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Abstract— An approach for layout-aware interconnect optimization is
presented. It is based on the combination of three sub-problems into
the same framework: gate duplication, buffer insertion and placement.
Different techniques to control the combinatorial explosion are proposed.

The experimental results show tangible benefits in delay that en-
dorse the suitability of integrating the three sub-problems in the same
framework. The results also corroborate the increasing relevance of
interconnect optimization in future semiconductor technologies.

I. INTRODUCTION

Circuit synthesis is a complex problem that cannot be faced as a
whole. For this reason, it is usually decomposed into sub-problems
that can be reasonably tackled by algorithms that can provide efficient
solutions for each of them. This decomposition leads to solutions far
from the optimum when the level of abstraction of some of the sub-
problems disregards important details at lower levels.

As minituarization evolves down to deep-submicron technologies,
the impact of layout details acquire increasing relevance, since
interconnect delays become dominant.

The work presented in this paper combines three different sub-
problems in the same framework in such a way that the loss of
information between logic and layout synthesis is reduced. The
combination is performed by iteratively providing feedback from
layout to logic synthesis and vice-versa. The three related sub-
problems are: gate duplication, buffer insertion and placement.

Why these three sub-problems?: First of all, they are closely
related, since they are at the boundaries between logic and layout
synthesis. Second, they can be combined with an affordable computa-
tional complexity. Incorporating more sub-problems, e.g. technology
mapping or routing, would prohibitively increase the complexity.

How to deal with the combinatorial explosion?: The combination
of placement with other techniques that modify the netlist can be
tackled by methods that perform Enginnering Change Orders (ECOs).
The approach proposed in this paper takes advantage of these methods
to implement the reciprocal feedback between placement and gate
duplication and buffer insertion.

Still, there is another source of combinatorial explosion: the
potential set of gate/buffer trees that can implement a net with high
fanout. To avoid an exponential search of candidates, the fanout points
of each net are ordered according to the layout information. The trees
are explored/generated using a dynamic programming approach that
creates subtrees of adjacent points according to the calculated order.
In this way, the set of gate/buffer trees are explored in a similar way
as tree-based technology mapping algorithms are executed.

Another important feature of the presented approach is that there
are no pre-defined insertion points for the new gates and buffers. In
principle, there is total freedom to create any tree. The new gates and
buffers are placed on top of the existing layout. Incremental detailed
placement is used to legalize the new layout.

∗This work was supported by grants from Intel Corporation, CICYT
TIN2004-07925-C03-01, European Social Fund, FI and a Distinction for
Research by the Generalitat de Catalunya.

II. PREVIOUS WORK AND CONTRIBUTIONS

Several approaches on buffer insertion [1], [2] and gate dupli-
cation [3], [4] have been proposed in the past using a load-based
model. Some approaches have also been integrated with technology
mapping [5].

Buffer insertion has also been incorporated in the routing step of
physical layout. Here, the goal of buffer insertion, also called repeater
insertion, is to minimize the length and the congestion of the wires
among the placed cells. Buffers tend to be inserted on free positions
to preserve the legality of the placement. Some of these techniques
are based on the dynamic programming approach proposed by Van
Ginneken [6], that solves the problem in polynomial time with
regard to the number of explored locations. Several extensions to this
algorithm have been proposed to improve the runtime, to explore
multiple candidates locations for the buffers [7], and to generalize
the algorithm to other objective functions, such us power consump-
tion [8]. A Fast buffer insertion technique (FBI) was proposed in [9].
It uses heuristics for predictive pruning and redundancy check. It also
supports inverter insertion and sink polarity. It reduces the complexity
of the conventional Van Ginneken’s approach to O(nlog2n) with
regard ot the number of feasible locations.

Another technique to achieve a buffered routing Steiner tree is a
simultaneous construction of a Steiner tree and buffer insertion. This
approach is more complex, since it has to deal with the Steiner tree
construction NP-hard problem. Many developed methods combine
buffer insertion with fast heuristics to compute Steiner trees, ie., A-
Tree [10] or P-Tree [11], to reduce the complexity.

