

Interrupt and Low-level Programming Support for Expanding the Application Domain of
Statically-Scheduled Horizontal-Microcoded Architectures in Embedded Systems

Mehrdad Reshadi, Daniel Gajski
Center for Embedded Computer Systems (CECS),

University of California Irvine, CA 92697, USA.
{reshadi, gajski}@cecs.uci.edu

Abstract
The increasing role of software in the embedded systems has

made processor an important component in these systems. However,
to meet the tight constraints of embedded application, it is often
required to customize the processor for the application. Customizing
instruction-based processors is difficult and very challenging. Design
approaches based on statically-scheduled horizontal-microcoded
architectures have been proposed to simplify the architecture
customization. In these approaches, first the datapath is specified by
the designer, and then the operations of the datapath are extracted
automatically. Since the operations are statically scheduled in these
architectures (i) low-level programming using assembly is impossible
or very tedious; and (ii) execution of programs cannot be interrupted
arbitrarily. In this paper, we address the above problems. We show
how to efficiently handle interrupts in such architectures and also
propose an elegant way of controlling low-level hardware resources
in a general way in C language. We also show that after adding
interrupt and low-level programming we could use the above
architectural style in a multi-core system to implement a complete
MP3 decoder that can process 122 frames per second while the
standard requirement is 38 frames per seconds.

1. Introduction
Due to the productivity gain of using software in the design of

embedded systems, processors are increasingly used in these
systems. Embedded processors often run only one or a few
applications in the life-time of the system. Therefore, they can be
customized for the target applications and significantly improve the
quality of the embedded system in terms of cost or other constraints
such as performance, and power consumption. Instruction-based
architectures limit the customizations because: (a) hardware designer
is limited by instruction coding, size and complexity of the decoder;
(b) compilers can support certain class of instructions and hence
instructions cannot be very complex; and (c) manually updating
compilers to incorporate the custom instructions is not practical and
developing compilers that automatically utilize hardware
customizations through new custom instructions is very complex.

An alternative design approach is to let an experienced ASIC
designer specify the datapath of the processor and then automatically
compile the program on the given datapath by explicitly controlling
the machine activities. Based on this design approach, MIMOLA [1],
TIPI [2], and NISC [3] use a statically-scheduled Horizontal
Microcoded Architecture (HMA) style to maximize the explicit
control of the programmer (or the compiler) over the datapath. In
these approaches, the microcode is used to execute the program on
the given datapath. In contrast, typically in traditional microcoded
processors [4], [5], the microcode was used inside the processor to
implement the instructions of the instruction-set. In other words, the
instructions, rather than the microcode, would define the processor’s

external behavior seen by the programs. The instruction abstraction
(a) enables backward binary compatibility, (b) simplifies low-level
programming through assembly, and (c) defines fine-grained
intervals where interrupts could be handled by the processor. By
using microcodes instead of instructions all these benefits are lost. In
embedded and custom processors, backward binary compatibility is
not as important as it is in the general-purpose processors. However,
interrupt and assembly programming are necessary features. For
example, developing different communication protocols rely on
interrupts and low-level access to the hardware.

In statically-scheduled pipelined architectures, different stages of
execution of an operation (e.g. read, execute, write-back) are
implemented with several micro-operations. The overlapping
execution stages of different operations are combined in micro-
instructions which determine the control-word (CW) for each clock
cycle. As a result, execution of micro-instructions cannot be
arbitrarily interrupted; otherwise, the interrupt routine may need to
store/restore datapath registers in addition to the registers of the
register-file. A safe and efficient interrupt mechanism is needed in
statically-scheduled HMAs before they can be used in embedded
systems. On the other hand, practical use of such architectures
mandates that programs are written in a high-level and architecture-
independent language (such as C). However, use of low-level
assembly programming is inevitable in firmware code (e.g. device
drivers). Since instruction abstraction is removed, an alternative
approach must be developed that allows the low-level programming
in such architectures. These issues have not been addressed in the
past. Since MIMOLA does not support pipelined datapaths,
interrupts does not impose a big challenge. On the other hand, the
compiler of TIPI solves a Boolean satisfiability problem and can be
used only for very small functional blocks. None of these approaches
have considered interrupts. Low level programming in MIMOLA
and TIPI is done directly with the microcodes. Since the target
architecture is statically scheduled, the programmer must manually
schedule the microcodes as well. This is a very tedious and error
prone task.

