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Abstract

Global interconnect temperature keeps rising in the current
and future technologies due to self-heating and the adiabatic
property of top metal layers. The thermal effects impact ad-
versely both reliability and performance of the interconnect
wire, shortening the interconnect lifetime and increasing the
interconnect delay. Such effects must be considered during
the process of interconnect design. In this paper, one im-
portant argument is that the traditional linear dependence be-
tween wire resistance and wire width is no longer adequate for
high layer interconnects due to the adiabatic property of these
wires. By using curve fitting technique, we propose a quadratic
model to represent the resistance of interconnect, which is
aware of the thermal effects. Based on this model and the
Elmore delay model, we derived a linear optimal wire sizing

formula in form of f(x) = ax +b. Compared to non-thermal-

aware ezponential wire sizing formula in form of f(x) = ae™b®,

we observed a 49.7% average delay gain with different choices
of physical parameters.

1 Introduction

Interconnect wire consumes I?R power, which translates into
heat. This is known as interconnect self-heating. This effect
becomes significant in current technologies, and will become
even more significant in future for high-layer high-switching
global interconnections, such as clock networks. The reason
is: first, the resistance of interconnect increases due to the
reduction of wire size; second, the current in interconnect in-
creases due to the increasing of switching frequency. The re-
sulting heats are difficult to dissipate because unlike the sub-
strate, which attaches directly to the heat sink, interconnects,
especially the high-layer interconnects are more isolated. Fur-
thermore, introducing low dielectric constant (low-k) materi-
als to reduce cross-talk exacerbates the thermal condition.
This is due to the fact that low-k materials usually have
lower thermal conductivity than silicon dioxide [3]. It has
been predicted that the maximum interconnect temperature
in a global line may reach up to 210°C for 50-nm technology
node [19].

The analysis of interconnect self-heating [5, 4] is not only
important in the context of electro-migration induced reli-
ability concerns [7], but also due to its impact on perfor-
mance, i.e., delay. Ajami et al. presented a detailed anal-
ysis and modeling of interconnect performance degradation
due to non-uniform temperature profiles [2]. In this work, a
maximal 35% increase of delay due to thermal effects was re-
ported. The main reason behind this is that the resistance of
an interconnect increases linearly with the temperature.

The thermal effects on interconnect design has gained a
lot of attentions in the past few years. Chen proposed an
interconnect thermal model considering thermal coupling be-
tween different interconnects wires [12]. Kapur also consid-
ered thermal effects as one of major concerns when discussing
the technology and reliability constrained future copper in-
terconnects [20]. Recently, Casu et al. optimized the global
interconnect under thermal effects by using RLC model [8].

The above papers focus mainly on how to model the ther-
mal effects on the interconnection design. However, the dis-
cussion about how to adjust the design techniques of inter-
connect, such as wire sizing [15, 16], buffer insertion [23] and
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sizing, and combination of these [9, 13, 14], is still lacking
in the literature. The only related work we are aware of is
the optimal buffer insertion under substrate thermal gradi-
ent effects [1] proposed by Ajami. The thermal conditions
in their analysis are based on the temperature profile of the
substrate, which could involve inaccuracy because of the adi-
abatic property of high-layer global interconnects (while the
generated heat of interconnects is hard to dissipate, the heat
of the substrate is also difficult to transfer to high intercon-
nect layers. The only thermal flow is through via, which af-
fects only the temperature of the ends of the wires) , as well
as the significant self-heating effects of these high switching,
high resistance global interconnects.

In this paper, we consider the thermal effects, specifically,
self-heating effects, on one of the most important interconnect
design techniques, namely, wire sizing technique. Our self-
heating-aware technique can be combined with the thermal-
aware interconnect design methodology considering only sub-
strate temperature conditions as shown in [1] to obtain more
accurate optimal results.

