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Abstract: 
This paper describes a physics-based methodology for

computationally efficient statistical modeling of high-
frequency bipolar transistors along with its practical
implementation into a production process design kit.
Applications to statistical modeling, circuit simulation, and
yield optimization are demonstrated for an opamp circuit.
Experimental results are shown that verify the
methodology. 

1 Introduction
Variations in processing conditions during wafer fabrication

cause unavoidable manufacturing tolerances in a production
process. The random nature of such tolerances needs to be
captured by proper statistical modeling and simulation methods
during the design process in order to avoid costly re-spins,
considering today’s skyrocketing mask cost. For digital circuits
with the delay time as critical Figure of Merit (FoM), often fairly
simple “worst-case” or “corner” modeling methods can be used
to describe process variations. This is not possible though for
analog high-frequency (h.f.) circuits in which a variety of FoMs,
such as bandwidth, noise figure, conversion gain etc., has to be
optimized simultaneously. 

Since corner methods do not need any additional simulator
capability and, in addition, little attention has been paid at all to
statistical modeling and simulation of h.f. circuits, most design
tools today still do not offer a suitable infrastructure for statistical
simulation and modeling of analog h.f. circuits. The resulting
issues and consequences have been discussed in [1]. There,
various existing methods were compared and a suitable approach,
based on physics-based compact modeling, was proposed for
solving the problem. Most recently, this approach has been (to a
large extent) implemented into a production process design kit
(PDK) and has been used for circuit yield optimization. 

This paper is organized as follows. Chapter 2 gives an
overview on the statistical modeling and simulation approach.
Chapter 3 describes the relation between compact model
parameters and statistical fab data. Chapter 4 shows selected
statistical modeling results for the process employed which are
the basis for the statistical circuit simulation. Then, in Chapter 5
an opamp circuit is used as demonstration vehicle for simulation-
based yield optimization. 

2 Statistical modeling methodology
The goal of statistical modeling and simulation is to “predict”

circuit performance parameters (and yield) prior to production
based on the variation of manufacturing conditions, such as
implant dose, anneal temperature, oxide growth etc.. The
statistical variations of the latter are generally not available in
contrast to statistical electrical measurements on special so-called

process control monitor (PCM) structures. Hence, PCM data are
used as input for statistical modeling and simulation.

PCM measurements can be related by simple equations to
PCM parameters, p1), such as sheet and contact resistances as
well as capacitances per unit area or length. Compared to
compact model parameters, m, PCM parameters are less
correlated. However, for practical purposes their correlation is
still too large - at least for transistors - so that they need to be
transformed to technology parameters (TPs), t, such as average
doping concentration and region widths. In a physics-based
compact model such as HICUM/L2 [2] the model parameters can
be directly expressed as function of t (and partially also p). More
details of this transformation are described in Section 3. 

The basic methodology of a physics-based statistical modeling
and simulation strategy is sketched in Fig. 1. Parameter
extraction is performed once at the beginning of process
development for “typical” devices, resulting in the model
parameter vector mT. Once sufficient PCM data are available,
mT is shifted to the nominal parameter vector mN by employing
the properties of a physics-based compact model (cf. Section 3).
In contrast to this predictive mode, which is based on a single
shift vector ∆p = pN - pT and its conversion to a specific ∆t,
statistical simulation requires random vectors t, from which then
randomly skewed sets m* are calculated. This is accomplished
by transforming the variance of the measured PCMs, σp

2, to the
variance of the TPs, σt

2, which determines the random variation
of t. In Fig. 1 a Design of Experiment (DoE) set-up combined
with a Response Surface Method (RSM) [3] is shown at the
center of the statistical simulation procedure in order to
significantly reduce the computational effort in contrast to the
often used Monte-Carlo (MC) method. 

Fig. 1 indicates on the right the boundary between the
responsibility of the foundry (for providing the appropriate
statistical model information) and of the PDK set-up (for
providing the proper statistical simulation capability). Obviously,
the calculation of skewed model parameters as a function of
random TP vectors needs to be integrated in the design system.
This decouples modeling from design tasks and also, in contrast
to corner models, enables circuit designers to perform “true”
statistical simulations tailored toward the FoMs of each circuit
specifically. Presently, all available design systems lack this
capability due to missing “statistical” model equations. Two
options exist to realize the desired feature. The most simple
approach is to integrate TRADICA [4] with its already existing
complete set of statistical model equations as a module into the
design system. A corresponding prototype has already been
created in cooperation with Cadence [5]. The other option is to
code the physics-based statistical model equations in a simulator-
specific description language (or possibly in Verilog-A). Since

1) Bold-faced letters indicate vectors.
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this task is quite elaborate (including testing and considering the
large variety of contact configurations for bipolar transistors),
and since it also reveals modeling and fab IP to potential
competitors (for further discussion of the drawbacks of this
approach see [1]), a different approach was pursued in this paper.

