
SoftSIMD - Exploiting Subword Parallelism Using Source Code Transformations

Stefan Kraemer, Rainer Leupers, Gerd Ascheid, Heinrich Meyr

Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany

{kraemer, leupers}@iss.rwth-aachen.de

Abstract

SIMD instructions are used to speed up multimedia ap-

plications in high performance embedded computing. Ven-

dors often use proprietary platforms which are incompati-

ble with others. Therefore, porting software is a very com-

plex and time consuming task. Moreover, lots of existing

embedded processors do not have SIMD extensions at all.

But they do provide a wide data path which is 32-bit or

wider. Usually, multimedia applications work on short data

types of 8 or 16-bit. Thus, only the lower bits of the data

path are used and therefore only a fraction of the available

computing power is exploited for such algorithms. This

paper discusses the possibility to make use of the upper

bits of the data path by emulating true SIMD instructions.

These instructions are implemented purely in software us-

ing a high level language such as C. Therefore, the applica-

tion can be modified by making use of source code transfor-

mations which are inherently portable. The benefit of this

approach is that the computing resources are used more ef-

ficiently without compromising the portability of the code.

Experiments have shown that a significant speedup can be

obtained by this approach.

1 Introduction

The vast majority of processors shipped today are em-

bedded processors, due to the increasing demand for con-

sumer electronics. Such processors are often used in dig-

ital signal processing and media processing applications

for which performance is critical. Therefore, hand writ-

ten assembly code is used to obtain maximum performance.

However, the growing complexity of embedded systems has

led to higher costs for algorithm and software development.

Today, the costs of algorithm and software development

are dominating the development of an embedded system.

Hence, in recent times a move towards programming em-

bedded devices in high level languages (HLL) such as C

can be observed. Such HLLs enable a faster software de-

velopment process and increase the portability of the code.

Furthermore, a lot of legacy code is available in C which

can be reused, thereby reducing the development and ver-

ification effort. The catch, however, is that the usage of a

HLL comes at the price of a less efficient implementation

than hand written assembly code[6].

In order to reduce the negative impact of HLL on per-

formance, developers are using compiler known functions

and assembly for performance critical parts of the applica-

tion. In a different approach, designers rely on rewriting

the HLL in such a way that the compiler can generate code

with higher quality. The advantage of such an approach is

that source code transformations are inherently portable and

can result in a significant performance improvement[7].

Multimedia applications contain a lot of inherent paral-

lelism which can easily be exploited by using SIMD instruc-

tions. With very limited hardware overhead it is possible to

boost the application performance significantly.

Many processor manufacturers have developed their own

SIMD extension, like Intel (MMX), Motorola (AltiVec) and

AMD (3DNow!). Recently, also many embedded processor

manufacturers (TI C6x, Analog Devices ADSP 21xxx) have

adopted SIMD instructions, due to the fact that multimedia

applications have become more and more important for the

high performance embedded processor domain. The ma-

jor disadvantage is that the different SIMD implementations

are incompatible with each other. Each implementation pro-

vides only a small number of SIMD instructions and a set

of pack and unpack instructions which are very special to

the target architecture. Consequently, the compiler support

for SIMD instructions is limited. In order to obtain good re-

sults software developers have to rely on compiler intrinsics

to manually improve the code.

This paper focuses on the potential of implement-

ing SIMD (Single Instruction Multiple Data) instructions

purely in software. We call this kind of implementation

SoftSIMD. By using this software centric approach it is pos-

sible to easily integrate SIMD instructions in HLLs. Fur-

thermore, the implementation is completely independent of

the target architecture. Hence, the major advantage of HLLs

978-3-9810801-2-4/DATE07 © 2007 EDAA

- the portability - is not compromised. In addition, Soft-

SIMD instructions do not require any special hardware sup-

port. They can be applied to nearly any target architecture.

Of course, the speedup that can be achieved is lower than

what can be obtained with hardware support.

In an article recently published on DSPDesignLine[1]

different possibilities how to operate on several data ele-

ments at the same time are discussed. This emphasizes the

necessity of being able to handle data in parallel without

hardware support.

The rest of the paper is organized as follows. After a

discussion of related work in Section 2, the possibilities to

implement SIMD instructions using a pure software imple-

mentation are discussed in Section 3. Furthermore, the pre-

requisites and limitations are explained in Section 4. The

results obtained with the SoftSIMD approach are presented

in Section 5. Section 6 concludes this paper and gives an

outlook on future work.

