
Computing Synchronizer Failure Probabilities
Suwen Yang Mark Greenstreet†

Department of Computer Science, University of British Columbia
{swyang,mrg}@cs.ubc.ca

Abstract— System-on-Chip designs often have a large number
of timing domains. Communication between these domains
requires synchronization, and the failure probabilities of these
synchronizers must be characterized accurately to ensure the
robustness of the complete system. We present a novel approach
for determining the failure probabilities of synchronizer circuits.
Our approach using numerical integration to account for the non-
linear behaviour of real synchronizer circuits. We complement
this with small-signal techniques to enable accurate estimation
of extremely small failure probabilities. Our approach is fully
automated, is suitable for integration into circuit simulation
tools such as SPICE and enables accurate characterization of
extremely small failure probabilities.

1. Introduction
Large integrated circuit designs are being divided into an

increasing number of separate time domains. There are several
motivations for this trend. First, distributing a global clock
across a large chip with low skew is difficult, power intensive
and often unnecessary. Second, the use of independently
designed IP (“Intellectual Property”) blocks results in modules
with different performance requirements and clock speeds.
Third, power management techniques such as dynamic voltage
scaling introduce even more combinations of clock frequencies
into a design. Finally, interfaces to networks, graphics and stor-
age devices, memory, and other processors can each require a
separate clock. This proliferation of timing domains leads to a
growing number of on-chip synchronizers at their interfaces.
While it is impossible to build a perfect synchronizer [1], the
probability of failure drops roughly exponentially with the
time allotted for synchronization [2], [3]. Calculating these
failure probabilities accurately is an essential part of multi-
timed design: underestimating the failure probability leads
to an unreliable design [4]; conversely, overestimates lead
to excessive communication latency and lower system-level
performance [5]. This paper presents an efficient and accurate
method for determining synchronizer failure probabilities.

The traditional analysis of synchronization failure uses a
small-signal linear approximation of the dynamics of the
bistable circuit near its metastable equilibrium [6, chap. 7.5].
Such linearization neglects large signal behaviours that occur
as the synchronizer first approaches its metastable equilibrium
and in the coupling between stages in multi-stage synchro-
nizers. Thus, small-signal analysis is useful for gaining an
intuitive understanding of synchronizer operation, but it does
not provide accurate estimates of failure probabilities.

†This research has been supported by grants from the BC Innovation
Council, Intel, NSERC, and SUN Microsystems.

Simulation based on numerical integration is the most
prevalent way to analyse non-linear circuits. However, the
acceptable failure probabilities for real synchronizers are
extremely small, and the difference between an input that
causes a failure and one that leads to correct resolution is less
than the resolution of double-precision floating point numbers.
Furthermore, the dynamics of synchronizer circuits lead to
numerical instability in the integration routines so that the
accuracy of the simulator is much less than the floating point
resolution. Thus, simulation is an essential tool for circuit
design, but simulations cannot establish the very low failure
probabilities required for real designs.

Instead of using simulation or analysis, it is also possible
to experimentally measure the failure probability of a syn-
chronizer after it has been fabricated. In [7], Kinniment et al
describe how they combined a clever experimental set-up with
careful statistical accounting to measure the failure probabil-
ities of a 74F5074 flip-flop down to 10−12 (assuming a 100
MHz clock, and uniformly distributed input arrival times), cor-
responding to a MTBF (Mean Time Between Failure) of about
three hours. They showed that the actual MTBF of the flip-
flop was less than that predicted by the simple, linear model
by more than a factor of 20000. This large discrepancy arises
from non-linear effects in the coupling between the master and
slave stages of the flip-flop, Similar measurements and results
are presented in [8], [9]. The physical data that can be provided
by these kinds of experiments is valuable for validating any
computational approach for analysing metastable behaviour.
However, such physical measurements can only be performed
after the synchronizer has been fabricated, and it must be
possible to observe the synchronizer from off-chip. Designers
need to be able to determine failure probabilities and evaluate
design trade-offs before their circuits are fabricated. Thus, we
need a computational approach for analysing these circuits.

