
DRIM : A Low Power Dynamically Reconfigurable Instruction Memory
Hierarchy for Embedded Systems

Zhiguo Ge, Weng-Fai Wong
Department of Computer Science,
National University of Singapore

{gezhiguo,wongwf}@comp.nus.edu.sg

Hock-Beng Lim
ST Engineering

limhb@steng.com.sg

Abstract

Power consumption is of crucial importance to embed-
ded systems. In such systems, the instruction memory hi-
erarchy consumes a large portion of the total energy con-
sumption. A well designed instruction memory hierarchy
can greatly decrease the energy consumption and increase
performance. The performance of the instruction memory
hierarchy is largely determined by the specific application.
Different applications achieve better energy-performance
with different configurations of the instruction memory hier-
archy. Moreover, applications often exhibit different phases
during execution, each exacting different demands on the
processor and in particular the instruction memory hierar-
chy. For a given hardware resource budget, an even better
energy-performance may be achievable if the memory hi-
erarchy can be reconfigured before each of these phases.
In this paper, we propose a new dynamically reconfig-
urable instruction memory hierarchy to take advantage of
these two characteristics so as to achieve significant energy-
performance improvement. Our proposed instruction mem-
ory hierarchy, which we called DRIM, consists of four banks
of on-chip instruction buffers. Each of these can be con-
figured to function as a cache or as a scratchpad memory
(SPM) according to the needs of an application and its ex-
ecution phases. Our experimental results using six bench-
marks from the MediaBench and the MiBench suites show
that DRIM can achieve significant energy reduction.

1 Introduction

With the proliferation of portable devices such as mo-
bile phones, digital cameras, etc, power consumption has
become a major design consideration. As the instructions
are fetched almost every cycle, the instruction delivery sys-
tem constitutes a significant portion of the total energy con-
sumption by the processor. Power consumption affects the
battery life and the heat dissipation of portable devices,
which in turns affects their usability. Thus, designing an en-

ergy efficient instruction delivery system is very important
for embedded systems.

Several approaches have been proposed for the reduction
of energy consumption in caches. First, there were propos-
als for customizable and reconfigurable caches that adapt to
the characteristics of a specific application. Cache banks are
shut down and the cache associativity is reconfigured when
necessary in order to decrease energy consumption [18, 1].

Another popular method is the use of scratchpad mem-
ories (SPMs) as energy efficient on-chip buffers [2]. The
SPM is more energy efficient than a cache since it does
not require tag storage and its control logic is simpler. Tag
access and comparison occur with every cache access and
therefore consume significant amount of energy. Further-
more, a SPM can be utilized by the application in such a way
that instruction conflicts are reduced. Mapping frequently
used data and instructions to pure SPM or hybrid SPM and
cache architectures have also been explored [16, 9]. How-
ever, in these studies, the memory hierarchies were assumed
to be fixed.

Other researchers [11, 15] performed design space ex-
plorations for the on-chip SPM, utilizing the characteristics
of an given application to further improve the energy sav-
ings. There are two issues with such approaches. Firstly,
the design choices for the memory hierarchy may be lim-
ited in reality. Secondly, these approaches failed to take ad-
vantage of the phased behavior of applications during their
execution.

In this paper, we propose a novel dynamic reconfigurable
instruction memory hierarchy (DRIM) for embedded sys-
tems. Our proposed architecture consists of four banks of
storage, each of which can be dynamically reconfigured to
be part of a cache or a SPM to suit an application and its ex-
ecution phases. We will also describe an algorithm that sup-
ports the dynamic reconfiguration of DRIM and the selec-
tion and allocation of code to be executed from the scratch-
pad memory. Our experimental results using six bench-
marks from the Mediabench and the MiBench suites show
that our framework can achieve significant energy savings.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



The rest of the paper is organized as follows. In Sec-
tion 2, we will discuss related works and our contribu-
tions. Section 3 introduces our DRIM architecture. We then
present the compiler framework and algorithms for parti-
tioning the memory hierarchy reconfiguration and allocat-
ing instruction to the SPM in Section 4. In Section 5, we
present our experimental methodology and discuss the re-
sults. We conclude this paper in Section 6.

