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Abstract

Global interconnect temperature keeps rising in the current
and future technologies due to self�heating and the adiabatic
property of top metal layers� The thermal e�ects impact ad�
versely both reliability and performance of the interconnect
wire� shortening the interconnect lifetime and increasing the
interconnect delay� Such e�ects must be considered during
the process of interconnect design� In this paper� one im�
portant argument is that the traditional linear dependence be�
tween wire resistance and wire width is no longer adequate for
high layer interconnects due to the adiabatic property of these
wires� By using curve �tting technique� we propose a quadratic
model to represent the resistance of interconnect� which is
aware of the thermal e�ects� Based on this model and the
Elmore delay model� we derived a linear optimal wire sizing
formula in form of f�x� � ax� b� Compared to non�thermal�

aware exponential wire sizing formula in form of f�x� � ae�bx�
we observed a ����� average delay gain with di�erent choices
of physical parameters�

� Introduction

Interconnect wire consumes I�R power� which translates into
heat� This is known as interconnect self�heating� This e�ect
becomes signi�cant in current technologies� and will become
even more signi�cant in future for high�layer high�switching
global interconnections� such as clock networks� The reason
is	 �rst� the resistance of interconnect increases due to the
reduction of wire size
 second� the current in interconnect in�
creases due to the increasing of switching frequency� The re�
sulting heats are di�cult to dissipate because unlike the sub�
strate� which attaches directly to the heat sink� interconnects�
especially the high�layer interconnects are more isolated� Fur�
thermore� introducing low dielectric constant �low�k� materi�
als to reduce cross�talk exacerbates the thermal condition�
This is due to the fact that low�k materials usually have
lower thermal conductivity than silicon dioxide ��� It has
been predicted that the maximum interconnect temperature
in a global line may reach up to ���oC for ���nm technology
node �����

The analysis of interconnect self�heating ��� �� is not only
important in the context of electro�migration induced reli�
ability concerns ���� but also due to its impact on perfor�
mance� i�e�� delay� Ajami et al� presented a detailed anal�
ysis and modeling of interconnect performance degradation
due to non�uniform temperature pro�les ���� In this work� a
maximal �� increase of delay due to thermal e�ects was re�
ported� The main reason behind this is that the resistance of
an interconnect increases linearly with the temperature�

The thermal e�ects on interconnect design has gained a
lot of attentions in the past few years� Chen proposed an
interconnect thermal model considering thermal coupling be�
tween di�erent interconnects wires ����� Kapur also consid�
ered thermal e�ects as one of major concerns when discussing
the technology and reliability constrained future copper in�
terconnects ����� Recently� Casu et al� optimized the global
interconnect under thermal e�ects by using RLC model ����

The above papers focus mainly on how to model the ther�
mal e�ects on the interconnection design� However� the dis�
cussion about how to adjust the design techniques of inter�
connect� such as wire sizing ���� ���� bu�er insertion ��� and

sizing� and combination of these ��� �� ���� is still lacking
in the literature� The only related work we are aware of is
the optimal bu�er insertion under substrate thermal gradi�
ent e�ects ��� proposed by Ajami� The thermal conditions
in their analysis are based on the temperature pro�le of the
substrate� which could involve inaccuracy because of the adi�
abatic property of high�layer global interconnects �while the
generated heat of interconnects is hard to dissipate� the heat
of the substrate is also di�cult to transfer to high intercon�
nect layers� The only thermal �ow is through via� which af�
fects only the temperature of the ends of the wires� � as well
as the signi�cant self�heating e�ects of these high switching�
high resistance global interconnects�

In this paper� we consider the thermal e�ects� speci�cally�
self�heating e�ects� on one of the most important interconnect
design techniques� namely� wire sizing technique� Our self�
heating�aware technique can be combined with the thermal�
aware interconnect design methodology considering only sub�
strate temperature conditions as shown in ��� to obtain more
accurate optimal results�

It was �rst shown in ���� and ���� that when wire resis�
tance becomes signi�cant � as in DSM designs� proper wire
sizing can e�ectively reduce the interconnect delay� The ba�
sic idea behind wire�sizing is that increasing the interconnect
wire width has two di�erent e�ects	 it decreases the wire
resistance while increasing the wire capacitance� Since the
Elmore delay can be formulated by RC constant time� there
must exist an optimal wire width that achieves least RC con�
stant time� On the other hand� if we divide the wire into
several segments� each segment would have di�erent optimal
wire width with di�erent position along the wire�

Finding the optimal wire width for each segment is the
problem of discrete wire sizing ���� ���� Another formula�
tion of wire�sizing optimization is to determine the continuous
wire shaping functions� The closed�form wire shaping func�
tions were derived to minimize the Elmore delay� �rst without
considering fringing capacitance ���� and later with fringing
capacitance ���� and for a bidirectional wire ����� Menezes et
al� also presented the wire�sizing optimization under a higher�
order RC delay model �����
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Figure �	 Wire sizing function

In this paper� we also consider the continuous wire�sizing�
We are trying to �nd the width f of an interconnect as a
function of its position x� also known as the shape formula
����� The sizing function is illustrated in Figure ��

When considering self�heating e�ect� one important obser�
vation is that narrowing down the wire not only increases wire
resistance by the amount of R � r��wm� but also exacerbates
the thermal condition of the wire� Because the heat genera�
tion of the wire� which is proportional to I�R� will increase

and the heat dissipation ability of that wire will decrease due
to the shrinking of its surface area� This implies a tempera�
ture rise on the wire� which can increase the wire resistance
further� Therefore� in place of the former linear relation be�
tween wire resistance and wire width R�wm� � r��wm we
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propose a more accurate quadratic relation R�wm� � ��wm
�

to capture thermal e�ects� It is necessary to note that such re�
lation between wire width�wm� and wire resistance�R� holds
only for resistors in adiabatic environment such as high�layer
global interconnect wires� in which the thermal positive feed�
back e�ects become signi�cant�

Besides using the quadratic relation between resistance
and wire width� we also make some reasonable simpli�ca�
tion and assumption when deriving the optimal wire�sizing
formula�

� We only consider single end global wires� which has been
adopted for most of the continuous wire sizing prob�
lems ���� ��� ����

� Elmore delay is adopted as an accurate metric for our
delay calculation because of its simplicity� More accu�
rate models considering higher moments can be used�
but no analytical formulation can be obtained�

� We do not consider fringing capacitance� A simple uni�
form distribution of capacitance is assumed� which has
been adopted in most of the wire sizing literature ����
��� ��� ��� ��� ���

� We assume a uniform substrate temperature�

The remainder of this paper is organized as follows� Section �
describes in detail our self�heating model� The Elmore de�
lay model is described in Section � Section � illustrates the
derivation of the optimal non�uniform self�heating�aware wire
sizing function� After that� we discuss in Section � the self�
heating e�ects on discrete wire sizing� Section � presents ex�
perimental results based on our model� followed by Section ��
which gives our conclusion�

� Self�Heating Model

Thermal e�ects are an inseparable aspect of electrical power
distribution and signal transmission due to self�heating �also
known as joule heating� caused by the �ow of current ����
Since the interconnects� especially the global interconnects�
are far away from the substrate� which is attached to the heat
sink� the heat generated by I�R power dissipation cannot be
e�ciently removed and therefore causes an increase in inter�
connect temperature�

The self�heating temperature of the interconnects can be
expressed as a function of wire width ����

�Tself�heating�wm� � Tm � Tref � I�rms �R�wm� �R��wm�
���

where R is the interconnect resistance� Irms is the root mean
square current� I�rmsR represents the power dissipation on
the interconnects� and R� is the thermal impedance of the
interconnect line to the chip� which has the form of ����

R��wm� �
tox

Kox � L �Weff

���

This equation of thermal impedance is based on a quasi���D
heat conduction model� where tox is the total thickness of the
underlying dielectric� as illustrated in Figure �� Kox is the
thermal conductivity normal to the plane of the dielectric� L
is the length of the interconnect� and Weff � wm � ����tox�
valid for wm�tox � ��� and is accurate to within ��

