
Polynomial-Time Subgraph Enumeration
for Automated Instruction Set Extension

Paolo Bonzini and Laura Pozzi
Faculty of Informatics

University of Lugano (USI)
Switzerland

Email: paolo.bonzini@lu.unisi.ch, laura.pozzi@unisi.ch

Abstract

This paper proposes a novel algorithm that, given a
data-flow graph and an input/output constraint, enumerates
all convex subgraphs under the given constraint in poly-
nomial time with respect to the size of the graph. These
subgraphs have been shown to represent efficient Instruc-
tion Set Extensions for customizable processors. The search
space for this problem is inherently polynomial but, to our
knowledge, this is the first paper to prove this and to present
a practical algorithm for this problem with polynomial com-
plexity. Our algorithm is based on properties of convex sub-
graphs that link them to the concept of multiple-vertex dom-
inators. We discuss several pruning techniques that, without
sacrificing the optimality of the algorithm, make it practical
for data-flow graphs of a thousands nodes or more.

1. Introduction

A common practice in designing system-on-chip pro-
cessors is to define a basic customizable processor and
to extend it with units specialized for particular applica-
tions. Since typical embedded systems already include sev-
eral Application-Specific Integrated Circuits (ASICs), it is
conceivable to develop differently customized versions of
the processor for each product. Such processor extensions
can increase performance in specific domains, without the
cost of advanced RISC processors and the complexity of
entirely customized instruction sets. Many manufacturers
are proposing customizable processors, such as Tensilica
Xtensa and ARC ARCtangent. Instead of ASICs, other
manufacturers use reconfigurable fabrics as accelerators.
On some Xilinx systems, for example, an FPGA and a hard-
wired PowerPC processor coexist on the same die and share
the same bus.

Independently of the technology adopted, it is important
to be able to automatically generate the best performing in-
struction set extensions for an application. An exact solu-

tion to this problem is not feasible if we want to generate
more than one instruction [12]. On the other hand, sev-
eral algorithms exist to find the single best performing in-
struction set extension in a graph. Exact algorithms for this
problem may be based on Integer Linear Programming [2]
or pruned exploration of the subgraphs [12, 3].

An important subproblem in optimal ISE identification
is enumeration of the valid subgraphs. While algorithms
like [12, 3] focus on an exponential search space (each node
of a basic block can be either in or out of a subgraph), we fo-
cus attention on the subgraphs input and output nodes. This
way, as it can be seen in detail later, we identify a problem
space that is no longer exponential in the size of the graph.

Based on this observation, we propose a new practical al-
gorithm to enumerate all subgraphs under a given microar-
chitectural constraint, whose complexity is polynomial in
the size of the graph. The algorithm is based on the relation-
ship between convex subgraphs and multiple-vertex domi-
nators. Even though the complexity is still rather high—
up to O

(
n7

)
for commonly used input/output constraints—

several pruning techniques allow it to process basic blocks
of around a thousand nodes in about a minute.

The next section discusses related work in the domain
of instruction-set selection and overviews previous uses of
multiple-vertex dominators. Section 3 provides a theoreti-
cal framework for the problem, and section 4 discusses the
relationship between subgraph enumeration and multiple-
vertex dominators. Section 5 introduces the algorithm, to-
gether with some techniques to prune the search space. Fi-
nally, section 6 presents our experimental setup and dis-
cusses the results.

2. Related work

Past literature on custom instruction identification can be
roughly divided in two groups. Some authors aimed at op-
timal instruction identification, developing algorithms with
exponential worst-case complexity. Other works reduced

978-3-9810801-2-4/DATE07 © 2007 EDAA

a) c)b) d)

A B C

YX

N

A B

X Y

C

X Y

N

A B C

X Y

N

A B C

N

Figure 1. a) A data-flow graph (all edges are towards the bottom of the figure); b) a valid 1-output
convex cut; nodes N, B, C are inputs to the output node Y; c) an invalid 1-output convex cut, where
N appears as an additional output besides X; d) a valid 2-output convex cut.

the complexity, at the expense of optimality or generality.
Atasu et al. developed a widely known optimal algo-

rithm [3], which Pozzi et al. further refined with additional
pruning techniques [12]. Both algorithms are based on sub-
graph enumeration: they exhaustively explore the search
space algorithm, pruning it through constraint propagation.
Neither poses limits on the latency or connectedness of the
instructions. The latter algorithm is reasonably efficient
even for large basic blocks, but its performance quickly de-
teriorates if the custom instructions can have multiple out-
puts. An Integer Linear Programming formulation of the
same problem was presented in [2]: in this case, the enu-
meration of subgraphs is implicit in the formulation’s con-
straints, and the worst-case complexity is still exponential.