This paper presents a novel method for computing the fail-
ure probabilities of synchronizers. We combine small-signal,
linear analysis with large-signal, non-linear simulation to accu-
rately compute failure probabilities that are much smaller than
the floating point precision. Section 2 presents the dynamical
systems perspective that we use for analysing metastability and
describes the limitations of traditional methods based on small-
signal analysis or numerical integration. Section 3 shows how
we combine small-signal analysis with numerical integration
to obtain a robust, fully-automated method for computing
failure probabilities. In Section 4, we illustrate our approach
by computing the failure probabilities for several synchronizer
circuits.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



data

m3

m4

i4x x

data

clock

out

m2

m1

i0

i1

i2i3
out

Vdd

Vdd

x

x

0
0

clock goes low

Metastable
Equilibrium

Separator

A latch circuit A Metastable Trajectory

Fig. 1. A Simple Latch and Its Metastable Behaviour

2. Synchronization
Consider the transparent latch shown in the left part of

Figure 1. Metastability can occur if the data input changes at
roughly the same time as the clock input makes a high-to-low
transition. For example, the right half of Figure 1 illustrates
how the latch can function if the data input makes a rising
transition as the clock falls. In response to the high value on
data, x starts to fall, which causes x to rise with some lag.
Metastability occurs if x and x have roughly the same voltage
when the clock input falls. For simplicity, assume that inverters
i1 and i2 are identical. Let Vms be the voltage at which the
inputs and outputs of these inverters are equal in equilibrium.
This balance point is the metastable equilibrium of the latch.

When the trajectory is sufficiently close to the metastable
point, it can be accurately approximated using a linear model
for the circuit dynamics. Let y be a vector with an element
for each non-input node of the circuit, and let in be the vector
of inputs. An ODE (ordinary differential equation) model for
circuit is given by

ẏ = f(y, in), (1)

where ẏ is the time derivative of y, and f is the derivative
function. Let yms denote the metastable equilibrium for the
synchronizer. For y close to yms we get:

ẏ ≈ A(yms,in) · (y − yms) + ẏms (2)

where the A(yms,in) matrix is the Jacobian of f at (yms, in).
Because yms is an equilibrium point, ẏms = 0. The traditional
textbook analysis [6, chap. 7.5] assumes that in is constant
during the time that metastability is a concern. For typical
synchronizer circuits, this is a reasonable approximation as
long as the clock signal is constant. We then get

y(t) ≈ yms + et·Ams · (y(t0) − yms) (3)

If y is n-dimensional, then the matrix A(yms,in) has n − 1
negative eigenvalues and one positive one. The eigenvectors
for the negative eigenvalues span the n − 1 dimensional
space corresponding to the separator near yms; these decay
exponentially with time, bringing the trajectory closer to
the metastable equilibrium. The eigenvector for the positive
eigenvalue corresponds to the separation of trajectory from the
separator – this is the component that grows exponentially with
time, eventually bringing the synchronizer to a well-defined
logical state. Letting λ+ denote the value of the positive
eigenvalue of A(yms,in). If the state of the synchronizer at

time t0 is uniformly distributed in a small region around yms,
then the probability that the synchronizer has not resolved by
time t decreases as e−λ+t.

As noted earlier, the simple linear model from Equation 3
fails to capture the behaviour of real synchronizers. There are
two main reasons for this. First, when a latch goes opaque,
its internal state may be near the separator between the stable
basins of attraction for the latch but still a significant distance
from the metastable equilibrium. The right side of Figure 1
illustrates this where the trajectory is along the separator but
below the metastable equilibrium when the clock goes low.
Second, multi-stage synchronizers resolve metastability over
several clock periods: with each successive edge of the clock,
the metastable behaviour can moves from one stage of the
synchronizer to the next, eventually leading to a failure at the
output. These large signal swing activities violate the small
signal assumptions of linear analysis.

Numerical integration provides an alternative to small signal
analysis. For example, HSPICE provides a bisection command
to search for metastable equilibria. With bisection, a user
can choose two input transition times such that the latch
settles high for an input transition at the first time and low
for the second. Then, the bisection routine searches for the
input transition time that causes the circuit to remain in an
unresolved, metastable condition for a prolonged time.