2 Related Work

In order to effectively exploit SIMD instructions it is es-

sential that the compiler is aware of this type of special in-

structions. Otherwise, the user has to rely on hand opti-

mized libraries to make efficient use of the SIMD capabil-

ities of the processor. Therefore, the research focuses on

effective compiler support for all kinds of SIMD instruc-

tions.

Many of todays compilers provide a semiautomatic

SIMD support. The programmer uses compiler known func-

tions (CKF) or intrinsics to steer the SIMDfication process.

The CKFs act as placeholders for SIMD instructions. Dur-

ing the compilation process they are replaced by the ap-

propriate SIMD assembly instructions. However, due to

the low-level programming style and the poor portability of

code with CKFs, this cannot be considered a satisfactory so-

lution. Some advanced compilers (e.g., for Intel MMX and

SSE) provide automatic generation of SIMD instructions,

yet restricted to certain C language constructs. Moreover,

these compilers are inherently non-portable.

In the domain of ”general purpose” retargetable compil-

ers, recent versions (4.x) of the gcc[11] support SIMD for

certain loop constructs, but gcc is generally known as being

difficult to adapt efficiently to embedded processor archi-

tectures.

In research on embedded processor code optimization, a

number of techniques for SIMD utilization have been pro-

posed recently. In [10] a combination of traditional code

selection[5] and Integer Linear Programming based opti-

mization is presented. This approach achieves high code

quality but suffers from high complexity for large pro-

grams. The work in [9] presents an efficient approach

for packing operations step by step into SIMD instruc-

tions, and it presents results for the AltiVec ISA. Further

works in this domain deal with memory alignment opti-

mization for SIMD[3], pointer alignment analysis[12], and

flow graph permutations for more effective SIMD instruc-

tion packing[8].

Closely related to the work presented in this paper is the

SWAR technique[4]. Information how to manipulate multi-

byte data can be found in [13].

In summary, a number of compiler techniques for us-

ing SIMD instructions are available. Some of these tech-

niques are tailored for special architectures, others can be

retargeted. All approaches require special hardware support

as well as compiler support. This paper, however, empha-

sizes the possibility to emulate SIMD instructions without

dedicated hardware. The SoftSIMD instructions can be ob-

tained by applying source code transformations to the code.

Hence, this approach is also independent of the underlying

compiler.

3 SoftSIMD: Exploiting Subword Level Par-

allelism

In image processing, mostly 8-bit and 16-bit data are

processed on 32-bit processors. Hence, a significant part

of the data path remains unused. By using the SoftSIMD

approach it is possible to increase the average utilization of

the data path leading to an increased performance.

3.1 SoftSIMD Instructions

To understand why special hardware support is required

for SIMD instructions we will have a closer look at the im-

plementation of a SIMD instruction, for example a SIMD

4 addition. This operation performs four 8-bit additions in

parallel using a 32-bit adder. Each subword addition must

be independent of all the other additions, therefore it has to

be guaranteed that the carry path ends at the most signifi-

cant bit of each subword. This can be achieved by inserting

three AND gates in the carry path of the 32-bit adder as

shown in Figure 1. Depending on the signal applied to the

AND gates, the adder acts as a regular 32-bit adder or a

SIMD 4 adder. As can be seen from this example, only mi-

nor hardware modifications are required to make sure that

each data element can be processed separately. The low

hardware overhead and the potentially high speedups are the

reasons why SIMD operations are so popular for improving

the performance of applications.

In order to obtain the same behavior with a pure soft-

ware implementation it has to be guaranteed that the carry

path between different subwords is interrupted. This can be

achieved by introducing guard intervals between each sub-

word. The simplest guard interval is a zero bit which is

introduced between each subword. Naturally, using guard

8-bit

Adder

8-bit

Adder

8-bit

Adder

8-bit

Adder

Result 1Result 2Result 3Result 4

Input 1Input 4 Input 3 Input 2

SIMD

Select

8-bit

Adder

8-bit

Adder

8-bit

Adder

8-bit

Adder

Result 1Result 2Result 3Result 4

Input 1Input 4 Input 3 Input 2

SIMD

Select

Figure 1. Modified 32-bit adder, depending on
”SIMD select” it acts as a SIMD adder or a
standard 32-bit adder

intervals reduces the number of bits that can be used for

computation. In case of a 32-bit adder it is only possible to

implement a SIMD 2 addition or a SIMD 3 addition oper-

ating on 8-bit data types. The remaining 8-bits are used to

form the guard bits.