In [12], the authors combine A-Trees with Van Ginneken’s al-
gorithm. The algorithm builds an A-Tree from sinks to source and
performs the buffer insertion from source to sinks with several partial
solutions stored in the tree. Another approach is presented in [13],
where the buffered Steiner tree is constructed from sinks to source
with a combination of LT-Trees [14] and P-Tree with a predefined
order of the sinks. This algorithm is optimal depending on the
order of the sinks but it has a high runtime complexity due to the
explosion of the exploration of feasible locations for the buffers and
the construction of P-Trees. Besides, the LT-Tree structure restricts
the creation of cascaded buffered trees. In [15], the search space of
possible locations is reduced taking into account the obstacles of the
layout. Although wire distances between locations are precomputed,
this approach still has a high complexity due to the exploration.

Finally, gate duplication has also been used in physical layout
design. In [16], an incremental time-driven placement with dupli-
cation is proposed. The article introduces the topic of feasible and
super-feasible region to place the duplicated node in order to create
monotonic critical paths. In the technique presented in [17], a more
aggressive duplication is performed. All the cells in the critical
path are duplicated and placed into a feasible position using an
arborescence tree embedding. Later on, a cell unification operation
is done to save area on the global circuit.
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Fig. 1. Example: (a) buffer insertion, (b) duplication, (c) combination of
both techniques.

BufDup (Net)
{Input: A mapped netlist Net}
{Output: A placed circuit C}

C := Placement and Timing Analysis (Net);
do

Critical Gates := Calculate Critical Gates (C):
while Critical Gates �= /0 ∧ cycle time not improved do

G := Extract Most Critical Gate (Critical Gates);
newGates1 := Duplication (G);
newGates2 := Buffer Insertion (G);
newGates3 := Duplication and Buffer Insertion (G);
NewGates := Select Best Solution (newGates1, newGates2, newGates3);
Insert Solution In Circuit (C, newGates);
Incremental Placement and Timing Analysis (C);
if New Worst Slack > Previous Worst Slack then

Undo Insertion (C, newGates):
end if

end while
while cycle time improved;
return C;

end;

Fig. 2. Algorithm for interconnect optimization.

A. Contributions

The focus of this paper is the optimization of the interconnection
delays taking physical information into account. Buffer insertion and
gate duplication are complementary techniques aiming at this goal.
An example is shown in Fig. 1(a,b), for a net that connects the
source cell S with the fanout cells { f1, · · · , f7}. Individually, each
technique contributes to improve the delay of the net, however the
combination of both (Fig. 1(c)) can lead to superior results. The
improvement can still be more tangible if physical information is
considered and, reciprocally, the changes produced by buffer insertion
and gate duplication have a positive impact by incrementally changing
the physical layout of the involved cells.

The main contributions of this paper are the following:

• An interconnect optimization approach that combines the explo-
ration of multiple Steiner trees for each net with the incremental
placement of the intermediate solutions. In this way, the gener-
ated buffers are not restricted to be placed to free spaces. How-
ever, a legal placement is still delivered after the optimization.

• The approach integrates gate duplication, buffer insertion and
placement in the same framework.

• A gate duplication technique based on a modified layout-aware
k-means algorithm for clustering [18].

• A dynamic-programming approach to inductively build Steiner
trees for buffer insertion. It is based on the approach proposed
in [13], with several improvements aiming at (1) the construction
of cascaded buffered trees, (2) the smart exploration of feasible
locations for the buffers and, (3) the support of gate sizing,
inverter insertion and polarity optimization.