TRADICA uses physical geometry-independent parameters
(such as sheet resistances, area and perimeter specific
capacitances) and design rules to generate compact model

parameters for a given layout. For bipolar transistors, the emitter
dimensions and contact arrangement are variables. The above
mentioned physical and process related input data also enable an
efficient generation of statistical models. Using TRADICA, a
polynomial representation m(t) was generated from the existing
physics-based statistical model equations, the available nominal
model parameters, and information on σt. This and related
possible issues are discussed in more detail in Section 3.

3 Relation between compact models and PCMs
The model parameter set m of physics-based geometry-

scalable compact models depends naturally on layout
dimensions, d, and technology specific electrical parameters, s.
The latter contain already many PCM parameters p as a subset
and additionally, e.g., specific parameters associated with the
selected compact model. As a consequence, certain model
parameters are directly given by elements of p, as for instance the
zero-bias internal base resistance,

,  (1)

with rSBi0 as zero-bias sheet resistance and gi as a geometry
function that depends on emitter width bE0 and length lE0 [6][6].

However, parameters describing, e.g., currents, minority
charge and a variety of other effects associated mainly with the
intrinsic transistor action often depend not directly on p, but only
implicitly through nonlinear relations on t (such as doping
concentration, mole fraction or region thickness, and independent
layout dimensions). This dependence is also the cause for the
correlation between model parameters. Hence, it is necessary to
develop equations relating m and p to t. Since p and its variation
∆p are known from in-line PCM measurements, the TPs have to
be obtained from p. For statistical simulation it is sufficient to
just relate TP variations ∆t to ∆p. Table 1 gives an overview on
the dependence between p and t. The Table also reveals that the
PCM parameters are not uncorrelated.

Table 1: Correlation table showing the dependence of TPs on PCM
parameters for the intrinsic transistor (with a conventional BE doping
profile); it is assumed that CjCi0 is not determined by collector punch-
through. The number of crosses indicates the correlation intensity
between a PCM parameter and a TP. (Geometry dependence will cause
additional correlation.)

Generally, it is preferred to express the changes of t as ratios r
of skewed to nominal value, since absolute TP values are usually
unavailable. For instance, 

 (2)

is the ratio of the changed (index ’*’) to the nominal base doping
concentration. Similar definitions hold for the internal collector
doping concentration (rNCi) and width (rwC) as well as for the
base width (rwB). The ∆p variables can also be defined as relative
deviations (with normalized standard deviations as input).

In summary, the generation of a complete set of skewed model
parameters, m*, from measured ∆p and a given nominal set m
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Fig. 1: PCM and compact model based statistical modeling and simulation flow (schematic). 
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consists of three steps: First, calculate ∆t from measured ∆p, then
∆s and ∆d from (∆p,∆t), and finally ∆m from (∆s,∆d,∆p). The
equations for the last step are already available for geometry
scalable models (e.g. [4]) and will not be discussed further here.
The equations for the first two calculation steps are illustrated
below, using HICUM/L2 [2] as a vehicle. 

An educational example is the dependence of m on TPs such as
base doping NBi and width wB. HICUM parameters that depend
on these TPs are, e.g., those of the internal BE depletion
capacitance (CjEi0, VDEi), the transfer saturation current (IS), the
zero-bias hole charge (Qp0), and the low-current transit time (τ0).
Their skewed values influence characteristics such as the
collector current and transit frequency. First, physics-based
relations are established for the ratio of the skewed to nominal
internal base sheet resistance and area specific internal BE
depletion capacitance, respectively:

,  (3)

,  (4)

.  (5)

Here, aµpB, avni, kD are parameters that are related to the doping
dependence of the mobility and bandgap, using expressions
typically found in device simulators (e.g. [8]) and evaluated in
doping regions of interest; zEi is the nominal depletion
capacitance grading coefficient.