In NISC design approach, a cycle-accurate compiler uses a
mixture of standard compiler and High-Level-Synthesis (HLS)
algorithms to generate the control signals of a given datapath in every
clock cycle. Therefore, the architecture designer focuses only on
datapath design and provides the netlist of the datapath components
along with timing, cost and other attributes of components as an input
to the compiler. The compiler, then maps the application directly on
the given datapath. Experiments on several embedded and real life
applications have shown [6] that NISC can perform on the average 5
times better than a RISC processor while having only 15% larger
code size on average. The NISC design tools and sample
architectures are publicly available at [7]. In this paper, we focus on
two problems: (1) adding interrupt support to the architecture and the
tools; and (2) enabling low-level programming (similar to assembly)
in C language. After adding interrupt and low-level programming,

978-3-9810801-2-4/DATE07 © 2007 EDAA

we developed two multi-core systems to implement an Mp3 decoder
using NISC approach. The final system could process 122 frames per
second while the Mp3 standard requirement is 38 frames per second.

The rest of this paper is organized as follows: Section 2 presents
an overview of NISC. In Section 3 we explain how interrupt handling
is added to NISC, In Section 4 we explain our solution for supporting
low-level programming in C language. Use of NISC in two multi-
core systems is shown in Section 5. Section 6 presents the related
work and Section 7 concludes the paper.

2. NISC overview
In NISC design approach, the target architecture is composed of a

pipelined datapath and a pipelined controller that drives the control
signals of the datapath components in each clock cycle. The datapath
can be simple or as complex as datapath of a processor. The
controller has a fixed template and is usually composed of a Program
Counter (PC) register, an Address Generator (AG) and a Control
Memory (CMem). The control values are stored in a control
memory. For small size programs, the control values are generated
via logic in the controller. The NISC cycle-accurate compiler
generates the control values that define what the datapath should do
in every clock cycle. Figure 1 shows a sample NISC architecture
with a memory-based controller and a pipelined datapath that has
partial data forwarding, multi-cycle and pipelined units, as well as
data memory and register-file. In presence of controller pipelining
(i.e. CW and Status registers in Figure 1), the compiler should also
make sure that the branch delay is considered correctly and is filled
with other independent operations. Compilation algorithm detail is
presented in [3] and [8].

Figure 1- NISC architecture example.

Figure 2 shows the NISC flow of designing a custom architecture
for a given application. The datapath can be generated (allocated)
using different techniques. For example, it can be an IP, specified by
the designer, reused form other designs, or generated automatically
by algorithms similar to HLS. The datapath description is captured in
a Generic Netlist Representation (GNR) [9]. A component in datapath
can be a register, register-file, bus, multiplexer, functional unit,
memory etc. The program, written in a high level language such as C,
is first compiled and optimized by a front-end and then mapped on
the given datapath. The compiler generates the stream of control
values as well as the contents of data memory. The generated results
and datapath information are translated to a synthesizable RTL
design that is used for simulation and synthesis. After synthesis and
Placement and Routing, the accurate timing, power, and area
information can be extracted and used for further datapath
refinement. For example, the user may add functional units and
pipeline registers, or change the bit-width of the components and
observe the effect of modifications on precision of the computation,
number of cycles, clock period, power, and area. In NISC, there is no
need to design the instruction-set because the compiler automatically
analyzes the datapath and extracts possible operations and branch
delay. Therefore, the designer can refine the design very fast.

Figure 2- NISC flow.

While MIMOLA and TIPI focus only on single-cycle operations,
in NISC operation chaining (sub-cycle operations) and multi-cycle
operations are also supported. In NISC, each low-level action (such
as accessing storages, transferring data through busses/multiplexers,
and executing operations) is associated with a simple timing diagram
that determines the values of corresponding control signals at
different times. The compiler eventually schedules these control
values based on their timings and the given clock period of the
system. Therefore, the compiler has much more low-level control
over the datapath and hence is closer to a synthesis tool in terms of
capability and complexity.