III. ALGORITHM FOR INTERCONNECT OPTIMIZATION

We present a top-down description of the main algorithm (BufDup)
for interconnect optimization. The algorithm is presented in Fig. 2.
It receives a mapped netlist as input and produces a placed circuit

as output. Initially, cell placement is performed to provide physical
information during the interconnect optimization. Delay information
is calculated using the Elmore delay model [19]. The timing analysis
is performed by considering the physical location of the cells and the
Borah-Owens-Irwin (BOI) heuristic for Steiner trees [20]. Although
this heuristic is applied individually for each net and does not
take into account congestion, it provides a valuable fast lowerbound
estimation of the routing cost.

The outermost loop of the algorithm iterates as long as the critical
path is improved. At each iteration, the cells at the critical paths
are ordered according to their criticality, calculated as a combination
of their slack and their fanout. The worst negative slack is the
priority factor for optimization, however cells with similar fanout
are prioritized according to their higher fanout.

The innermost loop processes gates iteratively according to their
criticality. Three different solutions are calculated as shown in Fig. 1:
(a) by inserting buffers, (b) by duplicating the gate and, (c) by
duplicating the gate and inserting buffers after the duplication. The
details on how duplication and buffer insertion solutions are computed
will be described in the following sections. Each solution provides a
list of new gates to the circuit and has an estimated delay that affects
the critical paths of the circuit. The configuration with the best slack
time is selected and physically inserted in the circuit. Experimentally,
we have observed that duplication is mostly selected for gates with
high fanout, whereas buffers contribute to reduce the delay on long
wires.

The estimated slack time from the new inserted gates does not
guarantee the final selection, since the physical location of the new
inserted cells may overlap with the existing cells. For this reason, an
incremental placement is done to perform slight modifications on the
current placement and legalize the position of the new cells. Finally,
an incremental timing analysis is performed to check if the selected
solution, after legalization, improves the delay. If not improved, the
last cell insertion is undone.

IV. GATE DUPLICATION

Given a gate G, gate duplication aims at creating a pair of gates, G1
and G2, such that the original fanout of G is distributed between them.
Gate duplication is a well-studied problem [4], [21]. As mentioned
in Sect. II, the techniques recently proposed for gate duplication [17]
are restricted to legal solutions that do not change the placement
of the rest of the cells in the layout. In this section we present a
layout-aware gate duplication approach that can be later legalized by
incremental changes on the placement.

Clearly, gate duplication explores a trade-off between output and
input capacitance. Gates G1 and G2, individually, have a smaller
output capacitance than G, however the output capacitance of the
gates at their fanin increases. The contribution of gate duplication to
the performance of a circuit will depend on the particular instance
of the problem and the proposed solution.

The algorithm for gate duplication is described in Fig. 3. It is based
on the well-known k-means clustering algorithm [18]. This strategy
is commonly used in data mining where efficient algorithms were
proposed to process large quantity of data [22]. The complexity of this
algorithm is O(kni), where k is the number of clusters, n is the number
of points to be clustered, and i the number of iterations to converge.
In our case, k = 2 and n is the number of fanouts of the gate, which
is typically small. Experimentally, the algorithm converges very fast
when n is small, thus showing linear complexity on n.

The algorithm aims at clustering the fanout of G into two subsets,
one for G1 and another for G2. Initially, two fanout points are



Duplication (G)
{Input: A gate G to be duplicated}
{Output: Gates {G1,G2}}

C1,C2 := Coordinates of two fanouts of G;
while changes in C1 or C2 do

S1 := {Fanouts of G closer to C1};
S2 := {Fanouts of G closer to C2};
C1 := Center of gravity of S1;
C2 := Center of gravity of S2;

end while
Cin := Center of gravity of the fanins of G;
Place G1 at the mid-point between Cin and C1;
Place G2 at the mid-point between Cin and C2;
return {G1,G2};

end;

Fig. 3. Gate duplication algorithm.
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Fig. 4. Gate duplication: (a) Initial net, (b,c,d) evolution of the k-means
algorithm, (e) calculation of the locations for G1 and G2, (f) possible routing
after duplication.

arbitrarily chosen as the potential centers of the clusters and each
fanout is assigned to the cluster with the closest center. Iteratively,
the centers of each cluster are re-calculated at each iteration as the
centers of gravity of the components of each cluster. The calculation
stops when a fixpoint is reached.