2 Related Work

Several researchers have studied the use of SPM in the
instruction memory hierarchy, with the aim of saving en-
ergy in embedded systems. Instruction may be statically
mapped into a given instruction memory hierarchy consist-
ing of only of SPM or a mixture of cache and SPM [16, 9].
Algorithms to statically partition instructions for a SPM of
a given size (with or without the presence of a cache) have
been proposed. However, these works do not consider dy-
namic instruction replacement and the possibility of chang-
ing hardware configurations. Such schemes suffer from a
lack of flexibility and the SPM is not efficiently used.

Dynamic instruction replacement to improve the utiliza-
tion of SPM has also been studied [7, 4, 14]. Different in-
struction blocks may occupy and reuse the same SPM en-
tries to improve the SPM’s efficiency. Significantly greater
energy savings can be achieved over the static methods.
However, the above works did not consider tuning the archi-
tecture parameters for different applications. Several other
researchers studied the problem of design space exploration
so as to find the best memory hierarchy parameters for a
given application. Ge et. al [11] partitioned the given stor-
age resource budget into a SPM and a cache, according to
the application’s characteristics. Van der Aa, et. al. [15]
performed the exploration for optimal configurations of the
instruction loop buffer given an application, and mapped se-
lected loops into these loop buffers so as to reduce the en-
ergy consumption.

The existing work on instruction SPM can be classified
into three categories: (i) static architecture with static map-
ping, (ii) static architecture with some dynamic replacement
strategies, and (iii) static architecture exploration with static
mapping. None of these considered the dynamic tuning ar-
chitectural parameters. Kondo et. al. [6] proposed a dy-
namic reconfigurable data memory hierarchy consisting of
SPM and cache. However, they did not consider the instruc-
tion memory hierarchy. The main contributions of our work
are as follows:

1. We propose a new dynamic reconfigurable instruction
memory hierarchy (DRIM), which enables more flex-
ible use of a SPM than previous methods. It can be
reconfigured for different applications instead of be-
ing tuned just for a particular program. Furthermore,
DRIM can be reconfigured for the different phases of

execution of an application, so as to minimize the en-
ergy consumption of each phase.

2. We developed a compilation strategy to support this
reconfiguration memory hierarchy.

To the best of our knowledge, dynamic reconfiguration of
SPM for instruction memory hierarchy has yet to be studied.

3 DRIM Architecture

S
P

M

S
P

M

S
P

M

ca
ch

e

Tag

Bank 0 Bank 1 Bank 2 Bank 3

Instruction Memory

S
P

M

S
P

M

ca
ch

e

ca
ch

e

Bank 0 Bank 1 Bank 2 Bank 3

Instruction Memory

reconfigure

TagTagTag

TagTagTag Tag

Current phase
of application

Current phase
of application

Figure 1. Reconfiguring memory at runtime.

Differences between applications as well as between
phases of execution within an application can best be ex-
ploited if the memory hierarchy can be reconfigured. Fig-
ure 1 illustrates the idea of how the DRIM architecture
works. In the configuration of DRIM that we designed and
studied, we reconfigured four banks of storage dynamically
as cache or SPM.

tag
address

a9...a0

a9

a8

a6..a0

a9..a8

tag address index line offset

T1 T2 T3 T4

= = = =

data
select

SPM
Controller

d1 d2 d3 d4

-

S1

S2

D1

D4

ENB

decoder

SPM_hit

iD

ird

index

addr

SPM_hit

1c 2c 3c 4c

ic

1c 2c 3c 4c

Tag array

Data Array

1c 2c 3c 4cCTR_Reg

ALFU

addr

1rt 2rt 3rt 4rt

1rd 2rd 3rd 4rd

lb_reg

hb_reg
ad

dr

Figure 2. DRIM architecture.