Using above equations the two unknown TPs rNBi and rwB can
be calculated iteratively from the two PCM ratios

,  (6)

.  (7)

Here, the δrSBi0 and δcjEi0 are the actually measured relative
change of the skewed internal base sheet resistance and area
specific internal BE depletion capacitance. Once the TPs are
known, including the emitter width ratio rbE (assuming a
sufficiently long transistor for this example), the correlated
model parameters can be calculated as

,  (8)

,  (9)

.  (10)

The latter is only the base portion of the low-current transit time,
and rµnB (= ) is calculated directly from
suitable approximations of the standard mobility expression. In a
similar way, parameters that depend on the internal collector
doping are calculated once the doping change has been
determined from the PCM of the collector-base depletion
capacitance. For instance, transit time parameter ratios read [7] 

,   . (11)

Above equations clearly show the model parameter
correlations (even without geometry dependence), and also the
often nonlinear dependence on t (and p). Other skewed HICUM
parameters can be expressed in a similar form, using the TPs
listed in Table 1. For the specific electrical parameters of the
external transistor mostly simple direct relations are valid which
complete the desired skewed model parameter set m*. 

Fig. 2 visualizes the impact of the correlations for the peak
transit frequency fT,peak of a bipolar transistor. The distribution
on the left-hand-side results from a statistical variation of
separate single HICUM model parameters (listed on top of the
figure). If the correlation is taken into account, the result on the
right-hand-side is obtained, which has been verified through
device simulation. 

Fig. 2: Comparison between MC model parameter variation (left)
and MC TP variation including correlation (right) for peak fT. 

The discussion so far was based on a ∆p vector that is
measured on a particular die, from which the corresponding ∆t
vector (and m*) can be calculated. In order to enable statistical
simulation, the measured ∆p vector would be required for each
die, which is practically unfeasible. In this case, ∆p represents
the vector of standard deviations, i.e. ∆p = σp. Hence, the task is
to determine the TP standard deviation vector σt from σp.
Assuming that the tolerance ranges for statistical modeling are
fairly small, the “propagation of variances” approach can be
used, which results in a linear equation system relating the PCM
variances to the TP variances,

 .  (12)

The elements of the matrix Apt correspond to the square of the
derivatives of the PCMs with respect to the TPs. These
derivatives are taken at the nominal values, using the analytical
equations (e.g. (3), (4)) presented earlier. This method is also
referred to as backward propagation of variances (BPV) [9],
where it was applied for the d.c. case only and with ∆p (instead
of ∆t) as basic variable calculated from the variance of measured
electrical parameters. 

Once σt is known, statistical model parameters can be
generated. As mentioned before, a quick first-order approach
was implemented into the design system in which the nonlinear
relation ∆m(∆t) is approximated by simple 2nd-order polynomials
that are generated by TRADICA. Fig. 3 shows an example of a
statistical model card for HICUM/L2. The variables b_e0 and
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l_e0 are the nominal emitter width and length, respectively;
r_xxx_l and a_xxx_l are the local relative and absolute variation,
respectively, of a TP and are used for simulating matching; r_xxx
and a_xxx are the total relative and absolute variation,
respectively, consisting of the corresponding global and local
variation. The model parameters then equal their nominal value
plus a sum of deviations calculated from the total variation of
each TP. In order to minimize the number of terms TRADICA
automatically drops insignificant contributions. Based on a
complete process-scalable parameter set for HICUM/L2,
TRADICA can generate similar model cards also for the SPICE
Gummel-Poon model and the new HICUM/L0 model [10][11].

From the previously discussed relations ∆m(∆t) it is obvious
that this approach has accuracy limitations for larger process
variations since a polynomial cannot represent all relations
accurately enough in case of significant nonlinearity. 

Fig. 3: Excerpt of a statistical model card for HICUM/L2 generated
by TRADICA. 

4 Statistical models: experimental results
The methodology described above has been applied first to a

silicon bipolar production process targeted towards high-speed
industrial and consumer applications. Process features include
complementary NPN and vertical PNP (VPNP) BJTs with peak
transit frequencies of 33 GHz and 17 GHz for the NPN, and 12
GHz for the VPNP.

Information on process variations was obtained from PCM
data. Table 2 contains a list of the most relevant bipolar transistor
related PCM structures [1]. According to the last column usually
only a single data point per measurement is taken. Statistical data
for IC and IB provide information on variations of bE0 [9].

Statistical S-parameter measurements were made for transistor
TNHS.

Table 2: Most important bipolar transistor PCMs and related data or
parameters. Some structures can be used for other devices, too. Currents
are measured at VBC = 0V. RBLNK, RBCON, RCOL indicate base link,
base contact and external collector resistance related structures. 