Other authors simplify the problem formulation and then
find exact solutions for it. For example, Choi et al. [6] limit
the latency (depth) of subgraphs, and Yu and Mitra [13] only
focus on identifying connected custom instructions. Our
algorithm can be adapted to run faster under this kind of
limitation.

Other approaches include greedy techniques such as
those in Clark et al. [8] and Biswas et al. [4]. While fast,
these algorithms have limited effectiveness [7]. More re-
cent work seems to focus on optimal algorithms, possibly
using subgraph enumeration as a building block.

The algorithm we present is based on multiple-vertex
dominators. Also known as generalized dominators,
they were introduced by Gupta in [10]. Single-vertex
dominators are a widely studied problem [1], but they are
rare in circuit graphs or data-flow graphs: multiple-vertex
dominators are more common and can be useful to explore
or simplify such graphs. Gupta presents an algorithm
to enumerate all multiple-vertex dominators, but only
with exponential worst-case complexity. A smaller bound
for this problem was never published, and it is an open
problem to find an efficient way of representing the set of
all possible dominators.

Dubrova et al. [9], however, do present an algorithm
to enumerate k-vertex dominators in polynomial time
O

(
nk

)
. As we show in section 5, we can employ this

algorithm successfully to find optimal custom instructions.

The authors report that the algorithm is very slow for
k > 2; however, we developed pruning techniques for
subgraph enumeration, that make this algorithm practical
also for somewhat higher values of k, and for graphs with
a thousand nodes or more.

3. Problem statement

The data flow of each basic block is represented by a
graph G(V,E). The graph G may have an arbitrary num-
ber of root vertices Iext, that is vertices that have no pre-
decessors. These vertices represent input variables of the
basic block. The graph may also have a set of vertices Oext

that is a superset of those vertices that have no successors.
Figure 1(a) shows an example data-flow graph with 3 roots
(vertices A, B, C) and 2 Oext vertices (X and Y).

A cut is defined on a rooted, direct, acyclic graph. G is
transformed into a rooted graph, by augmenting it with a
single vertex that is a predecessor of every vertex in Iext.
We also create an additional vertex (the sink) and connect
Oext to the sink. This way, the reverse graph of G also a
rooted graph, which is useful when computing postdomina-
tors. The definition of cut, and in particular of convex cut,
are as follows.

Definition 1 (Cut): A cut S is a subgraph of a graph G. We
call inputs of S the set I (S) of predecessor vertices of those
edges which enter the cut S from the rest of the graph G,
that is I (S) =

⋃
v∈S pred(v)\S. Similarly, we call outputs

of S the set O(S) of vertices which are part of S, but have
at least one successor v /∈ S.

Definition 2 (Convex cut): A cut S is convex if there is no
path from a vertex u ∈ S to another vertex v ∈ S which
contains a vertex w /∈ S.

The shaded areas in figure 1(b)(c)(d) are all examples of
a convex cut. Nodes with a double border are outputs1 and
grey nodes are inputs.

The microarchitecture may pose several additional con-
straints on the cuts that can be considered valid. First of all,

1The terms vertex and node will be used interchangeably.

the values Nin and Nout indicate the maximum number of
read and write ports in the register file, respectively, which a
custom instruction can use. Secondly, some nodes of G may
be forbidden, that is, they may not be included in a cut2.

Some forbidden nodes will be marked as such by the
user, and represent operations that are not allowed in a spe-
cial instruction—for example, loads and stores if the custom
functional unit cannot have any memory port. In addition
to these nodes, the algorithm will consider other nodes to
be forbidden. Iext nodes are implicitly forbidden, because
their values are calculated outside the basic block. Like-
wise, the newly introduced source and sink will be consid-
ered forbidden because they do not map to an actual com-
putation in the program. We will denote forbidden nodes
with F .