Figure 3- (a) Sample datapath, (b) sample code.

Consider the datapath of Figure 3(a) that is used to compile the set
of expressions shown in Figure 3 (b). Depending on the clock
frequency of the system and the delay of the components, the
compiler can choose to chain two operations in one cycle or execute
one operation over multiple cycles. Assume that clock period of the
system is T, delay of ALU1 is d1, and delay of ALU2 is d2. Also
assume that ALU2 is slower but consumes less power (d1 < d2).
Depending on the values of T, d1, and d2 three cases are possible:
• If d1 < T and d2 < T but T < d1+d2, then each operation must be

scheduled in one cycle and intermediate data must be stored in
the register-file or datapath register r (Figure 4(a)).

• If d1+d2 ≤ T, then two operations can be chained in one cycle
and register-file is accessed only once for writing back the final
results (Figure 4(b)).

• If d1 < T < d2, then the faster ALU1 can be used to execute two
operations in two consecutive cycles while the slower ALU2
executes the other operation in two cycles (Figure 4(c)).

Figure 4- (a) single-cycle, (b) chained, (c) multi-cycle operations.

As this example illustrates, in NISC the datapath can be utilized
very efficiently because the compiler has complete control over it.
While instruction-set based compilers are mainly concerned with
performance, the NISC compiler can also consider other design
parameters such as timing and power consumption of individual
datapath components. However, as mentioned before, this
architectural style introduces new challenges for supporting interrupts
and low-level programming.

3. Adding interrupt handling to NISC
In traditional processors, the interrupt is checked between every

two instructions. The execution flow can be interrupted between
instructions because all instructions store their result back to the

register-file. Therefore, the interrupt routine may only need to
store/restore the value of registers in the register-file in its
prolog/epilog.

In NISC, the intermediate results of operation may be stored in the
internal registers of the datapath. Furthermore, an operation may take
more than one cycle (see Section 2) and hence span across multiple
CWs. Therefore, in NISC the execution flow cannot be interrupted
between any two arbitrary CWs. Detecting the dependencies between
CWs at run time is very difficult (if not impossible). Also, in addition
to the registers of the register-file, an interrupt routine may need to
store/restore the intermediate registers of the datapath as well.

To address this problem, we need to find an easily identifiable
location in the program where execution flow can be safely
interrupted. The boundary of basic blocks is a good candidate for this
purpose. A basic block is a sequence of operations that always
execute together. The execution sequence of basic blocks of the
program is data or control flow dependent. Consequently, every basic
block must read its inputs from memory or register-file and must
write its outputs back to memory or register-file. In other words,
since execution of operations of a basic block cannot depend on the
intermediate datapath values of other basic blocks, the interrupt can
be safely serviced at the end of basic blocks. In fact, one of the goals
of NISC is to execute each basic block as if it was executed with one
custom instruction.

We modified the controller of NISC to check for interrupts only
when bits corresponding to jump operations are set, i.e. at the end of
basic blocks. After a jump operation, the execution flow goes to the
target of the jump or an interrupt routine. In presence of an interrupt,
the target of the original jump is passed to the interrupt routine as its
return address. Note that this scheme also simplifies the
implementation of atomic functionalities because the programmer
can now count on atomic execution of basic blocks.

The only concern is that servicing the interrupt only between basic
blocks may increase the overall interrupt service delay if the basic
blocks are very large. There are two contributing factors to the
interrupt service delay: (1) interrupt latency, i.e. the time between
when the interrupt is activated and when the execution flow is
transferred to the interrupt service routine; and (2) the delay of
interrupt service routine (ISR), i.e. the time it takes to execute the
code in the ISR.