Figure 4 depicts the evolution of the algorithm. A net with four
fanouts driven by gate G is depicted in Fig. 4(a). The gate only
has one fanin X . Figures 4(b,c,d) show the locations of C1 and C2
(shadowed circles) and the sets S1 and S2 at each iteration1. The
initial selected points are A and B (Fig. 4(b)), that classify the fanout
in two subsets: S1 = {A} and S2 = {B,C,D}. After re-clustering, point
B is moved to the cluster S1 and convergence is reached.

At the end of the loop, the fanouts are partitioned into the clusters
S1 = {A,B} and S2 = {C,D}. The location for G1 and G2 is now
calculated as the mid-point between the center of gravity of their fanin
(Cin) and the center of the clusters, respectively. In this particular case,
Cin coincides with the coordinates of the single fanin X .

A. Delay-oriented duplication

The previous method for gate duplication does not take into
account any timing information. To amend this unawareness, a
postprocess can be performed to re-cluster some nodes before the
final location of G1 and G2 is calculated. We next explain the strategy
used in our work.

After the clustering algorithm, G1 and G2 may have different
criticality according to their slack. Without loss of generality, let us
assume that G1 is less critical. Some of the least critical fanouts of
G2 that are physically closer to G1 can be relocated and assigned to
G1. In this way, the total load for G2 is reduced. This process can
be iteratively done until the criticality of G1 and G2 is balanced.

1To be precise, the figure shows the state of the loop after the calculation
of S1 and S2 and before the re-calculation of C1 and C2.
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Fig. 5. Buffer trees.

In our approach, we have implemented a greedy postprocess along
these lines. The details will not be described in this paper.

B. Discussion

The current clustering approach is layout-oriented, with a post-
process that aims at improving timing by some local re-clustering.
One might argue that this could be done the other way around: a
time-driven clustering and a layout-oriented postprocess. The initial
experiments immediately showed that the chosen approach is supe-
rior, since placement has an impact on timing, congestion and routing,
which results in better global results after layout.

V. BUFFER INSERTION

Given a gate G with high fanout, the problem of buffer insertion
consists of designing a tree of buffers2 that drives the fanouts and
minimizes the worst negative slack. Figure 5 depicts an example with
three different solutions for a gate G with four fanouts.

The number of buffer trees for n fanouts is enumerable but
extremely large. To reduce the exploration, we use different strategies.

Binary trees. Only binary trees are explored, in which each edge can
hold a different number of buffers at different locations, according
to their criticality. By only exploring binary trees we are not loosing
the chance of building k-ary trees. This can be achieved by inserting
no buffers at some edges of the tree, as illustrated in the solution
depicted in Fig. 5(c), where the buffer is driving three fanouts since
one of the sub-trees has no buffers.

Ordered trees. The number of possible binary trees with n leaf nodes
is3 T (n) = n! ·C2n−1. We remove the factor n! by imposing an order
in the leaves. In this way, the search is reduced to binary trees whose
traversal (pre- or post-order) gives the same order of the leaf nodes.
For the examples in Fig. 5, the depicted trees can be represented by
the following parenthesized expressions, respectively:

((AC)(BD)) ((AB)(CD)) (A(B(CD)))

Only the last two expressions have the same order at the leaves.

Which order? By imposing an order on the leaves, the search space
is drastically reduced, but some optimal solutions may be lost. For
this reason, it is important to choose good order for the exploration.
The order chosen in the proposed approach aims at designing layout-
aware trees as follows (see Fig. 6(a)):

The polar coordinates (angle and distance) of each fanout
with respect to the source node are calculated. The relative
position of the nodes is defined by their angle. The distance
is used only in the case that the angles are similar. The
first and last point in the order is determined by the pair
of adjacent fanouts with the largest angle between them.