Using a zero bit as guard bit is only possible in case that

all operands are positive. If one or more operands are neg-

ative or a subtract operation is performed then a different

type of guard bits is required. The reason for this is the way

negative values are represented: the two’s complement. A

negative value is transformed into the two’s complement by

bitwise invertion of the absolute value and then adding a

one. Hence, all unused upper bits are set to one (sign exten-

sion). In order to cope with this, two different approaches

are possible:

• Use modified guard bits

• Operate only on positive values

In the first approach the guard bits are modified to make sure

that the carry path is interrupted also in case of a subtrac-

tion. As described in [4] the guard bits of the subtrahend

need to be set to one and the guards bits of the subtractor

are set to zero. The following example shows a SIMD 2

subtraction performed fully in software:

result=((a|0x80008000) -b) & 0x7FFF7FFF

As can be seen in this example, two additional opera-

tions, | and &, are required to perform the SIMD subtrac-

tion. Since the overhead caused by the & and the | operation

needs to be compensated, a speedup can only be obtained if

the parallelism is equal to or higher than 3.

The second approach is to make sure that all input and

output values are always positive, especially the result of a

subtraction. This can be achieved by adding a constant to

each variable. The constant must be greater than or equal

to the smallest absolute value that can be represented by the

variable. Here, A denotes a variable which holds a value

which can range between −MMax and MMax.

A ∈ {−Mmax, ...,Mmax}

Abias = A + Mmax

Abias ∈ {0, ..., 2Mmax}

By adding the bias MMax to the variable A the result-

ing variable Abias only holds positive values. Thus, the

standard SoftSIMD approach for additions can be applied.

However, if more consecutive additions or subtractions oc-

cur in the application, then the user must make sure that

all intermediate results as well as all final results will pro-

duce only positive solutions. Hence, it is not possible to

use the same bias for all input variables. The bias for each

input must be chosen in such a way that the output will al-

ways produce a positive value. In the following variables A

and B store a value which is in the interval of −MMax to

MMax. Figure 2 shows a subtraction of two variables us-

A,B ∈ {−Mmax, ...,Mmax}

Abias = A + Mmax

Bbias = B + Mmax

C = Abias − Bbias = A − B

C ∈ {−2Mmax, ..., 2Mmax}

Figure 2. By using only one offset it is not
guaranteed that the result is always posi-

tive

A,B ∈ {−Mmax, ...,Mmax}

Abias = A + 3Mmax

Bbias = B + Mmax

C = Abias − Bbias = A − B + 2Mmax

C ∈ {0, ..., 4Mmax}

Figure 3. By using two different offsets the
obtained result will always be positive

ing the same bias. The result C of the subtraction, however,

is not guaranteed to be positive since the bias of both vari-

ables compensates each other. The variable C holds a value

between −2MMax if both input variables are −MMax and

2MMax if both inputs are MMax. Figure 3 exemplifies the

same subtraction, but this time both variables are shifted us-

ing two different constants. As shown in Figure 2 the small-

est value obtained in a subtraction is −2MMax. To guaran-

tee always a positive result for the subtraction the bias must

be at least 2MMax. In order to obtain this bias, variable A

uses 3MMax as bias and variable B uses MMax as bias.

Thus, the resulting bias for variable C is 2MMax. There-

fore, it can be guaranteed that the output of the subtraction

will always produce a positive result.

For this kind of approach it is crucial to choose the cor-

rect offset MMax for each input variable. Thus, additional

knowledge about the range of the input and output variables

proves to be useful in order to select adequate offsets. The

overhead introduced by this SoftSIMD operation is three

extra operations for adding and removing the bias. But in

contrast to the first approach the number of overhead in-

structions depends only on the number of inputs and out-

puts of the SIMD block. Figure 4 depicts a code example

1 : unsigned char g0,g0x,g1,g1x,h0,h0x,h1,h1x;

2 : signed short r1,r1x

3 : ...

4 : /* Add bias*/

5 : g1 = g1 + 255; g1x = g1x + 255;

6 :

7 : g0_simd = pack2in32(g0,g0x);

8 : g1_simd = pack2in32(g1,g1x);

9 : h0_simd = pack2in32(h0,h0x);

10: h1_simd = pack2in32(h1,h1x);

11:

12: /*perform simd operation*/

13: r1_simd = g1_simd - h1_simd + g0_simd + h0_simd;

14:

15: unpack2in32(r1_simd,&r1,&r1x);

16:

17: /*Remove bias*/

18: r1 = r1 - 255; r1x = r1x - 255;

19: ...