The architecture of DRIM is shown in Figure 2. It con-
sists of the tag logic, the data array, the SPM control logic,
and other logic. The DRIM architecture is based on a four
way associative cache architecture. One important differ-
ence is that tag and data access is controlled by the SPM
control logic and a control register known as CTR_Reg. In
Figure 2, the CTR_Reg is collectively the four bits, c1, to
c4. These four bits determine the configuration of DRIM.
Each bit is associated with one bank of tag and data storage.
If the bit is one, the corresponding data bank will be config-
ured as a SPM. Also, the tag bank will be gated, thereby de-
creasing its activity, which in turns results in energy savings.
The value of the CTR_Reg is manipulated by the processor.

2



The address lookup functional unit (ALFU) determines
whether an instruction is residing in the SPM or not. It
consists of two address registers and two parallel compara-
tors. The two registers, ub_reg and lb_reg, hold the
upperbound and the lowerbound addresses for the instruc-
tion block that is to reside in the SPM, respectively. If
the address of an instruction to be fetched falls within the
range of these two registers, then it is in the SPM and the
ALFU will generate the SPM_hit signal. This signal con-
trols the selection and gating of the tag and the data banks.
In the DRIM design presented here, there is only one pair
of ub_reg and lb_reg. As a result, only one block of
instructions may reside in the SPM banks at any one time.

The SPM controller performs the loading of instructions
from main memory into the SPM, as well as the updating of
the upperbound and lowerbound registers.

The tag and data banks are selected or gated according to
the value of CTR_Reg. The address of the instructions in
SPM will determine which SPM bank should be accessed.
For each tag array ti, the gate signal is rti:

rti = ∼SPM_hit ∧ ∼ ci = ∼ (SPM_hit ∨ ci)
In other words, all the tag banks will be gated and de-
activated if SPM_hit is asserted. A de-asserted SPM_hit
implies that the instruction to be fetched is not in the SPM.
In that case, only the tags corresponding to the banks config-
ured as cache, i.e. those whose ci is true, will be searched.

For data array i, the corresponding gate signal, rdi is:
rdi = (∼SPM_hit ∧ ∼ ci) ∨ (SPM_hit ∧ Di)

where Di is the data bank selection signal. If an instruction
is not in SPM, i.e. SPM_hit is false, the data array of the
storage banks configured as cache will be accessed. Oth-
erwise, i.e. if SPM_hit is true, the SPM bank containing
the instruction will be selected by Di. The following sim-
ple example illustrates how Di can be computed: Suppose
all four data banks are configured as SPM and the size of
each data bank is 256 bytes. In this case, bank 1, 2, 3, and
4 will hold instructions for which the last 10 bits of the ad-
dresses are in the range 0x000 to 0x0FF, 0x100 to 0x1FF,
0x200 to 0x2FF, and 0x300 to 0x3FF, respectively. Clearly,
the two most significant bits can then be used as the bank
selection signal Di. The remaining eight bits can be used as
the address supplied to the data banks.

4 Compiler Framework
DRIM requires the compiler’s support to realise its dy-

namic reconfiguration. The compiler also has to insert in-
structions into an application in order to dynamically load
selected instructions into the SPM. We have developed a
compiler framework that performs these functions.

4.1 Compilation Flow
The structure of our compilation flow is shown in Fig-

ure 3. The inputs are the given application and the stor-
age resource budget for the instruction memory hierarchy.

The outputs are the partitioning decision for the instruction
memory hierarchy custom-made for the application, and the
transformed application with an optimized instruction lay-
out. The framework consists of several steps:

Build CFG and profile program

Intra-Procedural instruction layout optimization

Build LPHG, determine the dynamic
reconfigurations and partition instructions

Transformed Program

C program C compiler

Assembly files

Group instructions assigned to SPM, and insert the
reconfiguration and trace loading instructions

Figure 3. Design Flow

• Profiling the application: First, profiling is used to ob-
tain the runtime characteristics of the application. The
information collected include the execution counts of
the edges of the control flow graphs (CFGs) of all the
procedures and the number of the procedure invoca-
tions. This is done by building a CFG for each proce-
dure, and then adding instructions to instrument each
basic block of a CFG. The instrumented program is
executed to get the required execution statistics.