Thus, given a graph G, the posed problem is to find all
convex cuts S ⊆ G under the constraints that |I (S)| ≤ Nin,
|O(S)| ≤ Nout, and S ∩ F = ∅.

In the remainder of this paper, we add another condition
for the validity of the convex cut. For each input w ∈ I (S),
there is a vertex v ∈ S, such that at least one path from the
root of G to vertex v contains w but not any other input of S.

This condition excludes from consideration a few valid
cuts, namely those where an input w only has other inputs
as predecessors (in this case, the inputs to w must be pre-
decessors of w for the cut to be convex). These cuts violate
the condition we just added because all the paths from the
root of G to w contain other inputs. Given the cut in fig-
ure 1(d), we would have such a cut if the node marked as N
was a fourth input. All paths from the root to N would pass
through the inputs A and B.

Note that all the predecessors of w need to be inputs,
or there would be a path from the root of G to v that only
contains the input w. Then, all the inputs but w will be
inputs to the valid cut S ∪ {w}. This cut—like the one
in figure 1(d)—will be found by our algorithm, and can be
used to find the cuts that were lost by the addition of the
technical condition.

4. Properties of convex cuts

We can define more characteristics and prove some prop-
erties of convex cuts.

Definition 3 (Inputs to a vertex): In a convex cut S, the
inputs to a vertex v are defined to be the set of vertices
Iv(S) ⊆ I (S) such that 1) all paths from the root of G to
v contains at least one vertex i ∈ Iv(S); 2) for every vertex
i ∈ Iv(S), at least one path from the root to v contains i.

For example, A and B are the inputs to X in figure 1(d).
There is an important link between the generalized dom-

inators of an output o, and the inputs to o. Generalized
dominators are defined as follows on a rooted graph G.

2Note that forbidden nodes may still be chosen as inputs to a cut.

Definition 4 (Generalized dominator): A set of vertices
V in a rooted graph G dominates a vertex v iff it meets
the following two conditions: 1) all paths from the root of
G to vertex v contain at least one vertex w ∈ V ; 2) for each
vertex w ∈ V , there is at least one path from the root of G
to vertex v, which contains w but not any other vertex in V .

We can then prove the following theorem and provide
the link between inputs and generalized dominators:

Theorem 1: If S ⊆ G identifies a convex cut, then for every
output o of S the set of vertices Io(S) that are inputs to o is
a generalized dominator of o in G.

Proof. From definition 3, every path from the root to o
contains at least one of the vertices in Io(S). Condition 1 is
then verified in the definition of generalized dominators.

With the more restrictive definition of convex cut that we
presented above, they also satisfy condition 2. Because of
that restriction, for each input i ∈ Io(S), there is a vertex
v ∈ S, such that at least one path from the root of G to
vertex v contains i but not any other input of S.

In particular, we can find one such path for any v that is
a successor of i and not an input. If we pick a vertex that is
also contained in a path between i and o (there will always
be such a path, because i is an input to o), then the path
can be extended to stop at o instead of v. This proves that
condition 2 is also verified. �

For example, given the convex cut in figure 1(b), this
theorem proves that the set of inputs to the cut is a general-
ized dominator of the output. The theorem provides a useful
starting point to derive the nodes in a convex cut from its in-
put and output vertices, and to prove that inputs and outputs
uniquely identify the convex cut. However, this proof needs
another definition:

Definition 5 (Vertices between V and w): B(V,w), the
set of vertices between a set V and a vertex w, is the set
of vertices contained by at least one path between a vertex
v ∈ V and w (if there is such a path). The starting vertex of
the path is not included, while the final vertex w is.

For example, in figure 1(b), the shaded area represents
the vertices between its inputs (nodes B, C and N), and the
output node Y. Note that B(V,w) can be computed easily;
the complexity is linear in the size of the set B itself, and
hence O (n).

Theorem 2: Any convex cut is uniquely identified by its sets
of input and output vertices, respectively I (S) and O(S).
In other words, two convex cuts of the same graph are equal
iff they have the same inputs and outputs.

Proof. If two convex cuts S and T are equal, they have
the same sets of inputs and outputs. This is true because
the inputs and outputs of a convex cut are functions of the
vertices in the cut.