Figure 5- Architecture used for analyzing size of basic blocks.
In our proposed approach, the size of basic blocks in the running

application can affect the interrupt latency. To examine this effect, we
ran a series of embedded benchmarks on a generic architecture (GA)
shown in Figure 5. The benchmarks include qsort, dijkstra, sha,
adpcm.coder, adpcm.decoder and crc32 from MiBench (the free
version of EEMBC embedded benchmarks available at [10]), and a
fixed-point Mp3 decoder (more than 10,000 lines of C code available
at [11]). We generated the RTL Verilog code of the design and used
Xilinx ISE 8.1 toolset for simulation and synthesis of the results. We
synthesized the GA (Figure 5) on a Xilinx Virtex4 (90-nm) FPGA
package and achieved a clock frequency of 80 MHz. The Xilinx
toolset also provides a soft-core 32-bit RISC processor (MicroBlaze)

that is already optimized Xilinx technology. On a Vertix4 FPGA
package, MicroBlaze runs at 105 MHz. MicroBlaze core comes with
specific fine-grained timing constraints that direct the synthesis tool
to achieve the highest possible clock frequency. For synthesizing GA
we only used a general clock constraint and we expect that the clock
frequency of GA can be further improved by using more specific
constraints. In any case, the achieved 80 MHz clock frequency for
GA seems to be reasonable enough to be used in our calculations.

Figure 6 shows the distribution of number of basic blocks that take
less than 100 clock cycles to execute. The first column in this figure
shows the number of basic blocks that take 0 to 9 cycles to execute;
the second column shows the number of basic blocks that take 10 to
19 cycles, and so on. It is clear that in these benchmarks, the majority
of basic blocks take between 10 to 30 cycles. In other words, if we
service interrupts in between basic blocks, most of the time the
interrupt latency will be less than 0.5 µ sec (=50 cycles / 80 MHz).

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

qsort dijkstra sha crc32 adpcm.coder adpcm.decoder Mp3

Figure 6- Distribution of basic blocks shorter than 100 cycles.
Figure 7 shows the distribution of number of basic blocks that are

longer than 100 cycles. Overall, there are 13 basic blocks in all of the
benchmarks that are longer than 100 cycles. In general, although
large basic blocks are rare in applications, in cases where interrupt
delay is critical, the compiler can break large basic blocks into a
sequence of smaller blocks whose size is determined by the
frequency of the interrupts or the upper bound of their delay. Note
that large basic blocks are typically the result of techniques that
improve the operation-level parallelism of the code. The compiler
can break large blocks into smaller ones after or during operation
scheduling without negatively affecting the utilization of parallelism.
Compiler can also enable interrupt handling after fall-through basic
blocks (not ending with a jump) by adding a jump to the next block.

0

1

2

3

4

5

6

11
0

14
0

17
0

20
0

23
0

26
0

29
0

32
0

35
0

38
0

41
0

44
0

47
0

50
0

53
0

56
0

59
0

62
0

65
0

68
0

71
0

qsort dijkstra sha crc32 adpcm.coder adpcm.decoder Mp3

Figure 7- Distribution of basic blocks longer than 100 cycles.
A more important factor in servicing interrupts is the ISR

execution delay. We ran the aforementioned benchmarks on both
MicroBlaze and GA to compare their performance. On average, the
benchmarks ran 5 times faster on GA than MicroBlaze. We believe
the performance of a typical ISR routine benefits similarly from
execution on GA. Additionally, in NISC, we can customize the
architecture to further improve the performance of particular piece of
code, including an ISR.

The above experiments show that by processing interrupts in
between basic blocks, statically-scheduled architectures can handle
interrupts almost as efficiently as their RISC counterparts.

4. Low-level programming in NISC using C
Languages such as C are generic enough to cover majority of the

application needs, but sometimes in applications, the underlying
hardware must be controlled directly through special registers or
instructions. In instruction-based processors, programmers use
assembly code to perform tasks such as peripheral IO operations, or
configuring the interrupt unit. Since in NISC, the architecture has no
predefined instruction-set, it does not have any assembly code either.
This is specially limiting when an application requires interrupt or
needs to communicate with other cores in a system. In statically-
scheduled HMAs, use of microcode for low-level programming
requires that the programmer also provide an accurate cycle-by-cycle
schedule of the microcodes. This makes direct use of microcodes (a)
tedious and error prone, and (b) impractical in C language.