It was first shown in [15] and [16] that when wire resis-
tance becomes significant , as in DSM designs, proper wire
sizing can effectively reduce the interconnect delay. The ba-
sic idea behind wire-sizing is that increasing the interconnect
wire width has two different effects: it decreases the wire
resistance while increasing the wire capacitance. Since the
Elmore delay can be formulated by RC constant time, there
must exist an optimal wire width that achieves least RC con-
stant time. On the other hand, if we divide the wire into
several segments, each segment would have different optimal
wire width with different position along the wire.

Finding the optimal wire width for each segment is the
problem of discrete wire sizing [15, 16]. Another formula-
tion of wire-sizing optimization is to determine the continuous
wire shaping functions. The closed-form wire shaping func-
tions were derived to minimize the Elmore delay, first without
considering fringing capacitance [11] and later with fringing
capacitance [10] and for a bidirectional wire [18]. Menezes et
al. also presented the wire-sizing optimization under a higher-
order RC delay model [21].
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Figure 1: Wire sizing function

In this paper, we also consider the continuous wire-sizing.
We are trying to find the width f of an interconnect as a
function of its position x, also known as the shape formula
[11]. The sizing function is illustrated in Figure 1.

When considering self-heating effect, one important obser-
vation is that narrowing down the wire not only increases wire
resistance by the amount of R = ro/wm, but also exacerbates
the thermal condition of the wire. Because the heat genera-
tion of the wire, which is proportional to I?R, will increase;
and the heat dissipation ability of that wire will decrease due
to the shrinking of its surface area. This implies a tempera-
ture rise on the wire, which can increase the wire resistance
further. Therefore, in place of the former linear relation be-
tween wire resistance and wire width R(wm) = ro/wm we



propose a more accurate quadratic relation R(wy,) = a/wm,>
to capture thermal effects. It is necessary to note that such re-
lation between wire width(w,,) and wire resistance(R) holds
only for resistors in adiabatic environment such as high-layer
global interconnect wires, in which the thermal positive feed-
back effects become significant.

Besides using the quadratic relation between resistance
and wire width, we also make some reasonable simplifica-
tion and assumption when deriving the optimal wire-sizing
formula.

e We only consider single end global wires, which has been
adopted for most of the continuous wire sizing prob-
lems [11, 10, 18].

e Elmore delay is adopted as an accurate metric for our
delay calculation because of its simplicity. More accu-
rate models considering higher moments can be used,
but no analytical formulation can be obtained.

e We do not consider fringing capacitance. A simple uni-
form distribution of capacitance is assumed, which has
been adopted in most of the wire sizing literature [11,
18, 15, 16, 14, 9].

e We assume a uniform substrate temperature.

The remainder of this paper is organized as follows. Section 2
describes in detail our self-heating model. The Elmore de-
lay model is described in Section 3. Section 4 illustrates the
derivation of the optimal non-uniform self-heating-aware wire
sizing function. After that, we discuss in Section 5 the self-
heating effects on discrete wire sizing. Section 6 presents ex-
perimental results based on our model, followed by Section 7,
which gives our conclusion.

2 Self-Heating Model

Thermal effects are an inseparable aspect of electrical power
distribution and signal transmission due to self-heating (also
known as joule heating) caused by the flow of current [4].
Since the interconnects, especially the global interconnects,
are far away from the substrate, which is attached to the heat
sink, the heat generated by I>R power dissipation cannot be
efficiently removed and therefore causes an increase in inter-
connect temperature.

The self-heating temperature of the interconnects can be
expressed as a function of wire width [5],

ATvself—heating (wm) =T, — Tref = IZrms : R(wm) - Ry (wn(z))
1

where R is the interconnect resistance, I, is the root mean
square current, I?,,,.R represents the power dissipation on
the interconnects, and Ry is the thermal impedance of the
interconnect line to the chip, which has the form of [5],

to:ﬂ

Ro(wn) = T w;;

(2)

This equation of thermal impedance is based on a quasi-1-D
heat conduction model, where t,. is the total thickness of the
underlying dielectric, as illustrated in Figure 2, K,, is the
thermal conductivity normal to the plane of the dielectric, L
is the length of the interconnect, and Wesy = wn + 0.88t0z,
valid for wm, /o= > 0.4 and is accurate to within 3%.