If two convex cuts have the same sets of inputs and out-
puts, they are equal. To prove this part, we consider the cut
S′ =

⋃
v∈O(S) B(I (S) , v)\I (S), and prove that S = S′.

If a vertex v was in S′ but not in S, then there would
be a path from an input to an output going through v /∈
S, violating the definition of convexity. This because S′ is
defined to include all the vertices, along every possible path
from an input to an output.

If a vertex v was in S but not in S′, this means that no
path from the inputs to the outputs contains v. However,
every path from the root to v must contain at least one input
in Iv(S). Then, there is always a path from this input to
v—that is, v ∈ B(I (S) , v). If v was an output, B(I (S) , v)
would be included in S′, hence v ∈ S′ and we have a con-
tradiction. If v was not an output, there must be a path
from v to an output o, otherwise at least one successor of
v would not belong in S and v would be an output. There-
fore v ∈ B(I (S) , o) and we also have a contradiction. �

We proved that a convex cut is uniquely identified by the
sets of inputs and outputs. However, the reverse is not true:
given two sets of vertices I and O, they identify a convex cut
only under rather strict conditions. The following weaker
theorem, nevertheless, forms the basis, and at the same time
the correctness proof, for our algorithm.

Theorem 3: Given two sets of vertices I and O, if for every
vertex oj ∈ O, there is a set of vertices Ij ⊆ I such that Ij

dominates o, then S =
⋃

oj∈O B(Ij , oj)\Ij is a convex cut
with I (S) ⊆ I .

Proof. The convexity of S derives directly from the defini-
tion of B(Ij , oj): all the vertices on a path between an input
and an output are included in S, therefore no such path can
cross a vertex that is not part of S.

If an i ∈ I (S) was not in any Ij , we would have a path
from the root to every oj that passed through a vertex not in
Ij . This contradicts the hypothesis that Ij dominates oj . �

This theorem provides a way to compute the vertices in
a cut in O (n) time (since B(Ij , oj) can also be computed
in linear time). It also guarantees that the cut will not have
any more inputs. On the other hand, it does not guaran-
tee that the cut will have precisely the requested inputs and
outputs—see figure 1(c) for an example where an additional
output appears between B and X. As we will see later, how-
ever, this can actually be exploited to speed up our algo-
rithm.

5. Algorithm

Since the convex cuts in G are uniquely identified by its
input and output vertices, it is possible to enumerate them
by coupling every possible set of outputs with all the pos-
sible sets of inputs. If, as in the posed problem, we put a
constraint on the number of inputs and outputs, the number

DO-ENUM(I, O, S, Nout)
for each admissible output o do

O′ = O ∪ {o}
for each dominator D of o with |D ∪ I| ≤ Nin do

S′ = S ∪ B(D, o)
I ′ = I ∪ D
if O(S′) = O′ ∧ S′ ∩ F = ∅ then

S′ is a valid cut
if Nout > 1 then

DO-ENUM(I ′, O′, S′, Nout − 1)

POLY-ENUM()
DO-ENUM(∅, ∅, ∅, Nout)

Figure 2. A polynomial-time algorithm for
subgraph enumeration

of valid convex cuts is clearly polynomial; more precisely,
it is O

(
nNin+Nout

)
.

Section 5.1 describes a basic solution to the problem,
which would be feasible only for small basic blocks. By
switching to an incremental mode of operation, the choice
of inputs and outputs can be pruned at each step: section 5.2
details the refinements in the algorithm, and section 5.3 out-
lines the corresponding pruning techniques.

5.1. Basic solution

An implementation of the algorithm is presented in fig-
ure 2. To find all sets of vertices that can be inputs to an
output vertex o, we try all the (possibly multiple-vertex)
dominators of the output. We start by picking an output
node, and explore all its dominators. After finding one, we
may add another output node and recursively explore the
new output’s dominators.

In principle, any n-uple of vertices could be taken as an
output. In practice, not all of them are useful: an output
vertex o2 is not admissible if another output vertex o1 post-
dominates it. Note that a vertex v ∈ Oext will not be post-
dominated by any vertex but the artificial sink, because it is
connected by an edge to the sink.

Note how, in agreement with theorem 3, we need an ad-
ditional check that the cut really has no outputs besides O.
If a cut fails this test, as in figure 1(c), it may still be ex-
tended with a new output and become valid: for example,
node N itself may be added, or node Y may be added yield-
ing the cut in figure 1(d).