• Intra-procedural instruction layout optimization: The
goal of this step is to optimize the instruction layout
within each procedure according to the profiling statis-
tics obtained in the previous step. We used the Top-
down Positioning algorithm proposed by Pettis and
Hansen [13] to perform intra-procedural layout opti-
mization. This step brings the frequently executed ba-
sic blocks together to make it easier to extract a fre-
quently executed trace.

• Determining the reconfiguration and partitioning in-
structions to SPM: In this step, the application’s run-
time profile is analyzed so as to determine the suit-
able points to reconfigure DRIM and the correspond-
ing configurations. At the same time, the instructions
blocks are partitioned to the dynamically configured
SPM banks.

• Grouping partitioned instruction blocks, and inserting
reconfiguration and trace load instructions: After the
preceding step, the architectural configurations for dif-
ferent phases are determined and the instructions are
partitioned to SPM banks. At this step, we generate
code chunks namely traces by taking out and group-
ing the instruction blocks assigned to SPM. Then, the
instructions for architecture reconfiguration and trace
loading are inserted into the application. All the in-
structions in an trace are contiguous and the whole
trace will be loaded into SPM when a loading happens.
The jump instructions might need to be added to main-
tain the control flow relations between the basic blocks.

3



Algorithm 1: Algorithm for determining dynamic re-
configuration and SPM instruction load points

Input: Proc list: Procedure list whose procedures have been
intra-procedural optimized

Output: Basic block list: list of instruction blocks of basic blocks
assigned to SPM

Variable list loops : the list of loops;
Variable list child loops : the list of loops;
Build Loop-Procedure Hierarchy Graph(LPHG)1
Get sizes of all loops();2
list loops ←− all leaf loops;3
foreach loop l in list loops do4

if ((l is leaf loop) && (#iteration of l ≥ Thresh hold)) then
Annotate reconfig point and instrs partitioned(l);

else if l is non-leaf loop then5
list child loops ←− all child loops of l;6
#banks occcupied = # of banks configured as SPM for loops7
in list child loops;
#free banks = #total banks - #banks occcupied;8
#SPM banks = evaluateConflict(#free banks,9
child loops of l ∪ l);
if (#SPM banks !=0) then10

Instr alloc(list child loops ∪ l, SPM);11
Update reconfig point(l);12

end
if (!list loops.contain(parent of(l))) then13

list loops.add to tail(parent of(l)); //to traverse higher level loops14
later

end
end
Hoist reconfig position();15
Insert reconfig and code loading instructions();16
return Proc list;17

We evaluate the proposed framework using the Sim-
plescalar tool set [3]. The Simplescalar simulator was ex-
tended to support DRIM. We also built an instruction opti-
mization tool which performs the program profiling and the
intra-procedural instruction layout optimization.

4.2 Dynamic reconfigurations and instruction re-
placement

This section describes the second innovation of this pa-
per other than the DRIM architecture, namely an algorithm
to decide where and when to reconfigure DRIM as well as
deciding which instructions should go into the SPM. The re-
configuration and the instruction allocation are determined
by the phaseal behavior of the execution of an application.
Our proposed algorithm is shown in Algorithm 1. The al-
gorithm uses the Loop-Procedure Hierarchy Graph (LPHG)
[10] to represent a program. The LPHG captures all the
loops, and procedure calls of an application as well as their
relations. In order to estimate the cache misses for loops, the
sizes of loops in LPHG are computed (line 2 of Algorithm
1).

We assume that most of the energy consumed by instruc-
tion fetching as well as most of the instruction cache con-
flicts occurs inside loops. The intuition is that if the num-
ber of loop iteration are large enough to outweigh the over-
head of the reconfiguration and trace loading, then the loop
should be placed into the SPM. If the loop is too big to fit
into the SPM, then the cache is used to buffer the rest of it.

In a LPHG, the deeper a loop is, the higher is its exe-
cution frequency. The algorithm therefore starts from the
leaf loops and work toward their parent loops. If the num-
ber of the loop iterations is larger than a threshold value, the
energy savings obtained from the usage of SPM will over-
weigh the overhead of reconfiguring DRIM. It is then ben-
eficial to reconfigure the data storage banks into SPM and
use it. For this paper, we empirically set the threshold value
to be 30.