Before applying the statistical modeling methodology to circuit
design, the parameters for modeling the statistical variations (i.e.
the coefficients in front of the TPs in Fig. 3) have to be extracted,
and the resulting complete statistical models have to be verified.
The method employed here is to mimic the PCM measurement
conditions as close as possible by performing a statistical
simulation of the PCM measurements using the models with the
same size as the PCM structures and the same bias conditions.
Furthermore, the same data reduction was applied before
comparing the simulated distributions to the measured ones.

Figs. 4 and Fig. 5 show as examples comparisons of PCM
measurements and corresponding simulations of the large area
base-emitter depletion capacitance (corresponds to CjEi0,HV in
Table 2) and the base-emitter offset voltage of a VPNP pair. In
these results outlying data points were removed from the
measurements. In spite of this filtering process there were still
nearly 10k usable device measurements. More results can be
found in [14].

All simulations have been done using HICUM/L2 in
SPECTRE. Note that in Fig. 4 simulated capacitances have been
corrected to take into account the parasitic capacitance of the
parametric test system, since this capacitance is not included in
the model parameter set. This correction leads to the correct
mean value, but has no impact on the shape of the distribution.
The latter, as can be observed in Fig. 4, is not Gaussian but has
to be approximated by a Gaussian due to the assumptions in the
modeling methodology in order to make it reasonably simple. As
the circuit results later will show, this approximation has little
impact in practical applications. 

* Tr A  AE0=1*0.30*2.0(1); NB=2; NC=1(SIDE), lv; T=300;
* HICUM/Level2    v2.2                     TRADICA B5.2
.SUBCKT N030201S02_01   c   b   e   s
parameters
 + b_e0 =0.300E-06  l_e0 =0.200E-05
 + r_nbei_l = r_nbei_rm_lv*r_nbei_sm_lv/sqrt(b_e0*l_e0)
 + r_nbei   = r_nbei_g_lv+r_nbei_l
 + r_nci_l = r_nci_rm_lv*r_nci_sm_lv/sqrt(b_e0*l_e0)
 + r_nci    = r_nci_g_lv+r_nci_l
 + a_be0_l = a_be0_rm_lv*a_be0_sm_lv/sqrt(l_e0)
 + a_be0    = a_be0_g_lv+a_be0_l
 + a_wc_l = a_wc_rm_lv*a_wc_sm_lv/sqrt(b_e0*l_e0)
 + a_wc     = a_wc_g_lv+a_wc_l
 + a_le0_l = a_le0_rm_lv*a_le0_sm_lv/sqrt(b_e0)
 + a_le0    = a_le0_g_lv+a_le0_l
 :
Q     c   b   e   s  MOD
.model MOD  NPN level=9  TNOM= 26.85  version=2.2 
 + c10   = 6.544E-33 
           + 2.148E-33*r_nbei + 6.506E-27*a_le0
           + 3.811E-26*a_be0 + 5.547E-20*a_be0*a_be0 
 + qp0   = 8.449E-15 
           + 8.449E-15*r_nbei + 2.460E-08*a_be0
           + 4.200E-09*a_le0
 + cjei0 = 2.464E-15 
           + 1.190E-15*r_nbei + 7.175E-09*a_be0
           + 1.225E-09*a_le0
 :
 + t0 = 6.523E-12 
        - 1.546E-12*r_nci + 1.065E-12*r_nci*r_nci
        - 6.394E-06* a_be0
 :
 + rci0 = 3.754E+02 
          - 3.380E+02*r_nci + 3.413E+02*r_nci*r_nci 
          - 5.965E+08* a_be0 + 3.474E+08* a_wc 
          - 5.252E+14* a_wc * a_wc -  1.563E+08* a_le0
 :
 + rbi0 = 1.282E+02 
          - 8.519E+01*r_nbei + 7.095E+01*r_nbei*r_nbei 
          + 3.259E+08*a_be0 - 5.568E+07*a_le0

Name Structure PCM data / parameter

 TWHV

wide high-voltage trans.: 
multi-finger with largest 
allowed emitter window 
width bE0
(or large area transistor)

 Ix,l,HV = Ix(VBE>0), x={C, 
BE}
 CjEi0,HV = CjEi(VBE=0)   
 CjCi0,HV = CjCi(VBC=0)
 CjCPT,HV = CjC(VBC>VPT)
 CjSb0 = CjS(VSC=0)

 TNHS

narrow high-speed trans.  
with bE0=bE0,min<< lE0
a) multi-finger for CV
b) standard layout for S 
parameters

 Ix,HS= Ix(VBE>0), x={C, 
BE}
 CjE0,HS = CjE(VBE=0)
 CjC0,HS = CjC(VBC=0) 

 RBI
 transistor tetrode [12] 
[13] with standard bE0  rSBi0 = rSBi(VBE=VBC=0)

 RBLNK  “tetrode” with bE0 = 0  rSl , rx 
 RCOL  3-contact chain, 2:1 ratio  rSbl , rCc
 
RBCON  3-contact chain, 2:1 ratio  rBc , rSsil, 
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Fig. 4: Normalized frequency of occurrence of the large area NPN
zero-bias base emitter capacitance: PCM measurements
(top) and simulation results (bottom).