To analyze the complexity of the algorithm we take
into account each step. Setting up the algorithm includes
the computation of single- and multiple-vertex domina-
tors (with maximum cardinality Nin) of every node. Let
O (τ(n)) be the complexity of computing single-vertex
dominators on a graph with n vertices. In theory, this can be
as low as O (n) but, as mentioned in section 2, practically
used algorithms have a slightly higher complexity. Comput-
ing single-vertex dominators (and postdominators) requires

a time O (τ(n)), while computing the multiple-vertex dom-
inators requires a time O

(
nNin−1τ(n)

)
.

Given the inputs and outputs of a cut, the nodes that
are part of the cut can be enumerated in O (n) time.
Checking that the cut has no extraneous outputs has the
same cost. Function POLY-ENUM has a complexity of
O

(
nNin+Nout+1

)
. As this dominates all the setup phases,

it is also the complexity of subgraph enumeration for the
algorithm in figure 2.

5.2. Incremental operation

The pseudo-code in figure 2 is agnostic of the algo-
rithm used to compute multiple-vertex dominators. Since
we know of only one such algorithm with polynomial com-
plexity, we can tailor our implementation to it in order to
improve its speed.

The multiple-vertex dominator algorithm from [9] picks
every possible seed set {v1, . . . , vn−1}. Then, it removes
the vertices in the seed set from the graph, together with
any other node they dominate. Then, if a node u domi-
nates a node w in this reduced graph, {v1, . . . , vn−1, u} is
a multiple-vertex dominator of w in the original graph.

The exploration of the seed sets (which covers the inner
for each loop of figure 2) can be done recursively, just like
for the output nodes. Every recursive call pushes a vertex
on the seed set, calls the Lengauer–Tarjan algorithm [11]
on the reduced graph, and then pops the vertex. There will
be up to Nin − 1 recursive calls, giving the algorithm in
figure 3.

Note how S =
⋃

o∈O B(D, o) is built incrementally.
Pushing an input or an output adds nodes to S, such that
on every recursive call S can only grow. In particular, the
newly added nodes for an input v are Snew = B({v} , o)\S.
For an output o, they are Snew = B(I, o)\S. As a further
optimization, our implementation maintains a single copy
of S. We keep track of when each node was added to S, and
remove them before leaving the invocation that added them.

Unlike the naı̈ve algorithm, this algorithm does every-
thing in a single pass without any setup phase. The com-
plexity is the same as for the previously presented one, that
is O

(
nNin+Nout+1

)
. In the for each loops, the cost of in-

voking PICK-INPUTS dominates the linear-time work to up-
date S; when CHECK-CUT is called, instead, updating S is
covered by the additional +1 in the exponent.

5.3. Pruning techniques

The algorithms we presented have a high asymptotic
complexity. The incremental algorithm however enables
pruning techniques that enhance performance by reducing
the n in the complexity. These make the algorithm practical
even for graphs with 1,000 or more nodes3.

3These techniques are only explaned briefly in this paper; an extended
description is available in [14].

CHECK-CUT(I, O, S, Nin, Nout)
if O (S) = O ∧ S ∩ F = ∅ then

S is a valid cut
if Nout > 0 then

PICK-OUTPUT(I, O, S, Nin, Nout)

PICK-INPUTS(I, o, O, S, Nin, Nout)
� the next line invokes Dubrova et al.’s algorithm
for each node w such that I ∪ {w} dominates O do

I ′ = I ∪ {w}
S′ = S ∪ B({w} , o)
CHECK-CUT(I ′, O, S′, Nin − 1, Nout)

if Nin > 1 then
� add a node to the seed set
for each ancestor i of o do

I ′ = I ∪ {i}
S′ = S ∪ B({i} , o)
PICK-INPUTS(I ′, o, O, S′, Nin − 1, Nout)

PICK-OUTPUT(I, O, S, Nin, Nout)
for each admissible output o do

O′ = O ∪ {o}
S′ = S ∪ B(I, o)
if I dominates o then

CHECK-CUT(I, O′, S′, Nin, Nout − 1)
elseif Nin > 0 then

PICK-INPUTS(I, o, O′, S′, Nin, Nout − 1)

POLY-ENUM-INCR()
PICK-OUTPUT(∅, ∅, ∅, Nin, Nout)

Figure 3. Building S incrementally

First of all, some cuts can be determined to be invalid
just by looking at S. This is the primary added value of
the incremental algorithm described in section 5.2. Cuts
that include a forbidden node, for example, can be discarded
right away, as the problem statement forbids them.