In Equation (1), we only consider the heat conduction be-
tween metal wire and the surrounding dielectric materials (y
direction and z direction). Although metal has much higher
thermal conductivity than silicon dioxide, the heat transfer
rate along the wire (z direction) is much smaller compared to
those in y and z directions mainly due to the difference of the
power dissipation area of these three directions.
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Figure 2: Interconnect wire parameters

The heat transfer rate in z direction is defined by the
Fourier law of thermal conduction [6],

oT
Qe = _kwAwa (3)

Where g, is the heat transfer rate in = direction, k, is the
thermal conductivity, A, is the intersection area in z direc-
tion. Therefore,

e 4

The thermal conductivity of aluminum and silicon dioxide
at 100°C are 206W/m-K and 1.15W/m-K respectively. As-

~

sume tm, = wy,,, and g—f o ‘Z—z for a global wire with length
- =0.06 < 1. Therefore, self-heating

of 3000um, we have

temperature Equation (1) is adequate for long interconnect
wire by considering only the heat transfer between wire and
dielectric materials.

For the purpose of deriving the optimal wire sizing for-
mula, we need to express the wire resistance as a function of
wire width, i.e., R = f(wn). Basically, the unit length resis-
tance of interconnect wire is in a linear relation with the wire
width,

R:pi

0

(1+ BTn) (5)

where po is the unit length resistance at the reference tem-
perature, and (3 is the temperature dependence coefficient of
resistance(1/°C).

Note that in Equation (5), T), is also a function of wire
width w,, as expressed in Equation (1). Substituting Equa-
tion (2) and (5) into Equation (1), we obtain the expression
of T, as a function of wire width w,,

IQrms “tox - po * (]- +/3(Tm - ref))

6
Koz - tm - Wi (W + 0.88t07) ©)

T _Tref =

Without loss of generality, we assume the reference tempera-
ture Tres to be 0. After rearranging Equation (6), we have,

n/B
(wm2 + 0.88tozwm) - v — 7

Tm = (7)

where 7 = I s - oz - po - B and v = tm - Kop.

Substitute Equation (7) into (5), we obtain the unit length
wire resistance as a function of wire width w,,, as shown in
Equation (8).

Po Wm + ao
R=£.___—mT20 8
tm me + biwm + bo ( )

where ag = b1 = 0.88 - t,, and by = —%.

Equation (8) has a standard form of a system function.
Note that this system function has one positive pole and one
negative pole as shown in Equation (9) , because by < 0.




where,

—bi1—/ b12—4bo p1tao
h=—"">5 ky = B
pP1—P2

—bi+v/ b12—4bg p2tag

p2 = 2 ke = p2—p1

The positive pole will be a singularity as shown in Fig-
ure 3. When the wire width tends towards the positive pole,
the wire resistance will become infinite. This can be ex-
plained by the positive feedback relation between wire resis-

tance (Equation(5)) and self-heating temperature (Equation(1)).

As the wire width becomes smaller than the pole value, the
resistance jumps to negative values, which indicates the occur-
rence of thermal-runaway. So, the pole value is the minimum
valid wire width under a certain current value(I,.,s) and ther-
mal condition(Ry). Figure 3 also illustrates several resistance
curves under different current conditions, i.e., Irms = 50mA,
Irms = 90mA, and I, s = 140mA. It is shown that a larger
current value always implies a bigger positive pole, which
means the minimum valid wire width under self-heating con-
sideration becomes larger.
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Figure 3: Wire resistance as a function of wire width and
current value. The physical parameters are taken from [5],
also listed in Table 1 for reference.

Table 1: Physical parameter values used in the interconnect
self-heating model.