In Equation ���� we only consider the heat conduction be�
tween metal wire and the surrounding dielectric materials �y
direction and z direction�� Although metal has much higher
thermal conductivity than silicon dioxide� the heat transfer
rate along the wire �x direction� is much smaller compared to
those in y and z directions mainly due to the di�erence of the
power dissipation area of these three directions�
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Figure �	 Interconnect wire parameters

The heat transfer rate in x direction is de�ned by the
Fourier law of thermal conduction ����

qx � �kxAx
�T

�x
��

Where qx is the heat transfer rate in x direction� kx is the
thermal conductivity� Ax is the intersection area in x direc�
tion� Therefore�

qx
qyz

�
kx
kyz

tmwm

L�tm � wm�

�T
�x
�T
�y

���

The thermal conductivity of aluminum and silicon dioxide
at ���oC are ���W�m�K and ����W�m�K�respectively� As�
sume tm �� wm� and

�T
�x
�� �T

�y
for a global wire with length

of ����m� we have qx
qyz

� ���� � �� Therefore� self�heating

temperature Equation ��� is adequate for long interconnect
wire by considering only the heat transfer between wire and
dielectric materials�

For the purpose of deriving the optimal wire sizing for�
mula� we need to express the wire resistance as a function of
wire width� i�e�� R � f�wm�� Basically� the unit length resis�
tance of interconnect wire is in a linear relation with the wire
width�

R �
��

wm � tm �� � �Tm� ���

where �� is the unit length resistance at the reference tem�
perature� and � is the temperature dependence coe�cient of
resistance���oC��

Note that in Equation ���� Tm is also a function of wire
width wm as expressed in Equation ���� Substituting Equa�
tion ��� and ��� into Equation ���� we obtain the expression
of Tm as a function of wire width wm�

Tm � Tref �
I�rms � tox � �� � �� � ��Tm � Tref��

Kox � tm � wm�wm � ����tox�
���

Without loss of generality� we assume the reference tempera�
ture Tref to be �� After rearranging Equation ���� we have�

Tm �
���

�wm
� � ����toxwm� � 	 � �

���

where � � I�rms � tox � �� � � and 	 � tm �Kox�
Substitute Equation ��� into ���� we obtain the unit length

wire resistance as a function of wire width wm� as shown in
Equation ����

R �
��
tm
� wm � a�
wm

� � b�wm � b�
���

where a� � b� � ���� � tox and b� � � �
�
�

Equation ��� has a standard form of a system function�
Note that this system function has one positive pole and one
negative pole as shown in Equation ��� � because b� 
 ��

R �
��
tm
� � k�
wm � p�

� k�
wm � p�

� ���



where�
��
�

p� �
�b��

p
b�

�
��b�

�
� k� �

p��a�
p��p�

p� �
�b��

p
b�

�
��b�

�
� k� �

p��a�
p��p�

The positive pole will be a singularity as shown in Fig�
ure � When the wire width tends towards the positive pole�
the wire resistance will become in�nite� This can be ex�
plained by the positive feedback relation between wire resis�
tance �Equation���� and self�heating temperature �Equation�����
As the wire width becomes smaller than the pole value� the
resistance jumps to negative values� which indicates the occur�
rence of thermal�runaway� So� the pole value is the minimum
valid wire width under a certain current value�Irms� and ther�
mal condition�R��� Figure  also illustrates several resistance
curves under di�erent current conditions� i�e�� Irms � ��mA�
Irms � ��mA� and Irms � ���mA� It is shown that a larger
current value always implies a bigger positive pole� which
means the minimum valid wire width under self�heating con�
sideration becomes larger�
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Figure 	 Wire resistance as a function of wire width and
current value� The physical parameters are taken from ����
also listed in Table � for reference�

Table �	 Physical parameter values used in the interconnect
self�heating model�

Parameter Value
tox � �m
tm � �m

�� ����� ���� � � cm

� ���� ���� oC��

Kox ���	 W�m �K

Usually� wire sizing is performed in a range of wire width�
Besides the current value in wire� this range is also decided by
the technology� e�g�� the aspect ratio of the interconnects� the
dielectric material and the thickness of the dielectric layer� In
our example� we use the temperature as an indicator of this
range� If we require that the temperature of the intercon�
nects cannot exceed a certain value� for instance� ���oC� we
can �nd the minimum valid wire width to be about ����m
in Figure �� Figure � is part of the curve shown in Figure
 with Irms equals ���mA� The maximum width is extended
to ���m� In this �gure� the y�axis represents the tempera�
ture� the resistance counterpart is shown in Figure �� Here
we also depict two additional curves� one is in the form of
R � ���wm� which we will call linear relation in the remain�
der of our discussion� The other is R � ���wm

�� which we
will call quadratic relation� In the conventional wire sizing
function� the linear relation was adopted� as shown in Equa�
tion ���� However� this can underestimate the wire resistance
and temperature signi�cantly as illustrated in Figure �� Next�
we will show that the square relation can be a good approxi�
mation� at least in the valid wire width range�

The most accurate way to represent the resistance of a
wire as a function of wire width is to substitute Equation ���
into the delay model� However� this makes it di�cult to solve
the formula of optimal wire sizing analytically� On the other
hand� in a practical scenario only a relatively small range of
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Figure �	 Self�heating temperature as a function of wire width
�Irms � ���mA��
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Figure �	 Wire resistance as a function of wire width �Irms �
���mA� in the temperature range from ��oC to ���oC�

the wire width is of importance as opposed to the whole range
from � to ��� Therefore� we can actually partition the resis�
tance curve into multiple regions and use a simpler formula
to �t the curve within the region of interest� Note that if we
admit that Equation ��� is the most accurate relation between
wire resistance and wire width when considering thermal ef�
fects� the resistance model R � ���wm used in conventional
wire sizing ���� is also a result of curve �tting� Moreover� the
�tting is only accurate in the low temperature range� There�
fore� we need a more general function� that is�

R �
�

w�
m

����

where R is the resistance value of unit length interconnect at
reference temperature� and 	 can be any value no less than ��
Depending on the temperature range in which the intercon�
nect wire will most likely operate �the higher working tem�
perature is� the bigger 	 value will be�� we can always �nd
the best 	 value by curve �tting method�

One way to decide 	 is that we �rst estimate the working
temperature range or wire width range of the wire by using
the Irms value derived from the power budget� In our work�
we assume that the working temperature range is given� If the
wire width range is given instead� the analysis is in the similar
way� Then we can �t the general form exactly in some wire
width range �wmin� wmax� corresponding to that temperature
range� For example� in Figure �� if given the temperature
range is from ��oC to ���oC� then the corresponding wire
width range is ����� ����� One method to �nd the best �tting
	 is the method of least squares�

D �

nX
i��

�R�wi�� �

w�
i

�� ����

where wmin � wi � wmax� n is the number of sample points
on the curve� The larger n is� the more accurate 	 will be�
R��wi� is the unit length resistance in Equation ����

In order to obtain the value of coe�cient �� we set the
accurate resistance value in Equation ��� and the resistance
value in simpler 	 model to be equal at some wire width� for
example� wmax� Therefore�

� � w�
max � R�wmax� ����



Substitute this equation into Equation ����� we obtain�

D �
nX
i��

�R��wi�� �
wmax

wi

�� � R��wmax��
� ���

Di�erentiating both sides of this equation� we have�

dD

d	
�

nX
i��

��R��wi�� �
wmax

wi

��R��wmax�� � lnwmax

wi

� �wmax

wi

���

����

In order to determine the optimal 	 value� we set dD
d�

to

zero� We solved this nonlinear equation by secant method �����
The results are the curves of 	 value as a function of intercon�
nect current Irms and other physical properties such as tox�
as illustrated in Figure ��
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Figure �	 Optimal �tting for 	 as a function of current Irms

and other physical parameters�

In this �gure� the x�axis represents the current value and
the y�axis is the least square �tting for 	� As the interconnect
current value increases� the 	 value also increases� However�
	 will not exceed a bound near �� We also show the 	 curve
under di�erent tox values� It can be observed that 	 is not
sensitive to tox� We also changed other physical parameters�
the result is similar to the case of tox�

This set of results are important� because they validate
that our quadratic relation �	��� can be a good upper bound
for wire sizing� That is one of the most important reasons why
we are interested in solving the optimal wire sizing formula
under quadratic resistance model� At the same time� 	 � �
yields the lower bound formula� The second reason to choose
quadratic relation for analysis is that it is possible to obtain
an analytical form of optimal wire sizing function when using
quadratic model� In other words� we can have both the upper
bound and the lower bound as explicit analytical formulae�
making it much easier to see the trends of wire sizing �from
exponential sizing to linear sizing as we will see� when ther�
mal issues become more and more severe� Such trends will
also eventually serve as good guidelines for the more practi�
cal discrete wire sizing� We will elaborate on this further in
Section ��

� Elmore Delay Model

We use the Elmore delay model ���� to approximate the inter�
connect delay� Suppose the wire is partitioned into n equal�
length wire segments� each has a length of �x � L

n
� Let

xi be i�x� � � i � n� The capacitance and resistance of
wire segment i can be approximated by c�f�xi� and

r��x

f�xi�
� re�

spectively� where f�xi� is the wire width in position xi� The
Elmore delay through the entire wire can be expressed by�

Dn � Rd�CL �

nX
i��

�c�f�xi��x�� �

nX
i��

r��x

f�xi��
�

nX
j�i

�c�f�xj��x� CL��

where Rd is the drive resistance� CL is the load capacitor� as
illustrated in Figure �� c� represents the unit width capacitor�
and r� is the � coe�cient in Equation ����� Here we use r� to
maintain consistency with the existing wire sizing terminol�
ogy� The �rst term is the delay of the driver� which is given by
the driver resistance Rd multiplied by the total capacitance of
the wire and CL� The second term is the sum of the delay in
each wire segment i� The square relation is used here to take
the self�heating e�ects into account� As n��� Dn � D as
shown in Equation ����

D � Rd�CL �

Z L

�

c�f�x�dx� �

Z L

�

r�
f�x��

�

Z L

x

c�f�x�dt�CL�dx

����

� Optimal Self�Heating�Aware Wire Sizing

In this section� we will show that the optimal self�heating�
aware wire shape function f�x� which minimizes the Elmore
delay can be solved by an analytical method�

Lemma � Let f be an optimal wire�sizing function� We have�

f	�x� �
�r��CL � c�

R L
x
f�t�dt

c��Rd � r�
R x
�

�
f��t�

dt�
����

Proof� Similar proof can be found in literature ���� to derive
a exponential wire sizing function�

Let x � ��� L�� Assume f is continuous at x� We consider
�f � which is a local modi�cation of f in a small region �x �
�
�
� x� �

�
�� The function �f is de�ned as follows�

�f �

�
y x� �

�
� t � x� �

�
f�t� otherwise
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Figure �	 Local modi�cation of an optimal wire�sizing func�
tion�

The wire W would be divided into three regions ��� ���
and �	� as illustrated in Figure �� We denote the signal delay
through �i byDi� Hence� the total interconnect delay is equal
to
P	

i��Di� We represent the wire resistance �capacitance�

of �i by Ri�Ci�� We have R� � r��

y�
and C� � c��y� The

driver delay is given by Rd�C� � C� � C	 � CL�� Hence� the
signal delay through the wire and driver can be calculated as
follows�

D � Rd�C� � C	 � CL � c��y�

�
R x� �

�
�

r�
f��t�

�
R x� �

�
t

c�f�s�ds� c��y � C	 � CL�dt

� r��

y�
�c��y � C	 � CL� �

R L
x� �

�

r�
f��t�

�
R L
t
c�f�s�ds� CL�dt

By setting dD
dy

� �� we obtain�

Rd�c� � c��

Z x� �
�

�

r�
f��t�

dt� �r���C	 � CL�

y	
� r��

�

y�
� �

As � � �� we have�

y	min �
�r��CL � c�

R L
x
f�t�dt

c��Rd � r�
R x
�

�
f��t�

dt�
����



Since f�x� is the optimal wire sizing function� we have
ymin � f�x�� Therefore� we obtain f�x� as shown in Equa�
tion �����

Theorem � Let f�x� be an optimal wire�sizing function� Then�

f�x� � f ���x�
f ���x�

� � ����

Proof� Direct results of �rst multiplying Equation ���� by
the denominator of its right hand side� then di�erentiating
both sides with respect to x�

Corollary ��� Let f�x� be an optimal wire�sizing function�
we have�

f�x� � ax� b ����

Before we discuss more general optimal wire�sizing for�
mula� one thing should be mentioned �rst� In the process of
previous derivation of optimal formula� we have assumed that
function f has second order derivative� This does not count
the situation when the wire shape function is a constant value�
As mentioned in section �� the wire�sizing methodology is only
bene�cial when the interconnect resistance becomes signi��
cant� Otherwise� constant wire width can have the optimal
RC constant time� hence optimal delay� In essential� even
constant wire width can be regarded as one special case of
wire sizing� Therefore the optimal wire sizing formula has to
take constant wire width into account�

fo�x� �
n

wc if Dc � Dl

ax� b if Dc � Dl

where Dc and Dl are the elmore delay value of constant width
wire and linear shape wire respectively� In order to calculate
the actual delay value� we need to substitute the shape func�
tion f�x� into Equation ���� and use numerical integral to
solve it� Newton�cotes method ���� can be good candidate for
such purpose�

Theorem � The general optimal wire�sizing formula consid�
ering self�heating e�ect must satisfy the equation�

f
��

�x�f�x� � ��� 	�f
���x� ����

where 	 is the exponent value in the relation between wire
width and wire resistance as given in Equation 	
���

Proof� Similar to the proof of Lemma ��

Remark � When 	 value equals to 
� our general optimal
wire sizing formula reduces to the one existing in the litera�
ture 

�� When 	 equals to �� it reduces to the formula in
Theorem 
� On the other hand� for any 	 value that is larger
than �� the right�hand side of Equation 	��� becomes nega�

tive� Because f�x� cannot be negative� f
��

�x� has to be nega�
tive� which implies a concave wire sizing formula� Therefore�

	 � � is the boundary between convex wire�sizing 	f
�

�x� 
 � 	
f
��

�x� � �� and concave wire�sizing 	f
�

�x� 
 � 	 f
��

�x� 
 ���
That is also one of the reasons why we are interesting in solv�
ing the optimal wire�sizing formula when given 	 � ��

After solving the general function of optimal wire sizing�
we need to determine the coe�cient values� i�e�� the values of
a and b in f�x��

Lemma � In order to solve for the coe�cients a and b in
the optimal wire sizing function f�x�� we need to solve the
following mixed system of equalities and inequalities�

�������
������

r��CL�c�
R
L
� �ax�b�dt

c�Rd
� b	

r�CL
c��Rd�r�

R
L
�

�
�aL�b��

dt�
� �aL� b�	

b � �
a 
 �
aL� b � �

The �rst two equations represent the boundary conditions
at positions x � � and x � L� We require b � � because
the value of b is the wire width at position x� A better lower
bound can be found for b� that is the minimum valid wire
width� or the positive pole value discussed in Section �� The
value of a should be negative� because in order to obtain the
optimal interconnect delay� the wire width should decrease
from position � along the direction of the current �ow� The
last inequality is similar to b � �� We can also use a better
wire width lower bound to replace the zero bound�

This system of equation can be solved e�ciently by �rst
�nding the lower bound and upper bound of b� then doing
incremental search in that range� Due to space limitation�
details will not be elaborated here�

� Uniform discrete wire sizing on self�heating e�ect

Generally� non�uniform continuous wire sizing helps de�ne the
contour of the uniform discrete counterpart� as illustrated in
Figure ��
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Figure �	 non�uniform wire sizing predicts the contour of uni�
form discrete wire sizing�

In this �gure� the discrete wire sizing consists of �ve seg�
ments� Non�uniform continuous wire sizing and uniform dis�
crete wire sizing become identical when the number of seg�
ments of uniform discrete wire sizing becomes in�nite� In
past works ���� addressing wire�sizing� it has been argued that
when the number of segments is large� implementing discrete
wire sizing would substantially increase the number of vari�
ables� hence� result in long runtime and large storage� Hence�
non�uniform wire sizing is necessary to provide guidelines for
the discrete solution� It can at least give an evaluation on
how good the discrete wire sizing is by observing how far it
deviates from the continuous optimal function� In practice�
there are only several possible wire widths that can be cho�
sen� Continuous optimal wire sizing function provides us hints
on how the design library would be changed accordingly when
considering self�heating e�ect� on the wire width range as well
on the step size between two consecutive wire widths� After
updating the library according to these guidelines� the contin�
uous solution can be segmented into discrete portions using
the given number of wire types in the library� Figure � depicts
a segmented solution to our linear wire�sizing solution�

� Results

We implemented and tested our algorithm in C on a Sun
Blade��� workstation with ��� MB memory� The parameters
are taken from the literature ����� which is also listed here in
Table ��

One major di�erence between our linear wire sizing ap�
proach and the conventional optimal solution is that we take



the current value and thermal conditions of the interconnect
as parameters� In other words� conventional optimal wire

Table �	 Interconnect RC parameters
Unit Capacitance 
c�� �� ����� F��m
Driver Resistance 
Rd� �	 �

Load Capacitance 
CL� �� ����� F
Wire Length 
L� ���� �m

Table 	 Delay of linear wire�sizing compared to normalized
exponential wire�sizing with di�erent driver resistance�

Rd
�� Delay
Dl�De�

	 ����
�	 ����
	� ��	�

Table �	 Delay of linear wire�sizing compared to normalized
exponential wire�sizing with di�erent load capacitance�

CL
fF � Delay
Dl�De�

� ����
�� ���
��� ����

sizing generates a single solution if the wire dimension and
other physical parameters are given� The wire sizing will not
change even if the amount of current �ow in that wire is ex�
pected to be signi�cantly di�erent� Such a solution is not
practical in the face of thermal e�ects for future technolo�
gies� As illustrated in Figure �� the exponential shape will be
highly inaccurate when the wire width is small� The reason is
that in narrow wires� self�heating e�ect becomes very signi��
cant� In this �gure� the dashed line represents the exponential
wire function� while the solid line is the corresponding linear
sizing function� Additional lines in this �gure illustrate the
self�heating�aware linear wire sizing solution under di�erent
current conditions�

Another part of our experiment is to compare the actual
delay of both linear wire sizing f�x� � ax� b and exponential
sizing f�x� � ae�bx� We use Elmore delay in Equation ����
to represent the actual delay of the interconnect� Its value
is calculated numerically by Newton�cotes method� It can
be seen from the results that the ratio between linear sizing
and exponential sizing depends on physical parameters� We
change both driver resistance and load capacitance to achieve
di�erent results� Table  is the delay value for di�erent drive
resistance Rd� Table � is the delay value for di�erent load
capacitance� The delay value of exponential�De� wire�sizing
has been normalized to one� We can observe ��� delay
gain from continuous linear wire sizing on average with driver
resistances range from �� to ���� And we also observed ���
delay gain on average with load capacitances from �fF to
���fF�

� Conclusions

The major contribution of our work is describing a quadratic
relation between wire resistance and wire width for high�layer
global interconnect� and incorporating this model into the
non�uniform continuous wire sizing optimization process� Our
self�heating�aware optimal wire sizing formula is in a simple
linear form f�x� � ax� b� This result helps clarify the trends
of both continuous and discrete wire sizing� that the wire
width slope should be �atter if self�heating e�ect becomes
signi�cant� Compared to non�thermal�aware exponential wire
sizing� we obtain ����� delay gain on average�
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Figure �	 Comparison between conventional exponential wire�
sizing and our linear wire�sizing function�
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