Bisection provides a method for calculating MTBF. Let’s
say that a design allows time ts for the output of the
synchronizer to settle. Let tearly(ts) and tlate(ts) be the
earliest and latest transition times respectively for the input
that cause the output to take at least ts to settle. Define
∆tin = tlate(ts) − tearly(ts). In words, ∆tin (ts) is the width
(in seconds) of the window of input events that cause the
synchronizer to fail when given time ts to settle. As suggested
by the linear analysis above, ∆tin (ts) decreases exponentially
for typical synchronizers as ts increases. If the clock frequency
is fc, the rate of input transitions is fd, and the times of input
events are uncorrelated with the clock, we get

MTBF(ts) = (fcfd∆tin (ts))−1. (4)

Given a value for ts, we can use simulation and bisection
to compute tearly(ts) and tlate(ts). Using SPICE or similar
models, the non-linearities of the circuit are taken into account,
overcoming the limitations of analysis based on small-signal
models. However, designers typically need very small MTBFs,
often specified in the millions of years or more. If fd is 1GHz,
then to achieve a MTBF of one million years, ∆tin must be
less than 10−22(1/fc); this is beyond the numerical resolution
of a simulator using double-precision numbers. Furthermore,
the ODE for the synchronizer is numerically unstable near a
metastable equilibrium to the positive eigenvalue, λ+ of the
Jacobian. Thus, the accuracy of a numerical integrator will be
much less than the numerical resolution of the machine. In the
next section, we show how small-signal, linear analysis can be
combined with large-signal numerical integration to compute
failure probabilities accurately for very large MTBFs.



3. Combining Large- and Small-Signal
Analysis

Our method for computing synchronizer failure probabilities
is based on two observations. First, the size of the window of
input events for which the synchronizer fails, ∆tin decreases
exponentially with the amount of time that the synchronizer
has to settle, ts. Thus, the trajectories corresponding to input
events at tearly(ts) and tlate(ts) will be extremely close to
each other during the initial part of the simulation, only
diverging from each other when the metastable condition is
finally resolved. Second, MTBF depends on the difference
between tearly(ts) and tlate(ts), the exact values of tearly(ts)
and tlate(ts) are not critical. Our approach calculates this
difference, ∆tin , directly, and avoids the “small difference of
large numbers” problem associated with existing simulation
based techniques for analysing metastability.

3.1. Restarting Bisection
Our approach extends the traditional bisection approach.

For simplicity, we describe our algorithm for a synchronizer
whose data input makes a low-to-high transition. The analysis
for transitions in the other direction is equivalent. Initially,
we start with times tH0 and tL0 such that the synchronizer
settles high when the input transition for data occurs at time
tH0 and settles low when the transition is at time tL0 . The
times tH0 and tL0 are provided by the designer; they may
be widely separated; so finding such times is not difficult.
Using bisection, we find a small interval, [tH1 , tL1 ] such that
the synchronizer settles high if the input transition occurs
at time tH1 and low if it occurs at tL1 . We keep the gap
between tH1 and tL1 large enough that the trajectories for
these two conditions are clearly distinguished by the numerical
integrator.

Rather than further bisecting the interval of transition times
for data, we restart the simulation at a later time. Let
V1(tin , t) give the state vector (voltage on each node of the
circuit) at time t when the input changes at time tin . We find
a time, t1, such that for tH1 < tin < tL1 and 0 ≤ t ≤ t1

V1(tin , t) ≈ tL1 − tin

tL1 − tH1

V1(tH1 , t) +
tin − tH1

tL1 − tH1

V1(tL1 , t) (5)

Our algorithms chooses a value for t1 that is small enough
for the accuracy of the linear approximation to be acceptable
and large enough for the analysis to make progress. Section 3.3
describes the selection of t1 in greater detail. In the following,
let VH1 = V (tH1 , t1), and VL1 = V (tL1 , t1).

We now perform bisection on the interval [VH1 , VL1 ]. Let
α2 ∈ [0, 1] be the bisection parameter; set the initial voltage
state of the circuit to Vα2 = (1 − α2)VH1 + α2VL1 and the
initial time to t1; model the data input with a transition at
time tα2 = (1 − α2)tH1 + α2tL1 . We bisect on α2 to find a
small interval, [αH2 , αL2 ], such that the synchronizer settles
high when simulated from the initial state VαH2

for αH2 and
low when simulated from VαL2

for αL2 . Let V2(tα2 , t) give
the state vector at time t when simulated from an initial state

1

4

0

4

42
5

2

5

1

2

3

1 4

2

3

1

0
3

3

L

V

L

VH

VH

VH

voltage interval

0 t1

V

time interval numerical integration

time
t2 t3 t4

tH
tH

t tL
L

H

VL

V

V VH

VL

VL

L

L

VH

VH

VL

VH

V

Fig. 2. The Evolution between intervals

Vα2 at time t1. We now find a time, t2, such that for αH2 <
α2 < αL2 and t1 ≤ t ≤ t2