Fig. 5: Frequency of occurrence of the offset voltage of the vertical
PNP: PCM measurements (top) and simulation results
(bottom).

5 Statistical circuit simulation results
A simple operational amplifier is taken as demonstrator to

show the application of statistical models in practical circuit
design. The first step was to compare simulation and measure-
ment for an already fabricated amplifier circuit (high gain,

multistage structure). Here, the DC offset is evaluated. The mea-
surement results are derived from wafer probing of about 2000
samples, and the corresponding distribution is shown in Fig. 6. 

Fig. 6: DC offset distribution from wafer probing.

Next, the circuit was simulated with the verified statistical
models. As Fig. 7 demonstrates, the combined process and
mismatch analysis is capable of predicting the DC offset with an
accuracy of around 20%. Of particular importance is that both
measurement and simulation show a non symmetrical
distribution with a tail toward higher offsets. As a consequence,
the method is regarded as sufficiently reliable for optimizing
other circuits with respect to process variability. 

Fig. 7: DC offset distribution from statistical circuit simulation.

An example is shown next for an already existing circuit that
had not yet been fabricated. In total, 1000 Monte-Carlo runs with
mismatch and process variations were used to obtain an estimate
of the DC offset standard deviation. An additional correlation
analysis of these data helped to identify those technology
parameters that have the highest impact on the DC offset. As it
turned out in this example, the doping of the internal base
appeared as the most important technology parameter. Fig. 8
visualizes the dependence of the DC offset voltage distribution as
a function of the corresponding TP, rNBi.

Based on this knowledge, it is now possible to improve the
circuit by adequate measures such as adding base current
compensation, cascode stage, and output buffer. Along with
adding the related blocks, also a mismatch analysis was
performed to optimize the area factor of critical components. The
result in Fig. 9 shows a significantly reduced standard deviation.
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First experimental verification of the statistical modeling
methodology became recently available for an array of
transimpedance amplifiers (TIAs) with integrated gain switching.
The corresponding results are shown in Table 3.

Fig. 8: Result of the Monte-Carlo analysis: DC offset standard
deviation and its correlation with base doping (rNBi  = r_n_bei
in Fig. 3).

Fig. 9: Monte-Carlo analysis after circuit optimization: the standard
deviation of DC offset has dramatically decreased and
shows negligible correlation with base doping (rNBi).

Table 3: DC output variation in test mode. Here the TIAs are biased by
an on-chip generated DC current resulting in a nominal output voltage of
500mV at TIA1 and 1000mV at TIA2

6 Conclusions
Simulation-based methods for accurately predicting statistical

circuit behavior and yield are becoming increasingly important.
In this paper, a practically feasible approach for statistical
simulation of analog/h.f. circuits is described, that is based on
physics-based compact modeling. The approach not only
facilitates an extremely fast prediction of consistent compact
bipolar transistor model parameter sets as a function of process
variations, but is also quite accurate as was demonstrated by a
comparison to experimental fab data. 

The methodology has been implemented in a process design
kit. First applications to an Opamp and TIA show good
agreement between statistical circuit simulation and
measurement of the offset voltage distribution. As a
consequence, the method is suited for identifying the main
technology parameters responsible for process related circuit
parameter spread and for reducing their variance in by circuit
design measures, allowing a cost efficient design for yield.
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rel. gain sim σ (mV) meas σ (mV) diff (mV)

TIA1
40
13.3
  3
  1

     15.16
     16.82
     19.36  
     14.85

     20.59
     20.60
     23.90
     14.51

     5.43
     3.78
     4.54
    -0.33

TIA2
160
  53.2
  12
    4

    31.76
    35.79 
    40.11
    32.90

    37.66
    47.26
    54.26
    34.99

     5.90
   11.48
   14.15
     2.09

rNBi

180mV

180mV

rNBi

10mV

10mV
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