2We will indistinctively use the term buffers to refer to inverting and non-
inverting buffers. The optimization of the polarity of the buffers will be briefly
discussed at the end of the section V-B.

3Ck is the k-th Catalan number, Ck = 1
k+1

(
2k
k

)
, and represents the number

of possible binary tree structures with k nodes (a tree with n leaves has 2n−1
nodes). The factor n! denotes all possible permutations of the leaves.
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A. Bottom-up construction of buffer trees

The exploration of binary trees for buffer insertion is performed
bottom-up, from the leaves (fanouts) to the root (gate). This strategy
poses a major problem in providing an optimal solution: the criticality
of each internal sub-tree of the net is not known until the complete
buffer tree has been constructed. For this reason, several solutions
are calculated for each sub-tree, each one characterized by a pair
(RT,Cin) that indicates the required time and the input capacitance
at the root. The solutions for the left and right sub-trees are combined
and provided as the solutions of the whole sub-tree.

In this section, the basic step to construct a tree from two sub-trees
is described. This step is illustrated in Fig. 6(b,c), where a tree T12
is built from the sub-trees T1 and T2.

The tree is built in two steps:

• Calculate the coordinates of the root R. Given the bounding box
of the leaves of both sub-trees, the root is the point of the box
closest to the source node. In case the source node is inside the
box, the root is the source node itself.

• The buffers between the root of the tree and roots of the sub-trees
are generated. This is done by a repeater insertion algorithm that
is next described.

B. Repeater insertion

The problem we want to solve is the following: given a library of
buffers and inverters and two points (source and sink) with a required
time for the sink, design a chain of buffers/inverters that maximize
the required time of the source.

This problem is similar to technology mapping for delay and we
use the approach presented in [14] for our problem. The approach
is simplified and adapted to the design of buffer/inverter chains. The
algorithm works in two steps:

1) The number of locations for repeater insertion is calculated.
This number is estimated assuming that the same kind of buffer
is used along the chain. With this assumption, the potential
locations are uniformly distributed along the wire using the
optimum number given by Bakoglu’s formula [23]

N =

⌊√
RwCw

RbCb

⌋

where the Rw, Cw, Rb and Cb are the resistance and capacitance
of the wire and the buffer, respectively. The calculation is done
using Rb and Cb of the second smallest inverter in the library.

2) A dynamic programming approach for repeater insertion is
executed. The algorithm works as a typical delay-oriented

Buffer Insertion (G)
{Input: The source gate G (assume the gate has n fanouts)}
{Output: A buffered Steiner Tree}

var:
Fanout[1 . . .n]: array of fanouts;
Trees[1 . . .n,1 . . .n]: Matrix of buffered trees;

Fanout := Sort Fanouts(G);
for f = 2 to n do

{Explore sub-trees with f fanouts}
for each pair (i, j) s.t. j− i+1 = f , 1 ≤ i, j ≤ n do

R := Root node for fanouts {i . . . j};
for k = i to j−1 do

{Create tree from sub-trees with fanouts {i . . .k} and {k +1 . . . j}}
for each pair (T1,T2) ∈ Trees[i,k]×Trees[k +1, j] do

B1:=Repeater Insertion (R, Root(T1));
B2:=Repeater Insertion (R, Root(T2));

T := Build Tree

(
R↗ B1 → T1
↘ B2 → T2

)
;

Trees[i, j] := Trees[i, j]∪{T};
Trees[i, j] := Select Subset of Best Solutions (Trees[i, j]);

return Best Solution (Trees[1,n]);

Fig. 8. Algorithm of buffer insertion.

technology mapping algorithm [14], from sink to source. For
each insertion point, a set of solutions is calculated. Besides
the buffers and inverters in the library, the wire (no buffer) is
also considered as a candidate for mapping.

Figure 7 illustrates an example of repeater insertion. The dotted
chain represents the set of potential points for insertion. At each
point, a set of solutions is stored. The chain at the bottom shows a
possible solution, in which some of the locations have been simply
substituted by wires.