Parameter Value
tox 3 nm
tm 2 um
00 1.67 x 10~ © Q- cm
3 6.8 x 102 oc—1
Koz 1.15 W/m- K

Usually, wire sizing is performed in a range of wire width.
Besides the current value in wire, this range is also decided by
the technology, e.g., the aspect ratio of the interconnects, the
dielectric material and the thickness of the dielectric layer. In
our example, we use the temperature as an indicator of this
range. If we require that the temperature of the intercon-
nects cannot exceed a certain value, for instance, 150°C, we
can find the minimum valid wire width to be about 1.4um
in Figure 4. Figure 4 is part of the curve shown in Figure
3 with I,,,s equals 140mA. The maximum width is extended
to 3.2um. In this figure, the y-axis represents the tempera-
ture, the resistance counterpart is shown in Figure 5. Here
we also depict two additional curves, one is in the form of
R = a1 /wm, which we will call linear relation in the remain-
der of our discussion. The other is R = a2/wm2, which we
will call quadratic relation. In the conventional wire sizing
function, the linear relation was adopted, as shown in Equa-
tion (5). However, this can underestimate the wire resistance
and temperature significantly as illustrated in Figure 5. Next,
we will show that the square relation can be a good approxi-
mation, at least in the valid wire width range.

The most accurate way to represent the resistance of a
wire as a function of wire width is to substitute Equation (9)
into the delay model. However, this makes it difficult to solve
the formula of optimal wire sizing analytically. On the other
hand, in a practical scenario only a relatively small range of
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Figure 4: Self-heating temperature as a function of wire width
(Irms = 140mA).
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Figure 5: Wire resistance as a function of wire width (Irms =
140mA) in the temperature range from 50°C to 150°C.

the wire width is of importance as opposed to the whole range
from 0 to +o00. Therefore, we can actually partition the resis-
tance curve into multiple regions and use a simpler formula
to fit the curve within the region of interest. Note that if we
admit that Equation (9) is the most accurate relation between
wire resistance and wire width when considering thermal ef-
fects, the resistance model R = a1/wn, used in conventional
wire sizing [11] is also a result of curve fitting. Moreover, the
fitting is only accurate in the low temperature range. There-
fore, we need a more general function, that is,

R=— (10)

Wm

where R is the resistance value of unit length interconnect at
reference temperature, and 7y can be any value no less than 1.
Depending on the temperature range in which the intercon-
nect wire will most likely operate (the higher working tem-
perature is, the bigger v value will be), we can always find
the best v value by curve fitting method.

One way to decide + is that we first estimate the working
temperature range or wire width range of the wire by using
the I,,s value derived from the power budget. In our work,
we assume that the working temperature range is given. If the
wire width range is given instead, the analysis is in the similar
way. Then we can fit the general form exactly in some wire
width range (Wmin, Wmaz) corresponding to that temperature
range. For example, in Figure 4, if given the temperature
range is from 50°C to 150°C, then the corresponding wire
width range is (1.4,2.2). One method to find the best fitting
v is the method of least squares,

D=3 (Rw)~ )* (11)

where wpin < Wi < Wmqez- 1 is the number of sample points
on the curve. The larger n is, the more accurate v will be.
Ro(w;) is the unit length resistance in Equation (8).

In order to obtain the value of coefficient «, we set the
accurate resistance value in Equation (8) and the resistance
value in simpler v model to be equal at some wire width, for
example, Wmqey. Therefore,

a = wg’mz . R(wmaz) (12)



Substitute this equation into Equation (11), we obtain,

D = ZRO U)l

Differentiating both sides of this equation, we have,

wmaz )

: RO(U’maac))2 (13)

i

n

dD w w w
ar _ R ;) — mazx R maz)) - 1 max mazx \y
7 = L ((Bolw) = (2227 RoCumar)) - Int2225 - (£222)
(14)
In order to determine the optimal v value, we set 42 to

zero. We solved this nonlinear equation by secant method [22]
The results are the curves of 7y value as a function of intercon-
nect current I,.,s and other physical properties such as toz,
as illustrated in Figure 6.
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Figure 6: Optimal fitting for vy as a function of current I,
and other physical parameters.

