
A Process Splitting Transformation For Kahn Process Networks

Sjoerd Meijer, Bart Kienhuis
Leiden Institute of Advanced Computer Science (LIACS)
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

{smeijer,kienhuis}@liacs.nl

Alex Turjan, Erwin de Kock
NXP Semiconductors
High Tech Campus 46
5656 AE Eindhoven
The Netherlands

{alex.turjan,erwin.de.kock}@nxp.com

Abstract
In this paper we present a process splitting transformation for Kahn
process networks. Running applications written in this parallel pro-
gram specification on a multiprocessor architecture does not guar-
antee that the runtime requirements are met. Therefore, it may be
necessary to further analyze and optimize Kahn process networks.
In this paper, we will present a four-step transformation that results
in a functionally equivalent process network, but with a changed
and optimized network structure. The class of networks that can
be handled is not restricted to static networks. The novelty of this
approach is that it can also handle processes with dynamic pro-
gram statements. We will illustrate the transformation prototyped
in GCC for a JPEG decoder, showing a 21% performance improve-
ments.

1. INTRODUCTION
Multi-core or multi-processor architectures are being introduced
more and more to meet the dramatic increase in compute power.
Examples are the IBM Cell processor [7] and the Wasabi architec-
ture [11] currently being developed within Philips Research. The
availability of these architectures is the first step in meeting the
performance demands. The next step and challenge is to fully take
advantage of these architectures; applications that were running in
a single thread before, must be carefully partitioned and mapped
onto the architecture. Kahn Process Networks (KPN) are very suit-
able for systematic mapping onto multiprocessor architectures [10].
A Kahn Process Network is a model of computation [5] that allows
multiple parallel processes to communicate over unbounded first-
in-first-out queues or FIFOs without following a global schedule.
In [2], De Kock has shown that by changing the network struc-
ture of a KPN, the total execution time of an application can be
improved. To achieve this, he uses a process splitting transforma-
tion that selects a process from the original Kahn process network
and creates a number of copies of it such that the computational
workload is distributed over these copies. Performing the splitting
transformation changes the structure of a Kahn process network,
while the functionality remains the same. This means that after the
creation of the split-up processes, the network communication must
be adequately extended and adapted. If we apply the transforma-
tion, then the network is changed as depicted in Figure 1, to which
we will refer as the producer-transformer-consumer example.

Split up
process T

T1

T2

P C

PTC

TTC

TCCP = Producer
T = Transformer
C = Consumer

P CT

Figure 1: Splitting Process T

In the communication between a producer and consumer pair, a
Data Dependence function (DD-function) can be defined. It re-
trieves for an iteration point at the consumer side, the iteration point
of the producer side where a token has been produced. For static
affine nested loop programs (SANLP), the Compaan compiler [6]
can determine the DD-function as depicted in Figure 2. For each

8765 8765

p2

p1

p2
p1

F2.Put(token);

token = F0.Get();
end

if x <= y,

for y = 2:1:N−1,

0

0 4321

0

0 4321

end
token = F1.Get();
if x <= y,

end

if j <= i+1,

F2(token);

token = F1(i,j);

end
F1.Put(token);
if j > i+1,

end
end

for x = 2:1:N−1,

end
end

for i = 1:1:N−2,

for j = 3:1:N,

IP

OP

IS
IS

Ch F0

Ch F1

Ch F2

j

i

y

x

IP2

IP1

OP1

OP2

Process P1 Process P2

2

1

5

3

8

7

6

4

N=

2

1

5

3

8

7

6

4

N=

DD(x,y)=(x−1,y+1)

Figure 2: Producer/Consumer Communication

process Pi there is an iteration space ISPi which is made of integer
points describing the repetitive loop structure of the process. An it-
eration space has a number of Input Ports (IP), where an input port
IPPi represents a subset of the process iteration space: IPPi ⊂
ISPi . Similarly, an Output Port (OP) is defined as OPPi ⊂ ISPi

Within this context, the DD-function represents the dependency be-
tween the iterations from the input ports and output ports and is de-
fined as DDFk : IPp2 → OPp1, where Fk is a FIFO channel and
p1, p2 processes. Since communication channel Fk is a FIFO chan-
nel, it turns out that the DDFk is bijective, and we can also define
the inverse data dependency function: DD−1

Fk
: OPp1 → IPp2.