When merging the solutions of the left and right sub-trees, chains
with only one buffer at the nearest location of the sink are typically
selected when the other sub-tree is critical. This phenomenon is
just an algorithmic approach equivalent to the critical sink isolation
technique proposed in [12].

Implementation notes:

• Two sets of solutions are maintained for each chain, one for each
polarity. These sets of solutions are propagated towards the root
of the tree to deliver the best solution for each possible polarity.

• The exploration of both polarities enables the possibility to
handle sinks with negative polarity and to apply source polarity
inversion. For example, a NAND gate can be substituted by an
AND gate (or vice versa) if the complemented polarity of the
buffered tree is more convenient.

• To avoid an explosion of solutions, a subset of points is only
preserved. The pruning heuristic is explained in Sect. V-D.

C. Exploration with dynamic programming

The main algorithm is described in Fig. 8. Initially, the order of
the fanouts is calculated. The rest of the algorithm calculates the
solutions for all possible ordered sub-trees, starting from the smallest
trees ( f = 2) and ending with the complete trees ( f = n).

Each location of the matrix Trees stores several solutions for a sub-
tree (only the elements at the upper triangle of the matrix are used).
Thus, Trees[i, j] stores all the solutions calculated for the sub-trees
with the leaves Fanout[i . . . j]. As an example, the sub-trees explored
for n = 5 are the following:

f = 2 (12) (23) (34) (45)
f = 3 (1(23)) ((12)3) (2(34)) ((23)4) (3(45)) ((34)5)
f = 4 (1(234)) ((12)(34)) ((123)4) (2(345)) ((23)(45)) ((234)5)
f = 5 (1(2345)) ((12)(345)) ((123)(45)) ((1234)5)



For instance, the solutions for the tree (1(234)) calculated when
f = 4 are obtained by combining the fanout 1 with the solutions of
the sub-trees with fanouts {2,3,4} calculated when f = 3, i.e. (2(34))
and ((23)4).

For every combination of sub-trees, repeaters are inserted from
the root of the tree to each root of the left and right sub-trees,
respectively. The insertion is done using the approach described in the
previous section. The combination of both solutions (Build Tree)
also calculates the required time and the input capacitance at the root.

To avoid an explosion of solutions, only a subset of them
are kept for each sub-tree. This is performed by the procedure
Select Subset Solutions. The number of solutions has a
direct impact on the runtime and the accuracy of the exploration.
The strategy for this selection is discussed in the next section.

At the end of the algorithm, the solutions for the complete tree are
stored in Trees[1,n]. The best solution is returned.

D. Pruning solutions

During the exploration of solutions for sub-trees and repeaters,
several solutions are calculated with different characteristics of re-
quired time and input capacitance. To reduce the complexity of the
exploration, only a subset of points is selected for further exploration.
We next describe an approach that has been proven to be accurate.

First of all, only the Pareto points are represented. If we have n
points and we want to select k < n, a k-means clustering algorithm is
executed (the same strategy used on gate duplication [18]), starting
with k distributed points along the curve as initial centers. After
clustering, the points closest to the centers of the clusters are selected.

E. Nets with high fanout

The computational complexity can be high for the optimization of
nets with very high fanout (e.g. more than 30 fanouts). These cases
do not occur very often after fanout optimization, but can drastically
delay the execution of a particular instance of the problem.

To alleviate this problem, a pre-clustering strategy is used to
partition the fanouts into three clusters, connected to the root node
with a buffer. This approach allowed to handle some specific instances
with high fanout without any significant loss of performance.

VI. EXPERIMENTAL RESULTS

To validate the approach presented in this paper, three experiments
have been conducted: (1) comparison with FBI, (2) results on public
benchmarks, and (3) results on future semiconductor technologies.

The 0.13µm vxlib ALLIANCE library [24] has been used for
technology mapping. It includes three buffers and four inverters. The
technological parameters have been scaled to different technologies
using the Predictive Technology Model [25]. For 65nm, the wire ca-
pacitance and resistance are 2.71Ω/µm and 0.19 f F/µm, respectively,
that approximately correspond to M2/M3 metal layers of the 65nm
technology described in [26].