Figure 4. Using a bias to make sure that all

results are always positive

which uses a bias to make sure that the computation will

always produce a positive result. All input variables are of

type unsigned char. In the example one SIMD subtrac-

tion is performed, in order to guarantee a positive result a

bias of 255 is added to the variables g1 and g1x. After the

SIMD calculation the variable r1_simd is unpacked and

the bias is subtracted to obtain the final result.

After understanding how a SIMD addition can be real-

ized with a pure software implementation we will discuss

how and under which conditions SIMD multiplications can

also be implemented.

In principle the idea of using a guard interval to inter-

rupt the carry path applies also for the SIMD multiplication.

However, the multiplication of two variables with k number

of bits each produces a result with 2k bits. Therefore, the

guard interval must be at least k bits wide. Thus, with a 32-

bit multiplication it is only possible to implement a SIMD 2

multiplication for two 8-bit values in parallel.

To understand what happens if two variables with two

operands each are multiplied, it is necessary to understand

how a multiplication works. A binary multiplication can be

seen as consecutive addition and shifting of one operand.

The number of additions and the number of shift operations

is determined by the second operand. In case of a packed

variable which is multiplied with a scalar variable p all sub-

words will be multiplied independently by p. Hence, it is

possible to model a SIMD multiplication in case that both

subwords will be multiplied with the same factor. Note, that

this type of multiplication is a special case (x = 0) of the

dot product explained in the following.

In multimedia applications most of the time is spent in

small loop kernels which are ideal candidates for SIMD

instructions. By unrolling a loop the parallelism becomes

explicit and the loop can be SIMDfied. For SoftSIMD,

our experiments have shown that unrolling the outer loop

instead of the inner loop of the kernel produces the re-

quired SIMD structure where several subwords are multi-

plied with the same factor. Figure 5 shows part of a convo-

lution with a 3 × 3 filtering mask. By unrolling the outer

loop by a factor of two the input variables c1[i+j*k]

and c1[i+(j+1)*k]are multiplied with the same factor

mask[i]. Figure 6 shows the unrolled code. In general

1 : for (j = 0; j < 256 ; j++){

2 : ...

3 : for (i = 0; i < 3; i++){

4 : s0 = c1[i+j*k] * mask[i];

5 : ...

6 : }

7 : ...

8 : }

9 :

Figure 5. Convolution

1 : for (j = 0; j < 256 ; j+=2){

2 : ...

3 : for (i = 0; i < 3; i++){

4 : s0 = c1[i+j*k] * mask[i];

5 : s0_2 = c1[i+(j+1)*k] * mask[i];

6 : ...

7 : }

8 : ...

9 : }

Figure 6. Unrolled Convolution

it is not possible to model SIMD multiplication using Soft-

SIMD. However, the multiplication of two packed operands

results in a complex SIMD instruction. To understand this

behavior let 2d denote a displacement of d-bits. Thus, the

two input operands can be written as:

OperandA = a · 2d + b a, b ∈ {0, ...,MMax}

OperandB = x · 2d + y x, y ∈ {0, ...,MMax}

The multiplication of both operands produces the following

result:

OperandA · OperandB = ax · 22 d + (ay + bx) · 2d + by

In case of a 32-bit multiplication with an displacement of

d = 16 bits only the results with a displacement smaller

than 2 d = 32 bits are visible. The result contains in its

upper half a dot product of the four input subwords and in

the lower half a product of two input subwords. The possi-

bility not to model only basic SIMD instructions but also to

be able to model complex SIMD instructions has proven to

be very useful, since in standard DSP applications the dot

product occurs frequently. It is important to note that the

dot product cannot be applied without carefully checking

the value ranges of the operators.

If all input variables range between 0 and MMax then the

product of two variables results in a range between 0 and

MMax · MMax. In case of the dot product a further addi-

tion is required which doubles the maximum range. There-

fore, the following value ranges are obtained for the upper

and the lower part of the multiplication of OperandA and

OperandB.

ay + bx ∈ {0, ..., 2M2

Max
}

by ∈ {0, ...,M2

Max
}

In case of a 8-bit multiplication the result of the dot product

is at most 17 bits wide. Hence, it is not possible to repre-

sent it with the upper 16 bits. If all operands are only 7 bits

wide, the dot product yields a 15-bit result. To effectively

use the dot product, additional knowledge about the value

range of the input variables is required. Though, there is a

possibility to extract the 17th bit from processor by reading

the carry flag of the processor. This can only be done be us-

ing assembly instructions which would make the complete

approach machine dependent. For the sake of portability

the input variables need to be limited to 7-bit. The convolu-

1 : for (j = 0; j < 256 ; j+=2){

2 : ...