The data dependence function together with a partitioning function
will guide the producer to send the tokens to the correct consumer
after splitting. Splitting process P2 of Figure 2 means that we as-
sign the iteration points of the iteration space over the two new
processes. To illustrate this, two common cases have been depicted
in Figure 3, where in A) the inner loop iterator is used for splitting,
and in B) the outer loop iterator is used. The iteration points of the
gray boxes are assigned to one process and the non-gray points to a
second process. Once the iteration space has been split up, it is im-
portant to know to which of the new processes an iteration point be-
longs. Therefore, we define the partitioning function p : IS → Z.
In combination with the splitting factor s, it associates to each it-
eration point of the original process iteration space IS a number.

978-3-9810801-2-4/DATE07 © 2007 EDAA

x

y

1

3

2

1

432

4

5

5 6 7 8

6

7

8

A) B)

x

y

1

3

2

1

432

4

5

5 6 7 8

6

7

8

Figure 3: Splitting the process iteration space

This number represents a split-up process to which a particular it-
eration point belongs after the splitting transformation. Based on
the partitioning function the splitting is modeled as follows:

If p(x)%s = j, then after splitting x ∈ P j , (1)

where 0 ≤ j ≤ n − 1 represent the process number and % denotes
the modulo operator. Having defined both the DD-function and
partitioning function, we can now formally define how the producer
calculates the process number to which a token should be send to.
If we split-up a consumer process C of a P/C pair, we get two new
processes C1 and C2 and distinguish the following two cases:

if p (DD−1(x)) % s = 0 send data to process C1, (2)

else if p (DD−1(x)) % s = 1 send to process C2. (3)

This models the splitting for static affine nested loop programs
(SANLP). The question is whether this this approach can also be
applied in a given KPN with possible dynamic statements. Figure 4

Process P1 Process P3

While (c1) {
 :
 F0.put ()
 :
 while (c2) {
 :
 F1.put()
 :
 }
}

While (c3) {
 :
 F0.get ()
 :
 F2.put ()
 :
 while (c4) {
 :
 F1.get ()
 :
 F3.put ()
 :
 }
}

Process P2

While (c5) {
 :
 F2.get ()
 :
 while (c6) {
 :
 F3.get()
 :
 }
}

F1

F0

F3

F2

Figure 4: Simplified KPN example

shows a representative example of a dynamic streaming application
as the processes use a while loop and conditions not necessarily
known at compile time. If we split-up process P2 following the
strategy discussed before, we obtain a network as depicted in Fig-
ure 5. If the DD-function can be determined at compile time, the

While (c1) {
 w1++
 :
s1 = p2(DD-1(w1))%2;

 switch(s1){
 case 0: F01.put(); break;
 case 1: F02.put(); break;
 };
 :
 while (c2) {
 w2++
 :

 s2 = p2(DD-1(w2))%2;
 switch(s2){
 case 0: F11.put(); break;
 case 1: F12.put(); break;
 };
 :
 }
}

Process P1

While (c3) {
 w3++
 :
 F01.get ()
 :
if(w3%2==0){

 while (c4) {
 w4++
 :
 F11.get ()
 :
 } } }

Process P2

F01

F02

F12

F11

While (c3) {
 w3++
 :
 F02.get ()
 :
if(w3%2==1){

 while (c4) {
 w4++
 :
 F12.get ()
 :
 } } }

Process P2'

Figure 5: Split up Consumer of a P/C pair

splitting can be modeled as depicted in 5, but we will see that this
cannot always be done.

2. PROBLEM DEFINITION
In the example of Figure 5, the DD-function cannot be determined
at compile time. The network of Figure 4 is implemented as nested
loops with conditions c1, c2, etc., which are not known at compile
time. An example of a dynamic condition is a(i) > N, where
the value of array a(i) is read from an incoming FIFO channel.
If dynamic conditions are involved, the DD-function cannot be de-
termined and the splitting transformation cannot be applied. How-
ever, we want a solution for applying the splitting transformation
without having to determine the DD-function. As a result of the
process splitting transformation, the DD−1 is needed in process
P1 of Figure 5. In case of static code we can determine DD−1,
but the question is what about dynamic code?