In this figure, the x-axis represents the current value and
the y-axis is the least square fitting for . As the interconnect
current value increases, the v value also increases. However,
v will not exceed a bound near 2. We also show the vy curve
under different t,, values. It can be observed that 7 is not
sensitive to t,>. We also changed other physical parameters,
the result is similar to the case of ...

This set of results are important, because they validate
that our quadratic relation (y=2) can be a good upper bound
for wire sizing. That is one of the most important reasons why
we are interested in solving the optimal wire sizing formula
under quadratic resistance model. At the same time, v = 1
yields the lower bound formula. The second reason to choose
quadratic relation for analysis is that it is possible to obtain
an analytical form of optimal wire sizing function when using
quadratic model. In other words, we can have both the upper
bound and the lower bound as explicit analytical formulae,
making it much easier to see the trends of wire sizing (from
exponential sizing to linear sizing as we will see) when ther-
mal issues become more and more severe. Such trends will
also eventually serve as good guidelines for the more practi-
cal discrete wire sizing. We will elaborate on this further in
Section 5.

3 Elmore Delay Model

We use the Elmore delay model [17] to approximate the inter-
connect delay. Suppose the wire is partitioned into n equal-

length wire segments, each has a length of Az % Let
z; be iAz, 1 < i < n. The capacitance and resistance of

where R, is the drive resistance, Cp, is the load capacitor, as
illustrated in Figure 1, co represents the unit width capacitor,
and ro is the « coefficient in Equation (10). Here we use ro to
maintain consistency with the existing wire sizing terminol-
ogy. The first term is the delay of the driver, which is given by
the driver resistance R; multiplied by the total capacitance of
the wire and C. The second term is the sum of the delay in
each wire segment 7. The square relation is used here to take
the self-heating effects into account. As n — oo, D, — D as
shown in Equation (15)

(/ cof(z)dt + Cr)dz

D:Rd(CL+/O COf(x)dxH/O Tz, )

4 Optimal Self-Heating-Aware Wire Sizing
In this section, we will show that the optimal self-heating-
aware wire shape function f(x) which minimizes the Elmore
delay can be solved by an analytical method.

Lemma 1 Let f be an optimal wire-sizing function. We have,
2r0(Cr + o [T f(t)dt
Co(Rd + 7o fox f+mdt)

fila) = (16)

Proof: Similar proof can be found in literature [11] to derive
a exponential wire sizing function.
Let z € [0, L]. Assume f is continuous at . We consider
f, which is a local modification of f in a small region [z —
g, x4+ g] The function f is defined as follows,
f _Jy T — g S t<z+ %
f(t) otherwise
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Figure 7: Local modification of an optimal wire-sizing func-
tion.

The wire W would be divided into three regions Q1, s,
and 3, as illustrated in Figure 7. We denote the signal delay
through ; by D;. Hence, the total interconnect delay is equal

to Z?:l D;. We represent the wire resistance (capacitance)
of Qi by Ri(C;). We have Ry = 9 and C» = cody. The

driver delay is given by R4(C1 + C2 + C3 + Cr). Hence, the
signal delay through the wire and driver can be calculated as
follows,

D= Rd(cl + Cs + CrL + cody)
+[rTE ol 3 cof(s)ds + cody + Cs + Cr)dt
+28 (cody + Cs + C1) + [ 5 5[, cof(s)ds + Cr)dt

By setting ’fi—g = 0, we obtain,

. . . ) roAz z—2 2
wire s.egment i can be al?prommz.ited I.Jy Cof(%) and F&755 re- Ruseo + c06/ 2 ;"0 g — 2r06(033+ Cr) rog —0
spectively, where f(z;) is the wire width in position z;. The 0 F2(¢) Y Y
Elmore delay through the entire wire can be expressed by,

As § — 0, we have,
roAT ~—
Dy = Ra(Cr + Z cof(xi)Ax)) + Z ! ) Z(COf(l‘j)Al‘ +CL)) 5 2ro(Cr +co [ f(t)dt an
=i Y min =

CO(Rd + 7o fom f+mdt)



Since f(x) is the optimal wire sizing function, we have
Ymin = f(x). Therefore, we obtain f(z) as shown in Equa-
tion (16). U

Theorem 1 Let f(z) be an optimal wire-sizing function. Then,
@i @) _

(@)
Proof: Direct results of first multiplying Equation (16) by

the denominator of its right hand side, then differentiating
both sides with respect to x.