 To address this limitation, we added support for pre-bound
functions and variables to the NISC compiler. These functions and
variables have common C syntax but instead of implementing them
in the normal way, the compiler maps them to specific hardware
resources. During code generation, the compiler generates proper
control bits to access their corresponding hardware resources. Note
that pre-bound functions are different from intrinsic functions
commonly used in the compilers. Pre-bound functions affect the
functionality of the application but have no implementation and are
treated similar to other operations. Therefore, they can be scheduled
in parallel with other operations. On the other hand, the intrinsic
functions are implemented in the same way as other normal
functions, i.e. inlined or jumped to. But since the compiler has a built-
in knowledge of how the intrinsic functions behave, it can optimize
them more than normal code. Also, some intrinsic functions only
provide hints to the compiler (e.g. for optimizations) but have no
implementation or have no effect on the program.

The NISC tools use an XML base description format (called
GNR) for capturing components and the netlist of the datapath. For
each component, the ports, operations and their timing are captured
in GNR. We described pre-bound functions for functional units the
same way that their operations are defined. The description also maps
the function output and parameters to the ports of the component and
specifies the timing and corresponding control bit values. We also
specify whether the scheduler can freely move the function and
schedule it with other operations, or it should preserve the order of
the function with respect to operations that appear before and after it
in the code. For example, if we have a function pre-bound to a unit
that calculates the minimum of two values, that function can be
scheduled with other operations in the program.

Figure 8 shows the GNR code of an Interrupt Unit (IU) that has
thee pre-bound functions, i.e. setMask, clearInterrupt, and
interruptNumber. The component has a set of input, output and
control ports. Function descriptions specify the mapping between
their inputs/output and the input/output ports of the component. The
description also determines the control values that must be assigned
to corresponding control ports for execution of the function. The
functions in this example indicate stateDependency=”all”. This
means that the compiler must preserve the order of operations before
and after these functions during scheduling. Figure 9 shows a sample
C code for using the above pre-bound functions. After receiving an
interrupt, the interruptHandlerMain function is called. In this
function, first the current interrupt number is read and it is handled
after masking all other interrupts. Finally, the corresponding interrupt
is cleared and interrupts a re-enabled.

To support pre-bound functions and variables, we added a new
tool, PreboundCGenerator, to the flow of Figure 2. The new flow is

shown in Figure 10. Before compiling the application on the given
datapath, the PreboundCGenerator tool processes the architecture
description and generates a C header (.h) and source (.c) file that
contains the declarations of the pre-bound variables and functions.
For every register in the datapath (including registers in the register-
file) a variable is declared in the generated source file, the function
descriptions of the functional units are also translated to proper C
function declarations. The tool also provides this information to the
NISC compiler so that it knows which functions and variables are
pre-bound to what hardware components. The generated source files
are included in the application and the programmer can use them the
same way they are normally used in C.

Figure 8- The GNR code for an Interrupt Unit (IU).

void interruptHandlerMain()
{
 int iNum = __$IU_interruptNumber();
 __$IU_setMask(0);
 //handling the interrupt
 __$IU_clearInterrupt(iNum);
 __$IU_setMask(-1);
}

Figure 9-Sample C code for using pre-bound functions of IU.

Figure 10- NISC tool flow with pre-binding.

During compilation, instead of binding variables to global
memory, or stack, they are bound to their corresponding registers.
Similarly, instead of implementing calls to pre-bound functions with
jump operations, these calls are treated the same way that for
example an add or multiply operation is treated. While providing
similar capabilities, our pre-binding approach is more flexible than
using assembly in instruction based processors. The pre-bound
constructs have C syntax and can be merged with the rest of the
application much easier than assembly code. Additionally, the
programmer does not need to worry about the scheduling of these
constructs.