6090

A

B:300
C:200

C C

64 64 64 64

100

60

EDB,CB,C

SPM SPM

D:500

E:600

Figure 4. Example of loop allocation.

After a loop is examined, its parent loop will be added to
list loops (line 14). The algorithm may at some later point
examine it for more opportunities for reconfiguration. The
algorithm therefore proceed one level at a time from leaves
up to the root. If a loop is an internal node (line 5), then the
algorithm will evaluate whether it is beneficial to allocate
more SPM space from the free storage banks (line 9). The
evaluation function we used is conservative and simple. If
the reduction in cache size caused by the allocation of more
space to SPM does not severely increase the instruction miss
rate, then it is considered beneficial. The evaluation func-
tion takes the number of free storage banks for reconfigu-
ration and the current loop as input. It returns the maximal
number of additional SPM banks (#SPM banks) which
can yield beneficial results.

Figure 4 is a example of how the algorithm evaluates
conflicts and partitions the instructions. The left part of Fig-
ure 4 is a sample loop represented in LPHG, while the right
are the four banks storage resource available. The algorithm
first try to configure one bank as SPM and allocate it to loop
E. Each of the left three child loops (i.e. B, C, D) can fit
into the remaining three storage banks, i.e. there will not
be any conflict. So, the algorithm will try to configure one
more banks as SPM and move loop D, the loop with the next
highest execution frequency, to it. Now, B and C, taken to-
gether, is smaller than the size of the two storage banks, and
thus it is safe to take this configuration. If one more bank is
configured as SPM, then there will only be one bank left to
buffer the remaining loop and other code. It is therefore not
beneficial to configure banks as SPM any more since severe
cache conflicts will be caused with one of the loops.

The instruction allocation function allocates the fre-
quently executed instructions inside the loop to the allocated
SPM (line 11). The instruction allocation function consid-
ers two factors. The first is the size of the loop. If it is larger
than the size of the allocated SPM, then as many instruc-

4



tions as possible of the loop will be allocated to the SPM.
The second consideration is the execution frequency of in-
structions. The most frequently executed instructions will
be allocated to the SPM.

After instruction allocation, all reconfiguration points in-
serted in the child loops by the previous iteration will be
deleted and a new reconfiguration point is added to the entry
of the loop (line 12). This is because before a SPM_load
instruction loads a block of code, the child loop should not
load another instruction block. There can only be one block
of instructions residing in the SPM. The instructions loaded
to SPM are frequently executed. Therefore care must be
taken to avoid overlapping loops in the SPM.

A: // parent loop

…

B: // child loop

inst B_0

…

inst B_n

blt … B

…

blt … A

A: // parent loop

…

B: // child loop

inst B_0

…

inst B_n

blt … B

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

A: // parent loop

…

jump T

U:

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

A: // parent loop

…

jump T

U:

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

jump T

A: // parent loop

…

jump T

U:

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

jump T

A: // parent loop

…

jump T

U:

…

blt … A

Transform for
SPM loading

Hoist
Reconfiguration

Point

Figure 5. Code transformation for reconfigu-
ration.

Once all the loops are traversed and the reconfiguration
positions and instructions assigned to SPM have been de-
cided, the instructions for reconfiguration and instruction
loading are inserted. There is an important optimization
that can be applied. The number of reconfigurations can
be reduced by hoisting the reconfiguration point from inner
loop to outer loop (line 15). If a loop does not have any
sibling loops, the reconfiguration at its entry can be hoisted
out to its parent loop. An example of this code transforma-
tion is shown in Figure 5. The SPM_load instruction loads
a block of code into the SPM as well as set up the bound
registers.

The last step in the algorithm (line 16), is to group all the
instructions allocated to the SPM for each reconfiguration
and insert the instructions used for reconfiguring the DRIM
as well as loading the instruction blocks to SPM after each
reconfiguration yielding the final transformed program.