V2(tα2 , t) ≈ αL2 − α2

αL2 − αH2

V2(tαH2
, t) +

α2 − αH2

αL2 − αH2

V2(tαL2
, t) (6)

Section 3.3 describes the selection of t2 in more detail. The
points V2(tαH2

, t2) and V2(tαL2
, t2) are the endpoints of an

interval that we can use for further bisection.
Figure 2 illustrates our repeated bisection method. We write

VHi−1 and VLi−1 for the endpoints of the interval that we use
for starting the ith round of bisection. We write αHi

and αLi

for the interval that we reach at the end of the ith round of
bisection, V ′

Hi
and V ′

Li
for the corresponding voltage points,

tHi
and tLi

for the corresponding input transition time. We
have for i ≥ 2:

V ′
Hi

= (1 − αHi
)VHi−1 + αHi

VLi−1

V ′
Li

= (1 − αLi
)VHi−1 + αLi

VLi−1

tHi
= (1 − αHi

)tHi−1 + αHi
tLi−1

tLi
= (1 − αLi

)tHi−1 + αLi
tLi−1

VHi
= Vi(tαHi

, ti)
VLi

= Vi(tαLi
, ti)

(7)

where Vi(tα, t) is the voltage state reached at time t starting
from an initial voltage of (1−α)VHi−1 +αVLi−1 at time ti−1.
Thus, VHi

= Vi(tαHi
, ti) and VLi

= Vi(tαLi
, ti). Because we

choose ti to be small enough to allow for an accurate linear
approximation of Vi we have

Vi(tα, ti) ≈ αLi
−α

αLi
−αHi

VHi
+ α−αHi

αLi
−αHi

VLi
. (8)

Rather than attempting to simulate an entire trajectory from
the critical transition of the data input to the resolution of
metastability, our method divides such trajectories into multi-
ple segments. The dynamics of metastable circuits ensures that
trajectories that resolve to different logical states will diverge
exponentially with time. While this divergence causes serious
stability problems when trying to find metastable trajectories
by numerical integration alone, we use the divergence to find
intervals for restarting our bisection that are larger than their
predecessors. Because these divergent trajectories are initially
quite close to each other, we can build linear maps from the
trajectories at each step of our computation back to trajectories
in earlier steps. The next section describes how these mappings
allow us to compute failure probabilities accurately.



3.2. Computing Bounds for ∆tin

Using Equation 4, it is sufficient to compute ∆tin (ts) to
determine the failure probability of a synchronizer that has ts
time units of settling time. For each bisection step, we find
trajectories for which metastability takes longer and longer to
resolve. These correspond to larger values for ts and smaller
values for ∆tin . The value of ts can be observed directly from
the simulation: we simply note that time of the corresponding
output transition (e.g. the time that the output signal crosses
Vdd/2). This section describes how we compute ∆tin .

We first consider the case where we can observe when the
synchronizer settles low by observing its output. In this case,
in bisection phase i, we compute V ′

Hi
as described above.

From the simulation, we can determine ts for this trajectory;
we’ll call this ts,i in the following. We then use bisection to
find V ′

Li
to have the same settling time as V ′

Hi
. We now need

to find ∆tin corresponding to ‖V ′
Hi

− V ′
Li
‖.

Let tH,i be the time of the transition of the data input that
leads to state V ′

Hi
at time ti, and let tLi

be the input transition
time that leads to state V ′

Li
. By definition ∆tin (ts,i) = tLi

−
tHi

. The difference between tLi
and tHi

will be less than the
floating point resolution of the machine for values of ∆tin that
correspond to acceptable MTBFs. To calculate this difference,
we note that the voltage interval at time ti−1 that corresponds
to interval (V ′

Hi
, V ′

Li
) at time i has width

‖V ′
Hi−1

− V ′
Li−1

‖ ‖V ′
Hi

− V ′
Li
‖

‖VHi−1 − VLi−1‖
We map the width of the voltage interval at time ti back to
the original time interval to obtain

∆tin (ts,i) = (tL1 − tH1)
∏i

j=1

V ′
Li

−V ′
Hi

VLi−1−VHi−1
(9)

For some synchronizers, the outputs remain unchanged in
response to a low-to-high input transition that settles low. In
this case, we cannot observe the time at which the synchronizer
settles low, and we replace V ′

Li
in Equation 9 with V ′

Mi

where V ′
Mi

is the state at time i for the “perfectly” metastable
trajectory. Although we cannot determine the exact value for
VMi

, we can compute accurate estimates as described below.
For i ≤ j, let Back i,j map a voltage from the segment that

was used to start the jth round of bisection, i.e. (VHj
, VLj

),
back to the corresponding voltage on the segment (VHi

, VLi
).