(18)

Corollary 1.1 Let f(z) be an optimal wire-sizing function.
we have,
fz)=az+b (19)
Before we discuss more general optimal wire-sizing for-
mula, one thing should be mentioned first. In the process of
previous derivation of optimal formula, we have assumed that
function f has second order derivative. This does not count
the situation when the wire shape function is a constant value.
As mentioned in section 1, the wire-sizing methodology is only
beneficial when the interconnect resistance becomes signifi-
cant. Otherwise, constant wire width can have the optimal
RC constant time, hence optimal delay. In essential, even
constant wire width can be regarded as one special case of
wire sizing. Therefore the optimal wire sizing formula has to
take constant wire width into account.

i.f D. < D
folw) = upsh

We
axr +b

where D, and D; are the elmore delay value of constant width
wire and linear shape wire respectively. In order to calculate
the actual delay value, we need to substitute the shape func-
tion f(z) into Equation (15) and use numerical integral to
solve it. Newton-cotes method [22] can be good candidate for
such purpose.

Theorem 2 The general optimal wire-sizing formula consid-
ering self-heating effect must satisfy the equation,

@ f@)=(@2-7f @)

where v is the exponent value in the relation between wire
width and wire resistance as given in Equation (10).

(20)

Proof: Similar to the proof of Lemma 1. 0
Remark 1 When v value equals to 1, our general optimal
wire sizing formula reduces to the one eristing in the litera-
ture [11]. When ~y equals to 2, it reduces to the formula in
Theorem 1. On the other hand, for any v value that is larger
than 2, the right-hand side of Equation (20) becomes nega-

tive. Because f(x) cannot be negative, f” (z) has to be nega-
tive, which implies a concave wire sizing formula. Therefore,

v = 2 is the boundary between convez wire-sizing (f (z) <0 A
£ (x) > 0) and concave wire-sizing (f (z) <O A f (z)<0).
That is also one of the reasons why we are interesting in solv-
ing the optimal wire-sizing formula when given v = 2.

After solving the general function of optimal wire sizing,
we need to determine the coefficient values, i.e., the values of
a and b in f(z).

Lemma 2 In order to solve for the coefficients a and b in
the optimal wire sizing function f(z), we need to solve the
following mized system of equalities and inequalities.

70 (Cr+co f[)L’(am+b)dt _ b3
COR(L -

ot

co(Ra+ro [ mdt) -
b>0

a<0

aL+b>0

(aL +b)?

The first two equations represent the boundary conditions
at positions x = 0 and z = L. We require b > 0 because
the value of b is the wire width at position z. A better lower
bound can be found for b, that is the minimum valid wire
width, or the positive pole value discussed in Section 2. The
value of a should be negative, because in order to obtain the
optimal interconnect delay, the wire width should decrease
from position 0 along the direction of the current flow. The
last inequality is similar to b > 0. We can also use a better
wire width lower bound to replace the zero bound.

This system of equation can be solved efficiently by first
finding the lower bound and upper bound of b, then doing
incremental search in that range. Due to space limitation,
details will not be elaborated here.

5 Uniform discrete wire sizing on self-heating effect

Generally, non-uniform continuous wire sizing helps define the
contour of the uniform discrete counterpart, as illustrated in
Figure 8.

Figure 8: non-uniform wire sizing predicts the contour of uni-
form discrete wire sizing.