3. RELATED WORK
The transformation presented in this paper aims for a performance
improvement by adjusting the network structure of a KPN. Kahn
process networks [5] is a model of communication used to spec-
ify the task level parallelization within applications. The process
splitting transformation will also heavily rely on data flow analy-
sis, since it must guarantee the correctness of the transformation.
The process splitting transformation is inspired by the work of de
Kock in [2], where task unrolling is mentioned as a possible KPN
optimization. In [10] and [14] it is shown that source-code trans-
formations in the process network model can lead to great perfor-
mance improvements. The process splitting transformation, which
distributes the computation of a single process over multiple pro-
cesses, is closely related to the transformation of a do loop into a
dopar parallel loop as described in [13]. Rijpkema et al [9] and
Turjan et al [12] showed that a KPN can be automatically derived
from static affine nested-loop programs by the Compaan compiler.
In the synthesization of process networks, data flow analysis for
scalars and arrays as described by Feautrier [4] [?] is crucial.

4. SOLUTION
In this section we present the solution approach for the process
splitting transformation that takes as input a dynamic application
specified as a Kahn process network. With respect to the com-
munication as depicted in Figure 1, we distinguish three problem
areas which must be taken into account to generate a valid network.
These three problem areas are discussed below:

• Producer-Transformer Communication (PTC). The producer
(denoted by P in Figure 1) had only one output FIFO before
the transformation. After the transformation there are two
and control must be implemented internally to the producer
to send the token to the appropriate FIFO channel.

• Transformer-Transformer Communication (TTC). The trans-
former process must communicate data between the split-up
processes (T1 and T2) if there are any loop-carried data de-
pendences.

• Transformer-Consumer Communication (TCC). Similar to
the control of token production in PTC, consumer process
C must read from the correct input FIFO; initially there was
only one, where there are two after the transformation.

Furthermore, we assume that there is a blocking read mechanism
in a KPN, and that for each FIFO channel the number of written to-
kens is equal to the number of tokens read from the FIFO channel.

In other words, all channels are point-to-point, and every token that
goes in, must come out. We observe (see Figure 4) that for each
put statement to a FIFO channel at the producer side, there is a
corresponding get statement at the consumer side at exactly the
same loop-nest level. Based on the property that the loop itera-
tors at the producer and consumer side are equal for a given FIFO
channel and corresponding put and get statement, we conclude
that the DD-function is not needed for the process splitting trans-
formation. For processes P1, P2 and FIFO F0 of Figure 4 and 5,
we perform the tests of Algorithm 1 to check whether the process
splitting transformation can be applied.

Algorithm 1 Substitution of DD-function
Require: Process P1, P2, and FIFO channel F0
Ensure:

if loopnest(P1.F0) = loopnest(P2.F0) then
if notGuarded(F0.put) && notGuarded(F0.get) then

insertCounters (P1);
insertCounters (P2);
insertSwitchStat (P1.F0);

end if
end if

In function insertSwitchStat, formulas 2, 3 and the usage of
the DD-function are not not needed anymore, but more detailed
information about this procedure is discussed in section 4.3. To
summarize, the transformation can be applied under the following
conditions: 1) a put and corresponding get primitive must take
place at the same loopnest level and cannot be guarded by an if-
statement, and 2) all tokens produced must be consumed. Taking
the problem areas defined in section 2 into account, we introduce a
four-step process splitting approach: 1) partitioning of the compu-
tation of the split-up process over the newly created processes, fol-
lowed by the adjustments of the communication: 2) PTC, 3) TTC
and 4) TCC. But before applying the transformation, the following
parameters must be determined:

1. Determine the most computational expensive processes (in
number of cycles). This can be done by profiling the appli-
cation, or by annotating the source-code with pragmas which
can trigger the compiler to do the transformation.

2. Based on the information gathered in the first step, determine
how many times a process has to be split up, which we call
the splitting factor or s in short.

3. Partitioning of the iteration space. Depending on the splitting
factor, the iteration space has to be partitioned over a number
of subprocesses.

4. Loop-nest level at which the splitting takes place. In case of
nested for-loops, the question is whether to split at the inner
or outer loop-nest level.