In NISC, the main goal is to develop the application in an
architecture independent high-level language (e.g. C) so that it can be
mapped on different custom architectures. The benefit of our pre-
binding approach is that a C code using pre-bound functions or
variables can execute on any architecture as long as that architecture
contains the corresponding hardware resources. Additionally, with
this approach, the backward compatibility can be maintained at

source code level without imposing as tight constraints as backward
binary compatibility requires.

5. Using NISC in a system
Typically in embedded systems, applications can be partitioned

into parallel processes implemented by different components of a
System-on-Chip (SoC). Adding pre-binding and interrupt to NISC
and its tools makes it possible to use multiple NISC cores in a SoC.
In order to facilitate communication between two NISCs, we
designed a double-handshake bus protocol with proper
communication interface (CI) unit [12]. The CI unit has two queues
for send and receive, and it provides several pre-bound functions
such as push, pop, StartSend, etc. Each function corresponds to a
specific pattern on the control ports of the CI unit. These functions
were described in the GNR format and used in the C code of the
application. Similarly, we designed an interrupt handling unit (IU)
and described it pre-bound functions for setting the interrupt mask,
clearing the interrupt, reading the current interrupt number, etc. The
IU and CI components where used to implement a message passing
protocol on top of our double hand-shake bus.

In this section, we describe the implementation results of two
multi-NISC systems for a fixed-point Mp3 benchmark downloaded
from [11]. In general, an Mp3 audio file contains several frames. For
a stereo file, each frame has two channels (i.e. left and right
channels). In the Mp3 decoder, the frames go through three main
phases, namely, decode_frame, synthesis_frame and output_pcm.
Profiling the Mp3 decoder on the generic NISC architecture of
Figure 5 showed that 63% of execution time is spent in
decode_frame, 25% in synthesis_frame, 11% in the output_pcm. We
realized that there are two approaches to parallelize the Mp3
application: (a) processing each channel separately, or (b) pipelining
the phases. However, the Mp3 decoder was originally targeted for
desktop PCs and separating the channels completely requires
rewriting most of the code. Alternatively, we decided to separate the
synthesis_frame phase for each channel because it required minimum
code modifications. Such partitioning can reduce the execution time
of synthesis_frame to half and hence can at most improve the
performance by 12.5%. As for the second system, we pipelined the
application into two stages where the first pipeline stage implements
decode_frame phase and the second stage implements
synthesis_frame and output_pcm phases. In this approach, processing
delay of one frame is expected to increase due to the communication
overhead. However, since the decode_frame of one frame is
overlapped with the synthesis_frame and output_pcm of another
frame, the overall performance can be improved by up to 36%
(=min(63, 25+11)).

Table 1- Area and clock frequency of MicroBlaze and GA

Processors Clock freq.(MHz) Area (gates) #cycles for
1 frame speedup

MicroBlaze 105 39574 8,861,336 1
GA 80 35632 897,452 7.28

multi-core GA 80 73046 - -
We implemented the Mp3 decoder on a MicroBlaze, a single GA,

and two multi-core configuration of GA. Table 1 shows the clock
speed and area of each architecture as well as their performance for
decoding one frame of audio. For simulating the Mp3 decoder, we
used the scope1.mp3 (44.1KHz, 96kbit/s, stereo) available at [13].

Table 2- Throughput of three Mp3 implementations

Systems #cycles for
1 frame

speedup for
1 frame(%)

#cycles for
25 frames

speedup for
25 frames (%) frames/sec

SingleCore 897,452 0.00 22,800,961 0.00 88
Coprocessor 803,357 10.48 20,205,994 11.38 99