3 : for (i = 0; i < 3; i++){

4 : /* SIMD load */

5 : c1_simd = *((unsigned int *) (c1 + i+j*k))

6 : /*SIMD MUL*/

7 : s0_simd = c1_simd * mask[i];

8 : ...

9 : }

10: /* unpacking the result */

11: sum1 = (s0_simd >> 16);

12: sum2 = s0_simd & 0xFFFF;

13: ...

14: }

Figure 7. Convolution using SoftSIMD

tion shown in Figure 5 serves as example to demonstrate the

complete transformation flow. The first step is to unroll the

code to make the parallelism explicit, as shown in Figure

6. Once the code is unrolled the SoftSIMD transformations

can be employed. Figure 7 depicts the code example after

the SoftSIMD transformations have been applied to it. It

is assumed that each array element of c1 is stored using a

16-bit alignment. Thus, it is possible to load data which is

already packed. In case this is not possible, each data ele-

ment needs to be loaded and afterwards packed into a single

variable. The next step is to perform the SIMD multiplica-

tion. After the inner loop is completed, the obtained result

s0_simd needs to be unpacked.

4 SoftSIMD Boundary Conditions

In the previous section it was shown how to mimic the

behavior of a SIMD instruction purely in software. But the

boundary conditions for the SoftSIMD instructions have not

been considered yet. First of all, the application must fulfill

all requirements for regular SIMD instructions such as data

alignment, parallelism, and correct data bit width to name

only the most important requirements. On top on this the

implementation of SoftSIMD instructions has additional re-

quirements.

Using just one guard bit as a buffer between two

operands has been shown not to be enough in a real appli-

cation, since the SoftSIMD implementation pays only off if

a sequence of operations can be executed on packed data.

Therefore, the number of guard bits depends heavily on the

number of operations which are executed on packed data,

e.g. two subsequent additions. In case that additional in-

formation about the value range on the variables is avail-

able it is possible to determine the maximum number of re-

quired bits per operand. Thus, it is possible to pack the data

more efficiently than assuming the worst case bit width for

each operand. Furthermore, the value range information is

crucial for determining the offset of each input. Without

such information in both cases the worst case needs to be

assumed, which will reduce the performance of the imple-

mentation. Additionally, as described in Section 3.1 work-

ing with signed data causes a significant overhead which

can be hard to overcome. Therefore the ideal application for

SoftSIMD instructions should use only a minimum num-

ber of signed data types and work on 8-bit wide data ele-

ments. The domain of image processing satisfies all these

constraints, each pixel of a image is described as unsigned

8-bit value. In some cases, the 8-bit data is stored with a

16-bit alignment allowing loading pre-packed data directly

from the memory with a 32-bit load operation. In addition,

the image processing algorithms contain a lot of parallelism

which can be exploited by using SIMD instructions.

5 Results

To measure the impact of SoftSIMD instructions a set

of 6 different benchmarks from the image processing do-

main have been chosen. The benchmarks range from fairly

simple algorithms like vector addition and dot product to

more complex image processing filters like sobel. As tar-

get architecture a MIPS32 24K[2] is used with the gcc 3.3.4

C-compiler.

Figure 8 shows how the speedup varies depending on the

number of loop iterations. With increasing number of itera-

tions the speedup also increases until it saturates. Since the

used kernels are fairly small, the overhead introduced by the

loop limits the possible speedup in case of few iterations.

For a larger number of iterations the impact of the loop be-

comes negligible. Then, the maximum achievable speedup

with the SoftSIMD implementation is reached. The other

three benchmarks have more complex loop bodies, there-

fore the impact of the loop on the performace is minimal.

Figure 9 displays the obtained speedups for the different

applications. The vector addition is benchmarked with two

different degrees of parallelism ρ = 2 and ρ = 3. All results

show a significant speedup which ranges from 1.17 to 2.28.