From the algorithm parameters mentioned above, different choices
lead to different performance of a network. For example, choosing
a particular partitioning function or loop-nest level could make a
difference. Once the algorithm parameters have been determined,
the actual problems of producer-transformer and transformer-consumer
communication need to be addressed. For both token production
and consumption we can define a static and dynamic solution. So-
lutions for the Producer-Transformer communication are, 1) the

producer filters the tokens (static solution), or 2) the producer sends
all tokens to all subprocesses (dynamic solution). Solutions for
the Transformer-Consumer communication are, 1) the consumer
knows by it self when to switch (static solution), or 2) each pro-
ducer sends a signal to the consumer when to switch reading data
from a different FIFO (dynamic solution).

Having defined the problems and the corresponding possible solu-
tions, we will explain each of the four steps of the process splitting
transformation in detail in the following sections, the first one be-
ing the partitioning of the iteration space, and then the three areas
where the token communication must be adapted.

4.1 Partitioning
In the examples discussed so far in the introduction, the partition-
ing was based on loop counters and a modulo condition. While
this is one possibility to split up the iteration space, there are other
computationally less expensive solutions. For example, in case of
while-loops a simple finite state machine can be used and for for-
loops the starting value and stride can be adjusted.

4.2 Transformer-Transformer Communication
Closely related to partitioning, is the transformer-transformer com-
munication (TTC) step of the transformation process. TTC occurs
when data must be communicated due to data dependences be-
tween statements assigned to different processes. This is closely
related to partitioning since different partitioning functions can as-
sign data dependent statements to the same process or not. A case
where TTC must be implemented to guarantee correct behavior
of the network, where, for example, the even iterations are as-
signed to one process and the odd to another, is the following:
for(int i=1; i<10; i++) { a[i] += a[i-1]; }
Note that the assignment statement results in a loop carried data
dependency: iteration i consumes data produced at a previous it-
eration i − 1. In our approach we can detect whether there are
any loop-carried dependences, but do not split if this is the case
(see also section 6). We will leave process splitting that results in
transformer-transformer communication (TTC) for future research.

4.3 Producer-Transformer Communication
In this section we will define a static and dynamic method for the
producer-transformer communication. If we consider the producer-
consumer pair (P/C pair) as depicted in Figure 6, we see that the
producer has two options with regards to the number of tokens sent
to the consumer. It either sends the tokens to all split up consumers
or it selects the correct consumer, which we will call the dynamic
and static solution respectively.

100
tokens

2) Dynamic

100
tokens

100
tokens

1) Static

50
tokens

50
tokens

splitting

Figure 6: Static vs. Dynamic Solution

Of both the dynamic and static solution, the dynamic solution is the
most general in the sense that the producer simply sends all tokens
to all split-up processes. This is attractive to do, because in this way
we only need to have control at the consumer side. Disadvantage
of this approach is the substantial increase in communication. The
static solution however, is an improvement of the dynamic solution
because the tokens are filtered at the producer side. In this way

we do not have the communication overhead as we have in the dy-
namic solution. Therefore, we will discuss only the static approach
and apply it to the network already given in Figure 4. If we split-
up process P2 of this network, we obtain the KPN as depicted in
Figure 7. Also note that counters w1, .., w6 have been introduced
which will be used for splitting up the iteration space. We copied

Process P1

While (c1) {
 w1++
 :
 F0.put ()
 :
 while (c2) {
 w2++
 :
 F1.put()
 :
 }
}

While (c3) {
 w3++
 :
 F0.get ()
 :
 F2.put ()
 :
 while (c4) {
 w4++
 :
 F1.get ()
 :
 F3.put ()
 :
 }
}

Process P2

Process P3

While (c5) {
 w5++
 :

F2.get ()
 :
 while (c6) {
 w6++
 :
 F3.get()
 :
 }
}

F11

F01

While (c3) {
 w3++
 :
 F0.get ()
 :
 F2.put ()
 :
 while (c4) {
 w4++
 :
 F1.get ()
 :
 F3.put ()
 :
 }
}

F12

F02

Process P2'