Pipelined 917,204 -2.20 16,433,655 27.93 122

Table 2 shows the results of implementing the Mp3 decoder in
three configurations. The second and fourth columns show number
of cycles for processing one frame, and 25 frames in each
configuration and the third and fifth columns show the respective
speedups. Figure 11 shows the block diagram of the three
implementation configurations. Figure 11 (a) shows the SingleCore
configuration in which the entire Mp3 decoder runs on one GA.
Figure 11 (b) shows the Coprocessor configuration in which the Mp3
decoder runs on two GAs. In this case, one of GA acts as a
coprocessor for the main GA and runs the synthesis_frame phase for
left channel while the main GA runs the same phase for the right
channel. The main GA also runs the other phases for both channels.
The total performance improvement in this case is 10.48% which is
close to the expected 12.5%. For each channel, the main GA sends
1152 words to the coprocessor GA and then receives 1152 words
from it. The communication overhead is responsible for the 2%
performance loss from the expected upper bound, i.e. 12.5%. Figure
11 (c) shows the Pipelined configuration, where one GA runs the
decode_frame of both channels and send 2×1152 words to the
second GA to perform synthesis_frame and output_pcm. In this
configuration, the processing time for a single frame is increased by
2% but the overall throughput of the system is increased by 28%.
Similarly, the communication overhead is responsible for the 8%
performance loss from the expected upper bound, i.e. 36%. The
communication overhead in the Pipelined configuration has
increased because of the extra synchronization which was not
necessary in Coprocessor-Sys configuration.

Figure 11- Implementing Mp3 with (a) SingleCore, (b)

Coprocessor, and (c) Pipelined cores,
According to the Mp3 standard, at least 38 frames must be played

per second. MicroBlaze can only run 12 frames per second. The last
column of Table 2 shows the throughput of the tree configuration.
Clearly, this throughput is much more than what the standard
required. To save power, the SingleCore and Coprocessor
configuration can run with half their clock frequency. The clock
frequency of the Pipelined system can be reduced by two thirds while
still meeting the throughput constraints of the standard.

6. Related work
Before RISC processors become popular, microcode processors

 [5] were extensively studied for several years. Today microcodes are
mainly used inside processors for implementing complex instructions
or for controlling programmable coprocessors such as ARM
OptimoDE [14], [15]. In these cases, handling interrupt or low-level
programming in a high-level language has not been an issue. This is
because processors have instructions and coprocessors do not need
these features.

Many retargetable design approaches ([16], [17]) have proposed
techniques that generate software development tools from the
description of instruction-set of the architecture. These approaches
abstract out the architectural implementation details. Those who

attempted to generate the architecture from the description resulted in
poor quality implementations. For example, LISA [18], and Target
Chess [19] compilers use a behavioral instruction description mixed
with structural architecture information and mainly focus on code
generation and simulation. Absence of implementation details in the
input description of these techniques degrades the quality of their
recently added HDL generation. However, as in any other instruction
based processor, handling interrupts and assembly programming is
not a problem in these approaches.

An alternative approach is to describe the architecture structure
and automatically extract the ISA. In the MIMOLA project [1] the
RECORD [20] compiler extracts the behavioral model of instructions
from MIMOLA HDL and targets a horizontal microcode machine
with single-cycle operation. The MIMOLA HDL describes both
datapath and the instruction decoder (controller). They process the
structure of the datapath from destination storages towards source
storages to extract valid register transfers (RTs). After analyzing the
controller, they reject illegal RTs that do not correspond to an
instruction, and use the remaining RTs in the compiler. This
approach was suitable for architecture implementation but had two
drawbacks: (a) they did not support pipelined datapaths or multi-
cycle units, and (b) the designer had to describe the controller
explicitly. Interrupt handling did not impose any challenge in this
architecture because they did not support pipelined datapaths.
However, to use low-level programming, the programmer had to use
the microcodes and manually schedule them.

Similar to MIMOLA, the TIPI (Tiny Instruction-set Processors
and Interconnect) [2] targets statically-scheduled HMAs with single-
cycle instructions. The main difference is that instead of relying on
specification of the controller, the TIPI uses the speciation of non-
deterministic atomic actions on architectural state and outputs. While
MIMOLA uses binary decision diagrams (BDDs) [21] to extract the
valid instructions, in TIPI they extract the instruction-set as a set of
operations and conflict table from the programmability constraint
descriptions using Boolean satisfiability (SAT) algorithm. Cycle-
accurate simulator and HDL generation from TIPI has been reported.
Currently, TIPI does not have a compiler and all programming must
be done manually. Also, interrupt support has not been addressed or
considered.