5 Experimental Evaluation

5.1 Experimental Methodology

We used the Simplescalar/PISA 3.0d simulator [3] for
our experiments. The full-featured simulator in the suite,
sim-outorder, was modified to support DRIM. The
cache line modeled in the simulator is 64 bytes, correspond-
ing to 32 bytes in 4-byte instruction systems. The instruc-
tion memory hierarchy consists only of the L1 instruction

buffer (i.e. DRIM) and the main memory. Our DRIM im-
plementation has four banks of data storage, each of size
256 bytes. The latency of accessing DRIM is 1 cycle. The
main memory is assumed to be pipelined. The latency of
the first access to the main memory is 10 cycles, while that
of the subsequent accesses is 2 cycles.

In our experiments, we used six application benchmarks
from the MediaBench [12] and MiBench [8] suites. We
compared the energy consumption and performance of exe-
cuting each benchmark on two different architectures: (1) a
baseline system comprising of a traditional 4-way associa-
tive instruction cache and (2) a DRIM based system.

We modeled the energy consumption of the memory
hierarchy using the CACTI [17] model for 0.13µm tech-
nology. For the calculation of the energy consumption of
DRIM, we included the logic elements that perform address
checking and control the SPM. The energy consumption of
loading a trace into the SPM is modeled as the number of
SDRAM burst accesses up to the size of the trace. The
dynamic energy consumption per access of different archi-
tectures is shown in Table 1. ‘1way’, ‘2way’, ‘3way’ and
‘4way’ represents the energy consumption of the cache por-
tion when DRIM is configured as a combination of 1, 2, 3,
or 4 banks cache and the SPM respectively. ‘SPM’ is the per
access energy consumption for the SPM in DRIM. This is
the sum of the energy consumption for one data bank of the
4-way associative cache and the energy overhead for access-
ing the SPM. The energy consumed by each burst access of
SDRAM is 32.5 nJ [5].

DRIM
base cache 1way 2way 3way 4way SPM SDRAM

0.538 0.152 0.283 0.413 0.544 0.133 32.5

Table 1. Per access energy consumption (in
nJ).

5.2 Performance Improvements and Energy Sav-
ings

Performance: The performance results are shown in Ta-
ble 2. Compared to the baseline cache configuration, the de-
crease in the instruction cache miss rate provided by DRIM
ranges from 0% to 40.7% for the benchmarks studied. The
average improvement in the miss rate is 15.6%. This im-
provement comes from reconfiguring some storage banks
to SPM and the mapping of the frequently executed instruc-
tions into the SPM for important loops. For the benchmarks
mpeg2-dec and mpeg2-enc, there is no improvement
on the miss rate because they are dominated by small size
loops with very large number of iterations. Such bench-
marks performs well on a pure cache architecture. As a re-
sult of the improvement in miss rates, the execution times

5



of the applications are decreased by an average of 10.2%.

miss rate(%) execution cycles(K)
Benchmark base DRIM Imprv base DRIM imprv(%)

gsm-dec 0.42 0.40 4.8 7,617 7,603 0.2
gsm-enc 6.10 3.62 40.7 70,076 47,633 32.0
g721-enc 3.09 2.43 21.4 381,509 331,266 13.2

susan-edge 2.76 2.03 26.4 2,346 1,962 16.4
mpeg2-dec 1.36 1.36 0.0 27,329 27,427 -0.4
mpeg2-enc 0.11 0.11 0.0 836,006 836,121 -0.0

average - - 15.6 - - 10.2

Table 2. Miss rate and Performance

Energy consumption: The total energy consumption of the
two instruction memory hierarchies are shown in Table 3.
Compared to the baseline cache cofiguration, the reduction
in the energy consumption provided by DRIM ranges from
14.3% to 65.2% for the benchmarks studied. The average
reduction in the energy consumption is 41%.

gsm- gsm- g721- susan- mpeg2- mpeg2-

dec enc enc edge dec enc

baseline(mJ) 8.39 98.34 558.52 3.27 37.39 1,019.7

DRIM(mJ) 4.60 53.84 336.3 2.08 32.04 354.75

improv(%) 45.2 45.2 39.8 36.5 14.3 65.2

Table 3. Energy consumption.