In this figure, the discrete wire sizing consists of five seg-
ments. Non-uniform continuous wire sizing and uniform dis-
crete wire sizing become identical when the number of seg-
ments of uniform discrete wire sizing becomes infinite. In
past works [11] addressing wire-sizing, it has been argued that
when the number of segments is large, implementing discrete
wire sizing would substantially increase the number of vari-
ables, hence, result in long runtime and large storage. Hence,
non-uniform wire sizing is necessary to provide guidelines for
the discrete solution. It can at least give an evaluation on
how good the discrete wire sizing is by observing how far it
deviates from the continuous optimal function. In practice,
there are only several possible wire widths that can be cho-
sen. Continuous optimal wire sizing function provides us hints
on how the design library would be changed accordingly when
considering self-heating effect, on the wire width range as well
on the step size between two consecutive wire widths. After
updating the library according to these guidelines, the contin-
uous solution can be segmented into discrete portions using
the given number of wire types in the library. Figure 8 depicts
a segmented solution to our linear wire-sizing solution.

6 Results

We implemented and tested our algorithm in C on a Sun
Bladelb0 workstation with 512 MB memory. The parameters
are taken from the literature [11], which is also listed here in
Table 2.

One major difference between our linear wire sizing ap-
proach and the conventional optimal solution is that we take



the current value and thermal conditions of the interconnect
as parameters. In other words, conventional optimal wire

Table 2: Interconnect RC parameters
Unit Capacitance (co) 6x10 17 F/um
Driver Resistance (Rq) 25 Q
Load Capacitance (Cr) | 1 x 10712 F

Wire Length (L) 1000 um

Table 3: Delay of linear wire-sizing compared to normalized
exponential wire-sizing with different driver resistance.
[Ea(Q) [ Delay(D:/D.) ]

5 0.77
25 0.63
50 0.57

Table 4: Delay of linear wire-sizing compared to normalized
exponential wire-sizing with different load capacitance.
[[CL(fF) ] Delay(Di/De) ||

1 0.13
10 0.29
100 0.63

sizing generates a single solution if the wire dimension and
other physical parameters are given. The wire sizing will not
change even if the amount of current flow in that wire is ex-
pected to be significantly different. Such a solution is not
practical in the face of thermal effects for future technolo-
gies. As illustrated in Figure 9, the exponential shape will be
highly inaccurate when the wire width is small. The reason is
that in narrow wires, self-heating effect becomes very signifi-
cant. In this figure, the dashed line represents the exponential
wire function, while the solid line is the corresponding linear
sizing function. Additional lines in this figure illustrate the
self-heating-aware linear wire sizing solution under different
current conditions.

Another part of our experiment is to compare the actual
delay of both linear wire sizing f(z) = ax +b and exponential

sizing f(x) = ae~*®. We use Elmore delay in Equation (15)
to represent the actual delay of the interconnect. Its value
is calculated numerically by Newton-cotes method. It can
be seen from the results that the ratio between linear sizing
and exponential sizing depends on physical parameters. We
change both driver resistance and load capacitance to achieve
different results. Table 3 is the delay value for different drive
resistance Rqy. Table 4 is the delay value for different load
capacitance. The delay value of exponential(D.) wire-sizing
has been normalized to one. We can observe 34.3% delay
gain from continuous linear wire sizing on average with driver
resistances range from 5 to 50Q2. And we also observed 65%
delay gain on average with load capacitances from 1fF to
100fF.

7 Conclusions

The major contribution of our work is describing a quadratic
relation between wire resistance and wire width for high-layer
global interconnect, and incorporating this model into the
non-uniform continuous wire sizing optimization process. Our
self-heating-aware optimal wire sizing formula is in a simple
linear form f(z) = ax +b. This result helps clarify the trends
of both continuous and discrete wire sizing, that the wire
width slope should be flatter if self-heating effect becomes
significant. Compared to non-thermal-aware exponential wire
sizing, we obtain 49.7% delay gain on average.
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