7. Conclusion
NISC is viable option for implementing embedded applications.

However, to use it in practical situations (a) it must support interrupts,
and (b) it must provide a mechanism for low-level programming.
NISC has no predefined instruction-set (hence no assembly) and
instead executes the program using very tightly coupled control
words generated by the compiler. We showed that by adding pre-
bound function and variables to the NISC and its tools, NISC can
support low-level programming in C. These functions and variables
are mapped directly to the hardware resources by the compiler. We
also showed that the interrupts can be safely serviced between basic
blocks. After adding these features, we used NISC in two SoC
designs to implement an Mp3 decoder. The generated systems were
running several times faster than what is required by the standard.

8. References
[1] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A.

Neumann, D. Voggenauer, “The MIMOLA Language - Version
4.1. Technical Report.” Computer Science Dpt., University of
Dortmund, Sept. 1994.

[2] S. Weber and K. Keutzer, “Using Minimal Minterms to Represent
Programmability”, International Symposium on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), September 2005.

[3] M. Reshadi, D. Gajski, “A Cycle-Accurate Compilation
Algorithm for Custom Pipelined Datapaths”, CODES+ISSS,
September 2005.

[4] A. Agrawala, T. Rauscher, Foundations of Microprogramming:
Architecture, Software, and Applications, Academic Press, 1976.

[5] S. Habib, Microprogramming and Firmware Engineering
Methods, John Wiley & Sons, Inc., 1988.

[6] B. Gorjiara, D. Gajski, "FPGA-friendly Code Compression
Technique for Statically Scheduled Horizontal Microcoded
Custom IPs", International Symposium on Field-Programmable
Gate Arrays (FPGA), February 2007.

[7] NISC Technology website http://www.cecs.uci.edu/~nisc/.
[8] M. Reshadi, B. Gorjiara, D. Gajski, "Utilizing Horizontal and

Vertical Parallelism Using a No-Instruction-Set Compiler and
Custom Datapaths", International Conference on Computer
Design (ICCD), pages 69-76, October 2005.

[9] B. Gorjiara, M. Reshadi, D. Gajski, "Generic Architecture
Description for Retargetable Compilation and Synthesis of
Application-Specific Pipelined IPs", International Conference on
Computer Design (ICCD), October 2006.

[10] MiBench benchmark: http://www.eecs.umich.edu/mibench/
[11] MPEG Audio Decoder: http://www.underbit.com/products/mad/
[12] B. Gorjiara, M. Reshadi, D. Gajski, “NISC Communication

Interface", Center for Embedded Computer Systems (CECS), TR
05-18, December 2005.

[13] Fraunhofer-Gesellschaft website: ftp://ftp.fhg.de/pub/layer3/mp3-
bitstreams.tgz

[14] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, K. Van
Nieuwenhove, “OptimoDE: Programmable Accelerator Engines
Through Retargetable Customization”, Hot Chips, 2004.

[15] M. Byatt, “Data plane processing with configurable
architectures”, ARM white paper, 2003.

[16] P. Mishra and N. Dutt, “Architecture Description Languages for
Programmable Embedded Systems”, IEE Proc. on Computers and
Digital Techniques (CDT), Special issue on Embedded
Microelectronic Systems: Status and Trends, vol. 152, no 3, 2005.

[17] W. Qin and S. Malik, “Architecture Description Languages for
Retargetable Compilation”, in The Compiler Design Handbook:
Optimizations & Machine Code Generation. Y. N. Srikant and
Priti Shankar, CRC Press, 2002.

[18] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H.
Meyr, M. Steinert, G. Braun, A. Nohl, "RTL Processor Synthesis
for Architecture Exploration and Implementation", Design,
Automation and Test in Europe (DATE), 2004.

[19] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man,
"A Graph Based Processor Model for Retargetable Code
Generation", European Design and Test Conference, 1996.

[20] R. Leupers and P. Marwedel, "Retargetable Generation of Code
Selectors from HDL Processor Models", Design, Automation and
Test in Europe (DATE), 1997.

[21] R. E. Bryant. “Graph-based Algorithms for Boolean Function
Manipulation.” IEEE Trans. on Computers 24.3 (1992): 293-318.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