The experiments have been run on the largest netlists from the
ISCAS’99 suite. The initial netlists have been obtained by using the
tree-mapping algorithm in SIS, including the fanout optimization step.
A square layout with 25% whitespace has been created, with the
terminals uniformly distributed around the bounding box.

Fastplace [27] has been used to calculate the initial placement. At
each iteration, the detailed placer is used for incremental placement.
For the final timing analysis, labyrinth [28] has been used to estimate
the routing trees and calculate the delays using the Elmore model.

Iter. fan. Wire Initial FBI BufDup
Length Delay buf inv −∆D buf inv −∆D

1 67 6680 8531 3 0 901 3 0 1824
2 76 6168 8246 11 16 1130 0 3 1297
3 17 5332 7945 13 0 123 4 1 126
4 35 6024 7870 12 23 394 3 0 313
5 15 6313 7751 6 7 548 6 8 619
6 28 6176 7732 12 10 227 4 2 227
7 27 5508 7692 13 8 202 2 3 202
8 15 8871 7677 13 3 43 6 11 43
9 11 4550 7612 5 1 18 4 9 22

10 14 5040 7590 2 0 81 1 1 89
Tot. 90 68 3668 30 38 4762

TABLE I
COMPARISON OF FBI AND BUFDUP FOR INDIVIDUAL TREES.

A. Comparison with FBI (Fast Buffer Insertion)

The first experiment compares BufDup with FBI 1.0 with the cost
package [9]. To the best of our knowledge, this is the only public
domain tool based on Van Ginneken’s approach that supports inverter
insertion and sink polarity. This experiment has been designed to
illustrate the impact of the features of BufDup. The Steiner trees
used on this experiment correspond to the output wire of the
selected critical gate during the first ten iterations of BufDup on
the b14 netlist. For FBI, the Steiner tree is computed using the
BOI heuristic [20]. The potential locations for the buffers are the
intersection points of the tree. Additional distributed locations have
also been included for long wires using the number of buffers defined
by Bakoglu’s formula [23].

The results are presented in Table I. For each tree, it reports the
number of fanouts, the total wirelength of the estimated routing and
the initial delay (in ps) of the tree using the estimated routing.

For a fair comparison, the BufDup has only been used for buffer
insertion (no gate duplication). For each method, the number of
buffers, inverters and improvement in delay (−∆D) are reported.

Only in iteration 4, FBI obtains a better delay reduction than
BufDup. In the rest of trees, BufDup obtains a better result or similar.
The improvements are significantly better in the first trees (the most
critical), with high fanout. The improvements are also tangible in the
number of buffers and inverters produced by each method.

The improvements are mainly due to two reasons: (1) the wider
exploration of trees in BufDup (binary trees with dynamic program-
ming) and (2) the capability of flipping the polarity of the source
gate (see the implementation notes in Sect. V-B).

B. Academic benchmarks

Table II shows the final results obtained by three methods: (1) FBI,
(2) BufDup without gate duplication (label Buf) and (3) BufDup. The
parameters of the netlist before buffer insertion are reported in the
columns with label Initial.Tree-mapping with fanout optimization
has been run on these netlists before BufDup. The experiments have
been run for a 65nm technology. The last row of the table shows a
normalized average of the results. The reported delay corresponds to
the one of the critical path in the netlist. Several conclusions can be
drawn:

• The layout-aware interconnect optimization reduces delay by
17% with regard to the original netlist after technology mapping
and fanout optimization.

• The wide exploration of BufDup (including incremental place-
ment) has a tangible impact in the design of the Steiner trees
(delay from 0.91 to 0.83 with regard to FBI).

• The combination of gate duplication with buffer insertion con-
tributes to improve delay in something more than 2% at the
expense of 1% area increase.



