on the target hardware. 

2. We develop assembly code only for single func-
tions called from within a thread.  We test assem-
bly functions for correctness against their C refer-
ence counterpart, using the virtual prototype 
simulator of the hardware. 

3. We profile only tested applications to find out 
about timing correctness. 

When the profiling results are satisfactory, we are 
done. Otherwise we have to rethink about assembly 
implementation, multithreading, or even the func-
tional model, and go again through the list of corre-
sponding lower level steps in the design flow. In the 

rest of this section we describe how we actually carry 
out the steps 1 to 3 described above. 
 
4.1 Migration from Windows to target system 
 
The key to a quick and safe transition from Windows 
to our target system lies in the ILTOS operating sys-
tem. The underlying simple idea is to restrict ILTOS 
to a minimal and portable API offering support for 
multithreaded programming. As already mentioned in 
section 2 the API consists of functions for thread 
administration, memory management, communica-
tion, and synchronization. 
All API functions can easily be mapped (by a pre-
processor) to corresponding Windows operating sys-
tem calls. A multithreaded program can then be com-
piled for Windows as well as for MuSIC (as described 
in section 2, this program will run on the GP core only 
and won’t make use of the PE array). Testing and 
debugging will be done under Windows, using the 
Visual C++ development system and additional tools 
like Intel thread checker. Correctness of the transition 
to MuSIC depends only on the correctness of ILTOS 
and the MuSIC C compiler. But these are developed 
and tested once and for all and have already evolved 
into a steady and reliable state. 
We cannot stress enough that testing the correctness 
of a multithreaded program is the most difficult part 
of the software development process. It is a great 
advantage that this part can be carried out on a well 
established system with all possible tool support and 
has not to be done for a special target system. 
 
4.2 Assembly implementations 
 
Extracting data parallelism contained in functional 
units is the next step to take, where this is necessary to 
meet real time requirements. 
Assembly code is wrapped into a function in form of 
inline assembly together with C code for the general 
purpose (GP) core. These functions are compiled for 
MuSIC and run on the virtual prototype (VP) simula-
tor. The VP provides several tools for analyzing soft-
ware. GP cores can be debugged by using a graphical 
debugger. Further, internal state, instructions, and data 
transfers of all modules (GP, PE array, DMA trans-
fers) can be traced and logged. We rely on the virtual 
prototype behaving exactly like the hardware. A proof 
of this is not part of the software development 
process. 
For testing purposes, functions are called for various 
sets of input data and corresponding outputs (which 
can be complete sets of states) are saved. The pro-
duced outputs are then compared with those produced 
by corresponding C reference function.  
We mention explicitly that testing assembly imple-
mentations is alleviated by the fact that it has not to be 



done for the full application but only for parts of it 
having a clear interface in terms of input and output 
data. 
When this is accomplished, we can deliberately link 
either pure C functions or functions containing inline 
assembly together with the multithreaded skeleton of 
our application. Only the first version will run on both 
platforms (Windows and MuSIC), but both will 
deliver the same result for MuSIC. 
 
4.3 Profiling 
 
The final task is testing for real time behaviour of the 
application by profiling it. This is done again using 
the VP. 
The VP can track the execution status of threads on 
the general purpose processors by monitoring calls of 
ILTOS synchronization functions. It is not necessary 
to change the application software for this. The results 
can be displayed graphically. An example of an 
802.11b implementation running on the MuSIC DSP 
cluster is shown in Figure 8. The traces show single 
threads running, blocking, and synchronizing. 
 

 
Figure 8: Traces of parallel WLAN 802.11b 
implementation. 
 
For a more detailed analysis, the virtual prototype can 
gather statistical data on the utilization of the shared 
modules like busses and memories. From the trace 
files written we can also get a cycle accurate picture 
of the relative timing behaviour of PE, GP and DMA 
transfers. 
Having these analysis tools we come quickly to a very 
accurate analysis of the performance of an application 
and can spot out performance bottlenecks and balance 
the usage of the system resources. 
 
5. Conclusion 
 
The presented development methodology leads to a 
reduction and an essential acceleration of the un-
avoidable design iterations for the implementation of 
radio standards on non-standard architectures. Espe-
cially the well specified method to identify the right 

block size and to find suitable mappings, as described 
in section 3, leads to a reduction of the design search 
space. 
Remaining design iterations are accelerated by early 
testing on standard platforms (with good tool support) 
and by the reuse of implementations and test beds 
from the functional system model down to the assem-
bly implementation level. This is possible by provid-
ing a portable OS API, by incorporating C-reference 
functions already within the functional system model, 
and by keeping the model within the iteration loop.  
By consequent usage of this model based approach in 
conjunction with concrete implementations of the 
functions involved, interface contracts can be worked 
out at an early stage of the design process. Hence the 
approach also substantially supports the distribution 
of the implementation onto multiple developers and 
lays the foundation for automated generation of the 
error prune multithreaded control code. We experi-
enced this in the case of WCDMA, where three sepa-
rate development teams worked on functional model-
ling and on C and assembly implementations.  
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