However, in all cases the theoretical limit is not reached, due

to overhead introduced by packing and unpacking the data

and by handling subtractions. Interestingly, the dot product

shows lower speedup than expected. The complex SIMD

instruction replaces two multiplications and one addition,

thus, the theoretical speedup is 3. However, instead of us-

ing two 8-bit multiplications a 32-bit multiplication is used,

which has a longer latency on our target architecture, there-

fore, most of the speedup is lost.

4 8
16

32
64

128
256

512
1024

Dot Product p = 2

Vector Add p =2
Vector Add p = 3

0

0,5

1

1,5

2

2,5

Iterations

Speedup

Figure 8. Obtained speedup depending on
the number of iterations

SoftSIMD

0

0,5

1

1,5

2

2,5

ve
ct
or

ad
di
tio

n
p

=
2

ve
ct
or

ad
di
tio

n
p

=
3

do
t p

ro
du

ct
p

=
2

3x
3

co
nv

ol
ut

io
n

p
=

2

co
rr
el

at
io

n
fil
te

r p
=

2

so
be

l p
=

2

S
p

e
e

d
u

p

Figure 9. Speedup achieved using a pure
Software Implementation of SIMD Instruc-

tions on MIPS32 24K

6 Conclusion

The results clearly indicate that it is possible to increase

the utilization of a wide data path in multimedia applica-

tions. Without any hardware modifications it is possible

to speed up applications by exploiting the available par-

allelism. For the image processing domain speedups be-

tween 1.17 and 2.28 have been measured. The number of

applications that can benefit from this approach is rather

limited due to the constraints described earlier. However,

quoting[1], “...those few cases where it’s applicable, it can

help you meet performance targets you would otherwise

miss, and it may be less painful than the alternatives.”

For the future it might be interesting to automate the

SoftSIMD process and integrate it in a compiler. Thus, the

compiler would be able to automatically generate a target

independent SIMD implementation. Due to the close rela-

tion of SIMD and SoftSIMD a lot of existing work could

be reused. Additionally, a good value range analysis would

be required. Furthermore, it would be interesting to analyse

if a mixed approach, where some parts are implemented in

hardware and other parts are implemented in software, can

improve performance. For example, hardware support for

packing and unpacking of data could reduce the overhead.

References

[1] BDTi: Emulating SIMD in Software.

http://www.dspdesignline.com/

showArticle.jhtml?articleID=192501356.
[2] MIPS32 24K Family.

http://www.mips.com.
[3] A. Eichenberger and K. O. P. Wu. Vectorization for SIMD

architectures with alignment constraints. In Proc. Program-

ming Language Design and Implementation (PLDI), 2004.
[4] R. J. Fisher. General-Purpose SIMD within a Register: Par-

allel Processing on Consumer Microprocessors. PhD thesis,

Purdue University, 2003.
[5] C. Fraser, D. Hanson, and T. Proebsting. Engineering a Sim-

ple, Efficient Code Generator Generator. In ACM Letters on

Programming Languages and Systems, vol. 1, no. 3, 1992.
[6] A. Frederiksen, R. Christiansen, J. Bier, and P. Koch. An

Evaluation of Compiler-Processor Interaction for DSP Ap-

plications. In 34th IEEE Asilomar Conference on Signals,

Systems, and Computers, 2000.
[7] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle.

Combined Selection of Tile Sizes and Unroll Factors Us-

ing Iterative Compilation. In PACT ’00: Proceedings of

the 2000 International Conference on Parallel Architectures

and Compilation Techniques, 2000.
[8] A. Kudriavtsev and P. Kogge. Generation of Permutations

for SIMD Processors. In Proc. Languages, Compilers and

Tools for Embedded Systems (LCTES), 2005.
[9] S. Larsen and S. Amarasinghe. Exploiting superword level

parallelism with multimedia instruction sets. In Proc. Pro-

gramming Language Design and Implementation (PLDI),

2000.
[10] R. Leupers. Code Selection for Media Processors with

SIMD Instructions. In Design Automation & Test in Europe

(DATE), 2000.
[11] D. Naishlos. Autovectorization in GCC. In Proceedings of

the GCC Developers’ Summit, pages 105–118,

http://www.gccsummit.org/2004, 2004.
[12] I. Pryanishnikov, A. Krall, and et al. Pointer Alignment

Analysis for Processors with SIMD Instructions. In Proc.

5th Workshop on Media and Streaming Processors, 2003.
[13] H. S. Warren. Hacker’s Delight. Addison Wesley, 2002.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