Inverting Equations 5 and 8 we get:

Back i,j(V ) = V, if j = i

= Back i,j−1

(
‖VLj

−V ‖V ′
Hj

+‖V −VHj
‖V ′

Lj

‖VLj
−VHj

‖

)
, if j > i

(10)

For any j, V ′
Mj

∈ (V ′
Hj

, V ′
Lj

). Furthermore for j > i,
V ′

Mi
∈ (Back i,j−1(V ′

Hj
),Back(V ′

Lj
)). In other words, each

successive round of bisection provides exponentially tighter
bounds for the location of V ′

Mi
. We use the values of V ′

Hk
and

V ′
Lk

for the final round of bisection, k, to compute bounds
on V ′

Mi
. These in turn provide lower and upper bounds for

∆tin (ts,i).

3.3. Implementation Issues
We implemented the computation described above using

MATLAB. We used the simple, short-channel transistor model
from [10, chap. 2.5.2] and adjusted the model parameters so
that inverter transition times matched those from HSPICE
for the 0.18µ TSMC CMOS process. We used MATLAB’s
ode45, a fourth-order Runga-Kutta integrator, for numerical
integration.

Our algorithm has an inherent trade-off between the ac-
curacy of the integrator and the accuracy of the linear ap-
proximation. If we continue bisection to produce a very small
segments for (V ′

Hi+1
, V ′

Li+1
) then the linearization will be

very accurate, but the results will be sensitive to errors from
the integrator. If we use a larger interval, then linearization
error will dominate. In our implementation, we bisect until
we produce a segment for (V ′

Hi+1
, V ′

Li+1
) this is roughly one-

tenth the length of (VHi
, VLi

).
A similar trade-off occurs in the choice of the ti’s. Using

larger values reduces the number of rounds of bisection
required to reach a pre-specified ts or ∆tin , thus reducing
the time for the algorithm to run and the impact of integration
error. On the other hand, large values for ti lead to larger
linearization errors. In our implementation, we integrate three
trajectories at the end of each bisection round. These start
from V ′

Hi+1
, V ′

Li+1
, and (V ′

Hi+1
+ V ′

Li+1
)/2 respectively. At

each time step of the integration, we compare the integrator’s
value for the trajectory starting from (V ′

Hi+1
+ V ′

Li+1
)/2 with

the value obtained by linear interpolation from the other two
starting points. We chose ti+1 as the largest time for which this
error is less that 2% of the magnitude of the voltage vectors.

Any method that relies on numerical integration for
analysing metastability must address the instability that arises
from the positive eigenvalue of the Jacobian, λ+. The
(VHi

, VLi
) segments are parallel to the corresponding eigen-

vector. Thus, the calculation of ‖VLi
− VHi

‖ is susceptible to
this instability. Instead of calculating the difference explicitly,
we compute the small signal sensitivity of the circuit along a
trajectory from ti to ti+1. In particular, we augment the ODE
from Equation 1 with a matrix S(t) where

Ṡ = (Jacf(y))S
S(ti) = I

(11)

where Jac is the Jacobian operator. We now have that
S(ti+1)(i, j) = ∂yi(ti+1)/∂yj(ti). This sensitivity matrix
allows us to calculate the ratios,

V ′
Li

− V ′
Hi

VLi−1 − VHi−1

from Equation 9 without numerical differencing. Our experi-
mental results show that our method is very robust, and we
expect to prove this using standard error analysis techniques
in future work.

4. Results
We tested our algorithm by analysing the failure probabili-

ties of chains of synchronizers. Figure 3 shows the implemen-



clock1

q1

q1 q2

clock2

clock1

q1

q1 q2

q2

clock2

data

Simple chain

Metastability Filters

data

Chain with ‘‘metastabiity filters’’

Fig. 3. Synchronizer Chains

0.5 1 1.5 2 2.5

x 10
−9

−50

−45

−40

−35

−30

−25

−20

−15

setting time, t
s

in
pu

t w
in

do
w

, l
og

10
(∆

t in

(t
s))

 

 
1 stage simple synchronizer
2 stage simple synchronizer
3 stage simple synchronizer
4 stage simple synchronizer