F21

F31

F22

F31

Figure 7: Incorrect KPN after splitting process P2

process P2 to a new process P2′ and added extra FIFOs. However,
this KPN is functionally incorrect and changes have to be made in
the three problem areas to come to a functionally correct KPN. This
has been indicated by the statements in bold and in a step-by-step
approach explained in this section, the changes made to this KPN
will be explained in order to come to a functionally correct KPN.
We see that in Figure 7, FIFO channel F0 becomes F01 and F02,
and FIFO channel F1 becomes F11 and F12. Therefore, state-
ments F0.put() and F1.put() of the original process are not valid
any more and control must be implemented to send a token to ei-
ther one of the new FIFO channels. Using the partitioning and
data dependence function, the token production would be modeled
as p(DD−1(w1, w2)). The producer calculates at which iteration
point the token is going to be consumed and to which one of the
processes P2 or P2′ a token must be send to. But if we cannot
determine the DD-function, we use the observation that the loop
counters are equal at the same loop-nest level a token is communi-
cated. In this way, a simple mapping between the iteration points
of the consumer and producer is established. This means that in
the example of Figure 7, that p(DD−1(w1, w2)) = w4, and since
w2 = w4 we can use w2%2 == 0 and w2%2 == 1 at the pro-
ducer side to send the tokens to processes P2 or P2′ respectively.
This is depicted in Figure 8.

4.4 Transformer-Consumer Communication
To complete the transformation of the producer-transformer-consumer
example, the communication between the processes transformer
and consumer must be restored. In the original network, the con-
sumer reads from one input FIFO. This changes by applying the
splitting transformation. Now the consumer needs to have control

While (c1) {
 w1++
 :

s1 = w1%2
 switch(s1){
 case 0: F01.put(); break;
 case 1: F02.put(); break;
 };
 :
 while (c2) {
 w2++
 :

 s2 = w2%2;
 switch(s2){
 case 0: F11.put(); break;
 case 1: F12.put(); break;
 };
 :
 }
}

Process P1

While (c3) {
 w3++
 :
 F01.get ()
 :
 F21.put ()
 :
if(w3%2==0){

 while (c4) {
 w4++
 :
 F11.get ()
 :
 F31.put ()
 :
 }
}

}

Process P2

F01

F02

F12

F11

While (c3) {
 w3++
 :
 F02.get ()
 :
 F21.put ()
 :
if(w3%2==1){

 while (c4) {
 w4++
 :
 F12.get ()
 :
 F31.put ()
 :
 }
}

}

Process P2'

Figure 8: Static approach for the producer-transformer pair

to read from correct input FIFO. This control is obtained similar to
the solution approach of the producer-transformer. Instead of using
the DD−1, we use the DD and partitioning functions to determine
where an input token is produced. If x is an iteration point from
process C that consumes data produced by process T then:

if Pl(DD(x)) % s == 0 get data from process T1, (4)

else if Pl(DD(x)) % s == 1 get data from T2. (5)

But since the DD−1 cannot be determined, we follow the same so-
lution approach as presented in the solution for producer-transformer
communication, and read the tokens based on the loop counters and
the modulo condition. We omit the figure for this P/C pair, since
it’s almost identical to Figure 8, with the difference that the control
is implemented at the consumer side.

5. MULTIPLE SPLITTINGS
So far, we discussed the splitting of one process only. This can
be extended to multiple process splitting (used in the case stud-
ies). Splitting multiple, possibly neighboring, processes requires
the introduction of so called copy nodes, because they map two in-
coming channels to one outgoing channel. This allow us to follow
exactly the same solution approach as discussed before. Without
going into details, the intuitive idea is depicted in Figure 9. These

P1 P2 P3 P4

P1 P2c1 c2 P3c3 P4c4

Insert copy nodes
C1, .., C4

Split−up processes
P2 and P3

P1 c1 P4c4c2

P21

P22 P32

P31

c3

P4P1

P21

P21 P31

P31

Split−up processes
P2 and P3

P1 P2 P3 P4

Figure 9: Two step approach for multiple splitting

copy nodes (denoted by c1, .., c4 in Figure 9) only read and write
tokens; there is no computation involved. Constructing these copy
nodes is simple to perform, because they have the same structure as
the process that produces the data. Each process will be surrounded
by a pair of copy nodes such that the network structure does not get
too complicated and our four-step transformation can be applied.

6. IMPLEMENTATION
To prototype the new process splitting transformation in a com-
piler, we used GCC 4.1 and its data flow analysis to implement
a data dependence graph (DDG) for the process(es) we are inter-
ested in. If we decide to split a process, we check the DDG for
the legality of the transformation; we do not split if the data flow
analysis indicates the existence of a loop-carried data dependency.
In pseudo-code, the procedure is implemented as follows:

Algorithm 2 Process Splitting
Require: A function f
Ensure: Copy the class structure to which function f belongs to

and adjust the structure of it.