Netlist Gates Critical-path delay (ps) Global routing wirelength (λ ·10−3) Runtime (sec)
Initial FBI Buf BufDup Initial FBI Buf BufDup Initial FBI Buf BufDup FBI Buf BufDup

b14 4936 5319 5128 5297 8505 7763 7725 7429 2828 2850 2970 2996 94 105 195
b14 1 4490 4616 4638 4570 6018 5389 5381 5184 3654 2648 2731 2922 50 216 34
b15 7386 7906 7526 7562 8102 7754 7743 7657 5560 5718 5915 5747 48 154 394

b15 1 7189 7628 7356 7448 6767 6292 6135 5632 4983 5214 5248 5015 79 114 227
b17 23358 23515 23610 23603 16286 14814 13831 13860 26588 19943 20515 20522 161 487 391

b17 1 22345 23083 22709 22821 6796 6156 5821 5789 15167 15042 15080 15022 111 347 518
b20 10103 10769 10417 10505 10406 9592 9449 8628 6645 6728 6654 6606 368 311 357

b20 1 8890 9037 8970 8974 8403 7911 7860 7948 5530 5310 5443 5504 51 63 72
b21 10689 10971 10920 10877 9513 9352 9449 9156 6934 6803 7352 7233 98 210 189

b21 1 9005 9142 9122 9110 9978 9039 8581 8670 9833 6527 7419 7240 47 107 119
b22 15233 15684 15466 15591 9666 8808 8536 8426 9447 9756 9776 9816 127 265 356

b22 1 13325 13830 13542 13699 9350 8531 8563 8117 8094 8020 7962 8089 88 157 306
s35932 8432 8725 8835 9010 5346 4373 1912 1909 5905 5944 6755 6886 144 250 358
s38417 10606 11008 10954 10868 5310 4419 3707 3750 10693 7084 7743 7916 99 180 198
s38584 9723 9883 10137 10226 5338 4804 2337 2345 5258 5112 6194 6137 33 205 267
Norm. 1.00 1.03 1.02 1.03 1.00 0.91 0.85 0.83 1.00 0.89 0.93 0.93 1.00 1.99 2.49

TABLE II
RESULTS FOR DIFFERENT INTERCONNECT OPTIMIZATION METHODS (65NM TECHNOLOGY).

Tech. Gates Critical-path delay
Init. FBI Buf BufDup Init. FBI Buf BufDup

65nm. 1.00 1.03 1.02 1.03 1.00 0.91 0.85 0.83
45nm. 1.00 1.04 1.03 1.02 1.00 0.87 0.82 0.81
32nm. 1.00 1.06 1.04 1.04 1.00 0.80 0.76 0.76
22nm. 1.00 1.08 1.06 1.07 1.00 0.69 0.64 0.63

TABLE III
IMPACT OF INTERCONNECT OPTIMIZATION ON FUTURE GENERATIONS.

On average, the wirelength after global routing is also reduced for
FBI and BufDup. The reduction is more important for FBI. Although
not reported in the table, labyrinth also showed a slight improvement
in congestion for all examples. In one case (b17), the congestion
was reduced by 79% when using BufDup.

C. Future semiconductor technologies

Table III summarizes the results of BufDup on several future
technologies from 65nm to 22nm. The parameters for each technol-
ogy have been scaled using the interconnection calculator in [25].
The table shows the normalized sums of delay and area of the
netlists used in the previous section. The results corroborate that
interconnect optimization will acquire an increasing relevance in
future technologies due to the dominant role of wire delays. Efficient
and accurate buffer insertion approaches will be crucial to reduce
critical-path delays. As an example, BufDup was able to reduce the
delay by 37% on average for a 22nm technology.

VII. CONCLUSIONS

An integrated approach for layout-aware interconnect optimization
has been presented. The wide exploration of buffer trees using
an efficient dynamic programming approach and the incremental
legalization of solutions has a tangible impact in the quality of
the solutions. The results have also shown the relevant role of
interconnect optimization in future technologies.
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