There are two major reasons for the reduction in energy
consumption. First, the instruction cache miss rate has im-
proved. The per access energy consumption of SDRAM is
much higher than that of the cache and SPM. Thus, fewer
cache misses will translate to energy savings. Second, the
per access energy consumption of the SPM is lower than
that of the cache. By configuring one or more instruction
storage buffer as SPM and loading the frequently executed
instructions into them during the program execution, sig-
nificant energy savings can be obtained. For example, al-
though there were no miss rate reduction for mpeg2-dec
and mpeg2-enc (as shown in Table 2), there is actually
energy savings. mpeg2-enc has a higher energy reduc-
tion than mpeg2-dec since its miss rate is very low and
the energy consumption is dominated by on-chip instruction
buffer accesses. By reconfiguring on-chip storage buffer
banks as SPM, the total energy consumption is decreased
significantly.

6 Conclusion

In this paper, we proposed a low power dynamically re-
configurable instruction memory hierarchy, called DRIM,
for embedded systems. The on-chip instruction storage
banks can be reconfigured as SPM or cache for different

applications as well as different phases of the application’s
execution. We also developed a compilation flow to support
DRIM. Our experimental results showed significant energy
savings as well as satisfactory performance improvement.
We believe that our approach is more flexible than previous
schemes and can be easier applied to embedded systems.

References

[1] David H. Albonesi. Selective cache ways: on-demand cache resource
allocation. In Proceedings of MICRO-32, pages 248–259, 1999.

[2] Rajeshwari Babakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan,
and Peter Marwedel. Scratchpad memory: A design alternative for
cache on-chip memory in embedded systems. In Proc. of CODES
’02, pages 73–78.

[3] Doug Burger and Todd M. Austin. The simplescalar tool set, ver-
sion 2.0. Technical Report #1342, University of Wisconsin-Madison
Computer Sciences Department, May 1997.

[4] Andhi Janapstya et. al. Hardware/software managed scratchpad
memory for embedded system. In ICCAD’04, 2004.

[5] Aviral Shrivastava et. al. Compilation techniques for energy re-
duction in horizontally partitioned cache architectures. In Proc. of
CASES’05, pages 90–96, 2005.

[6] Kondo M et. al. SCIMA: Software controlled integrated memory ar-
chitecture for high performance computing. In Proc. of ICCD’2000,
pages 105–111, 2000.

[7] M. Balakrishnan et. al. Reducing energy consumption by dynamic
copying of instructions onto onchip memory. In Proc. of ISSS’02,
pages 213–218, Kyoto, Japan, October 2002.

[8] Matthew R. Guthaus et. al. Mibench: A free, commercially repre-
sentative embedded benchmark suite. IEEE 4th Annual Workshop on
Workload Characterization, December 2001.

[9] Federico Angiolini et.al. A post-compiler approach to scratchpad
mapping of code. In Proc. of CASES ’04, pages 259–267, September
2004.

[10] Yanbing Li et.al. Hardware-software co-design of embedded recon-
figurable architectures. In Proc. of DAC ’00, pages 507–512.

[11] Zhiguo Ge, Weng Fai Wong, and Hock Beng Lim. A reconfigurable
instruction memory hierarchy for embedded systems. In Proc. of
FPL’05, pages 7–12, 2005.

[12] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool
for evaluating multimedia and communications systems. In Proceed-
ings of the Micro-30, December 1997.

[13] Karl Pettis and Robert C. Hansen. Profiling guided code positioning.
In Proc. of PLDI’90, pages 16–27.

[14] Ranjiv A. Ravindran. Compiler managed dynamic instruction place-
ment in a low-power code cache. In Proc. of CGO’05, pages 179–
190.

[15] Tom van der Aa et al. Instruction buffering exploration for low energy
vliws with instruction clusters. In Proc. of ASP-DAC’04, pages 824–
829, 2004.

[16] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-aware
scratchpad allocation algorithm. In Proc. of DATE ’04, pages 1264–
1269.

[17] Steven J. E. Wilton and Norman P. Jouppi. Cacti: An enhanced cache
access and cycle time model. IEEE Journal of Solid-State Circuits,
31(5):677–688, May 1996.

[18] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly config-
urable cache architecture for embedded systems. In Proc. of ISCA-30,
pages 136–146, 2003.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