DDG ddg ⇐ createDDG ();
LOOP loop ⇐ findSplitPragma (f);
if loop then

bool hasLCD ⇐ hasLoopCarriedDeps (ddg, loop);
if hasLCD = FALSE then

function f ′ ⇐ copyFunction (f);
int split factor ⇐ 2;
insertModuloCond (f, split factor);
insertModuloCond (f ′, split factor);
class c ⇐ findClassDefinition (f);
adjustNetworkStructure (c, f, f ′);

end if
end if

When the dataflow analysis permits the splitting of a process, we
copy the original function to a new one and insert the modulo con-
dition. But this is only the start of the transformation. We ex-
pect our applications to be specified as C++ applications, and use
the YAPI [3, 8] threading library to implement the processes of a
KPN as a C++ class. Therefore, in order to copy/modify a pro-
cess, we need to reconstruct the C++ class in the SSA Intermediate
Representation (IR) of GCC. This is not trivial to do, because all
C++ classes are lowered to structs in the SSA IR. Basically,
the whole notion of Kahn process networks, FIFOs, network struc-
ture, etc., has to be introduced into GCC. For these reasons, we
have semi-automated the process splitting transformation. When
GCC tells the transformation can be applied without introducing
interprocess or transformer-transformer communication, we make
the final source-code transformations by hand. This means that we
have not implemented the function adjustNetworkStructure
of Algorithm 2 yet.

7. JPEG CASE STUDY AND RESULTS
We illustrate the process splitting transformation in this section
based on the JPEG decoder application and determine the most
computationally expensive process first (see Figure 10).
We see that there is one process, the raster process, that determines
for a great part the total execution time. It exceeds the average
number of cycles needed for computation compared to the other
problems. The horizontal axis displays the processes of the JPEG
decoding application and the vertical axis the number of cycles a

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

frontend idct col idct row raster backend

Figure 10: Profile of the JPEG decoder application

process needs to finish. We want to distribute the computation of
the raster processes over two processes using the process splitting
transformation.

Front
end

Back
endrasterIdct colIdct

row

Figure 11: JPEG decoder application specified as a KPN

Figure 11 illustrates the original and unmodified Kahn process net-
work. Based on the profile information, we decide to split the raster
process such that we obtain the network as depicted in Figure 12.
Note that in this example some of the FIFO channels have been left
out for the sake of clarity.

Front
end

Back
end

raster

Idct col
Idct
row

raster

:

Figure 12: JPEG application with the raster process split-up

As indicated by the dotted line in Figure 12, one is free to choose
the splitting factor. We have carried out a case study in which we
split up the computation of one process over two new processes
only. We ran the JPEG decoder on a simulator for the Wasabi mul-
tiprocessor architecture that is currently being developed within
Philips Research. The simulator counts the number of cycles for
the eCos Real-Time Operating System (RTOS) 1 on which we ran
the JPEG application. By using the YAPI threading library, the pro-
cesses are implemented as threads for which the operating system
allocates available resources. Before discussing the results of the
application and split-up processes, we investigate the performance
of the unmodified KPN, and the KPN with copy nodes inserted.
Table 1 shows the execution time of these two KPNs in million of
cycles (all the other numbers represent running time in millions of
cycles as well).

When we map the unmodified JPEG application on two processors,
we see that it scales compared to the application running on one
processor. Remarkable is the observation that the execution times
go up on three and four processors. While further scaling could
not be expected, an increase in cycles is a surprising and undesired

91http://ecos.sourceware.org/

CPUs Original Copy nodes
1 18.62 22.36
2 10.48 12.67
3 10.11 11.61
4 18.32 16.69
5 20.77 28.04

Table 1: Execution time of original KPN and the KPN with four
copy nodes inserted

result. We see that by adding more processors the parallelization
gain is killed by the extra communication the processors introduce.
Another observation is the substantial overhead the copy nodes in-
troduce; for three processors, the KPN with the copy nodes need
1.5 millions cycles more to finish. Table 2 shows the result of the
KPN where different processes have been split-up. The second col-
umn illustrates the results of the network where processes idctcol
and idctrow have been split-up. The same applies to the remaining
columns; they denote processes that have been split-up into two
processes. The two values in bold in Tables 1 and 2 illustrate the