Fig. 4. ∆tin (ts) vs. ts for the simple synchronizer chain

tations that we compare. The chain on the top uses simple
inverters to couple the output of one latch to the input of the
next. The chain on the bottom uses a “metastability filter”
where the n-channel transistors in the filter remain in cut-
off until two sides of the cross-coupled inverter pair differ
by a n-channel threshold. This ensures that the latch output
does not change until metastability has resolved. For all of
our measurements, we use a clocks with a period of 1.5ns and
a 50% duty cycle. The phase for each latch in the chain is half
of a period later than that for the previous stage. We “freeze”
the clocks when the final stage of the chain goes opaque so
we can observe settling times greater than the clock period.

Figure 4 plots the input window, ∆tin (ts), as a function
of the output settling time, ts, for the chain coupled with
simple inverters. We calculate the settling time from the clock
edge that makes the first latch in the chain opaque to facilitate
comparison of chains of different numbers of latches. For the
multistage chains, the curve drops below the straight line that
would be predicted by a simple, small-signal analysis. In a
n-stage synchronizer chain, an input transition first affects
the output when latch n − 1 goes opaque and latch n goes
transparent. At this time we can observe the metastability of
latch n − 1. Half a clock cycle later, latch n goes opaque,

0.5 1 1.5 2 2.5

x 10
−9

−50

−45

−40

−35

−30

−25

−20

−15

settling time, t
s

in
pu

t w
in

do
w

, l
og

10
(∆

in
(t

s))

 

 
hspice simulation data
model generated data

Fig. 5. ∆tin (ts) vs. ts for a one-stage, simple synchronizer

0.5 1 1.5 2 2.5 3 3.5

x 10
−9

−45

−40

−35

−30

−25

−20

−15

settling time, t
s

in
pu

t w
in

do
w

, l
og

10
(∆

t in

(t
s) 

)

 

 
1−stage filtered synchronizer
2−stage filtered synchronizer
3−stage filtered synchronizer
4−stage filtered synchronizer
2−stage simple synchronizer
4−stage simple synchronizer

Fig. 6. Comparing the Two Synchronizer Designs

and the synchronizer remains in an unresolved state if this
latch becomes metastable as well. This is the “back edge
effect” described in [7]. Whereas [7] observed a positive
back edge (increased delay) for the 74F5074 flip-flop, our
synchronizer exhibits a negative back edge. We conjecture that
the inverters coupling the stages have greater gain-bandwidth
products than the cross-coupled pairs for the transistor sizes
that we simulated.

Figure 5 shows ∆tin versus ts for a single-stage syn-
chronizer. Here, we compare with values calculated using
HSPICE’s bisection command. In the figure, the circles are
the results from HSPICE simulations and the diamonds were
calculated with our approach. We find that in the range where
HSPICE can compute a result, the two agree quite well.
However, HSPICE can only determine ∆tin for this design
down to 0.06 femtoseconds which occurs with ts = 0.48ns.
If fc and fd are both 1GHz, this corresponds to a MTBF
of about sixteen milliseconds. The numerical limitations of
HSPICE prevent it from validating longer MTBFs or from
simulating the transfer of metastability between latches in a
synchronizer chain. In contrast, our method easily calculates
∆tin to 10−50 seconds or less corresponding to an MTBF of
greater than 1024 years.



Figure 6 compares synchronizer chains with and without
metastability filters. We first observe that the simple syn-
chronizer outperforms the synchronizer with the metastability
filter. At first, this seemed surprising as a metastable latch in
the filtered synchronizer can only corrupt its successor as it
exits metastability, whereas a metastable latch in the simple
synchronizer is always visible to the next stage. However,
the couping inverters in the simple inverter are faster than
the metastability filters of the alternative design. This added
speed gives the simple design its advantage. This also shows
how our approach can be used to confirm or refute proposed
design optimizations in regimes that cannot be resolved by
traditional simulators. A similar observation is made in [11]
without quantitative data; our approach quantifies these trade-
offs automatically. Our second observation is that the filtered
synchronizer has a positive back edge, like those described
in [7]. Again, we attribute this to the added delays of the filter
circuit.

As described in Section 3.2, our algorithm computes upper
and lower bounds for ∆tin . Figure 7 plots these bounds
for a two-stage, simple synchronizer chain. For comparison
purposes, we also plot the value of ∆tin obtained after each
bisection round if we use V ′

Li+1
to compute our estimate.