CPUs row+col row+col+raster col+raster raster
1 24.38 24.62 23.63 20.23
2 14.00 14.33 13.46 11.37
3 12.76 11.44 10.57 8.77
4 17.31 11.07 9.41 7.95
5 28.09 12.68 9.76 8.76

Table 2: Execution times of KPN with different processes split-
up

minimum of the original and the network where the raster process
has been split-up, which are 10.11 and 7.95 respectively. It shows
that splitting up the raster process is the most profitable transforma-
tion we could do on the JPEG application: we see an improvement
of 21.36%. Another interesting observation is that only splitting
up the raster process is beneficial. While this was already indicated
by profiling the application (see Figure 10), it is remarkable that in
all the other cases, including the one where raster and idctcol both
have been split-up, the results are not that good or get worse. This
is caused by the operating system used and the threading library.

8. CONCLUSION
With the introduction of multi-core or multi-processor architec-
tures, programming and exploiting the available resources becomes
more and more challenging. Therefore, we assume that our appli-
cations are specified as Kahn process networks, which is a model
of computation where multiple processes can run in parallel and
communicate over unbounded FIFO channels. Still additional KPN
transformations are required to meet the desired performance re-
quirements. We have presented a process splitting transformation
and showed that a 21% performance improvement can be obtained
by reducing the total execution time of the JPEG decoder applica-
tion. We have prototyped the transformation in GCC. Given the
results, this research is continued as a NEVA MEDEA+ European
funded project. The transformation presented are currently being
implemented in the CoSy compiler [1] developed by ACE Associ-
ated Computer Experts.

9. REFERENCES

[1] Martin Alt, Uwe Asmann, and Hans van Someren. Cosy
compiler phase embedding with the cosy compiler model. In
Computational Complexity, pages 278–293, 1994.

[2] E. A. de Kock. Multiprocessor mapping of process networks:
a JPEG decoding case study. In ISSS ’02: Proceedings of the
15th international symposium on System Synthesis, pages
68–73, New York, NY, USA, 2002. ACM Press.

[3] E.A. de Kock et al. YAPI: Application modeling for signal
processing systems. In Proc. 37th Design Automation Conf.
(DAC 2000), pages 402–405, New York, USA, 2000. ACM
Press.

[4] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[5] G. Kahn. The semantics of a simple language for parallel
programming. In J. L. Rosenfeld, editor, Information
processing, pages 471–475, Stockholm, Sweden, Aug 1974.
North Holland, Amsterdam.

[6] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere.
Compaan: Deriving Process Networks from Matlab for
Embedded Signal Processing Architectures. In Proc. 8th
International Workshop on Hardware/Software Codesign
(CODES’2000), San Diego, CA, USA, May 3-5 2000.

[7] D. Pham et al. The design and implementation of a
first-generation cell processor. In In ISSCC Digest of
Technical Papers, pages p. 184–5, 2005.

[8] http://y-api.sourceforge.net/.

[9] Edwin Rijpkema. Modeling Task Level Parallelism in
Piece-wise Regular Programs, 2002. PhD thesis, Leiden
University, The Netherlands.

[10] Todor Stefanov, Bart Kienhuis, and Ed Deprettere.
Algorithmic transformation techniques for efficient
exploration of alternative application instances. In CODES
’02: Proceedings of the tenth international symposium on
Hardware/software codesign, pages 7–12, New York, NY,
USA, 2002. ACM Press.

[11] Paul Stravers and Jan Hoogerbrugge. Homogeneous
multiprocessing and the future of silicon design paradigms.
In In Prce. International Symposium on VLSI Technology,
Systems, and Applications (VLSI-TSA 2001), April 2001.

[12] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere.
Translating affine nested-loop programs to process networks.
In CASES ’04: Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis for
embedded systems, pages 220–229, New York, NY, USA,
2004. ACM Press.

[13] Michael Joseph Wolfe. High Performance Compilers for
Parallel Computing. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[14] Claudiu Zissulescu, Bart Kienhuis, and Ed F. Deprettere.
Increasing pipelined ip core utilization in process networks
using exploration. In FPL, pages 690–699, 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