Not surprisingly, the latter approach significantly overestimates
∆tin . In contrast, our method computes very tight bounds
with the difference between the upper an lower bound only
becoming visible at the final data point.

5. Conclusions
We presented a novel method for measuring failure proba-

bilities and MTBF for synchronizer circuits. By combining lin-
ear interpolations between nearby trajectories with numerical
integration to account for the non-linearities of synchronizer
circuits, we overcome the limitations of traditional small-
signal analysis or numerical simulation based approaches. This
allows us to verify MTBFs of a million years or greater. To
the best of our knowledge, our approach is the first to demon-
strate the ability to verify realistic reliability requirements
for synchronizer circuits. We demonstrated our methods by
implementing them in Matlab, using them to compare two
designs for synchronizer chains, and comparing our results
with those from HSPICE.

Our methods build upon numerical techniques that are
already used in circuit simulators such as numerical integra-
tion, bisection, and calculation of small-signal sensitivities
by augmenting the ODE model. Thus, we believe that our
approach is well suited for integration into existing circuit
simulators.

Our method is fully automated. We are interested in apply-
ing it to other circuits where metastability plays an important
role. These include analog-to-digital converters, sense ampli-
fiers, and high-speed digital circuits that with minimal reset
circuitry. We presented our approach as a method for comput-
ing failure probabilities. It should be possible to extend this
approach to also generate traces of metastability failures. We

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
−10

−20

−19

−18

−17

−16

−15

−14

settling time, t
s

in
pu

t w
in

do
w

, l
og

10
(∆

t in

(t
s))

 

 

lower bound
overestimated window
upper bound

Fig. 7. Upper and Lower bounds for the ∆tin

are also interested in extending our approach to automatically
optimize transistor sizes for synchronizer circuits.

Simulating metastable behaviour is inherently difficult be-
cause of the numerical instability introduces by the positive
eigenvalue of the Jacobian operator near the metastable equi-
librium. With our approach, we believe that this error shows up
in the absolute time of the vulnerability window, but has little
impact on the value computed for the width of the window.
Our experience with our test cases supports this conjecture,
and we plan to perform a formal error analysis to test this
conjecture. Such an analysis should also provide a basis for
determining the optimal criteria for moving from one bisection
phase to the next and to determine the size of the time interval
between these phases.

References
[1] T. Chaney and C. Molnar, “Anomalous behavior of synchronizer and

arbiter circuits,” IEEE Transactions on Computers, vol. C-22, no. 4, pp.
421–422, Apr. 1973.

[2] M. Hurtado, “Structure and performance of asymptotically bistable
dynamical systems,” Ph.D. dissertation, Sever Institute, Washington
University, Saint Louis, MO, 1975.

[3] L. Marino, “General theory of metastable operation,” IEEE Transactions
on Computers, vol. C-30, no. 2, pp. 107–115, Feb. 1981.

[4] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proceedings
of the Ninth International Symposium on Asynchronous Circuits and
Systems, May 2003, pp. 89–96.

[5] R. Dobkin, R. Ginosar, and C. P. Sotiriou, “Data synchronization issues
in GALS SoCs,” in Proceedings of the Tenth International Symposium
on Asynchronous Circuits and Systems. IEEE, Apr. 2004, pp. 170–180.

[6] C. Mead and L. Conway, Introduction to VLSI Systems. Addison
Wesley, 1979.

[7] D. J. Kinniment, K. Heron, et al., “Measuring deep metastability,” in
Proceedings of the Eleventh International Symposium on Asynchronous
Circuits and Systems, Mar. 2006, pp. 2–11.

[8] D. J. Kinniment, A. Bystrov, et al., “Synchronization circuit perfor-
mance,” IEEE Journal of Solid-State Circuits, vol. 37, no. 2, pp. 202–
209, 2002.

[9] Y. Semiat and R. Ginosar, “Timing measurements of synchronization
circuits,” in Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems, May 2003, pp. 12–16.

[10] D. A. Hodges, H. G. Jackson, and R. A. Saleh, Analysis and Design of
Digital Integrated Circuits in Deep Submicron Technology. McGraw
Hill, 2004.

[11] J. Jex and C. Dike, “A fast resolving BiNMOS synchronizer for parallel
processor interconnect,” IEEE Journal of Solid-State Circuits, vol. 30,
no. 2, pp. 133–139, Feb. 1995.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