Second, we can treat cuts that have other outputs than O
as acceptable, as long as the total number of outputs does
not exceed Nout. For example, the cut in figure 1(c) may be
accepted as a 2-output subgraph.

Finally, forbidden nodes are effectively partitioning the
search space. When a node v is picked as an output, if a
forbidden node w is an ancestor of v, w’s ancestors will not
be valid inputs to v.

6. Results

In order to evaluate our algorithm’s performance, we
collected the data-flow graphs of 250 basic blocks from
MiBench. The sizes of the blocks range from 10 to 1196
nodes. We also used four synthetic data-flow graphs, tree-
shaped as in figure 4. Their depth varies from 4 to 7 levels.
We found them empirically to exhibit worst-case perfor-
mance for algorithms like [3] and [12]; in particular, for [3]
the complexity can be proved to be exponential, O (1.6n),
on this kind of graph.

Figure 4. A tree-shaped data-flow graph, the
worst case for algorithms such as [12].

The graph in figure 5 compares, for each basic block, the
speed of our algorithm versus the implementation in [12].
Subgraphs are enumerated with a constraint of four inputs
and two outputs. For each basic block processed, a point
is plotted at the intersection between our algorithm’s execu-
tion time (on the X axis) and that of [12] (on the Y axis).
Therefore, data points above the diagonal line represent ex-
ecutions where our algorithm is faster, and data points be-
low the straight line represent those cases where our algo-
rithm is slower. Different symbols group the data points
in four clusters; three of these correspond to different sizes
and the fourth is reserved to the synthetic DFGs, shaped as
in figure 4.

The algorithm’s performance is in general better than
that of [12]. Some exceptions are expected, because both
algorithms employ pruning techniques whose effectiveness
can vary widely for different data-flow graph topologies.
[12] also seems to achieve a similar polynomial time bound;
however, while already stated in [12], this has not been
proved formally so far.

In fact, the main contribution of this paper is the proof
that the enumeration problem actually has polynomial com-
plexity in n. State-of-the-art algorithms explored a binary
search space, where each node could either be part of the
subgraph or not. We look at the search space from a differ-
ent perspective: each convex subgraph can have at most Nin

inputs and Nout outputs nodes, and these nodes univocally
identify the subgraph that lays between them.

Finally, we show here only the performance of the enu-
meration algorithm presented, and we are not concerned
with the speedup enabled by Instruction Set Extensions de-
signed using this technique: the effectiveness of using this
technique for identification of custom instruction has been
widely validated by past papers, including [12, 3, 7].

7. Conclusion

We presented a novel algorithm for full enumeration of
the subgraphs of a given data-flow graph. The algorithm
supports arbitrary input/output constraints, is not restricted
to connected subgraphs and, to our knowledge, is the first
one to be presented with polynomial time complexity.

10-4

10-2

100

102

10-4 10-2 100 102

10-79
80-799

800-1196
tree

Figure 5. Run time comparison with [12].

This algorithm was successfully used in in our com-
piler toolchain [5]; full subgraph enumeration allows detec-
tion of high-performance custom instruction sets, yielding
speedups up to 6x. In addition to having a known polyno-
mial bound to the complexity, the performance of the algo-
rithm is in parallel, and usually better, than the algorithm
in [12]. This represents a further contribution to the field
of automatic identification of Instruction Set Extensions for
embedded processors.

References
[1] A. V. Aho and J. D. Ullman. Theory of Parsing, Translation and

Compiling. Prentice Hall, 1973.
[2] K. Atasu, G. Dündar, and C. Özturan. An integer linear program-

ming approach for identifying instruction-set extensions. In Proc.
of CODES+ISSS, 2005.

[3] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific
instruction-set extensions under microarchitectural constraints. In
Proc. of DAC, 2003.

[4] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi, and P. Ienne. ISEGEN:
Generation of high-quality instruction set extensions by iterative im-
provement. In Proc. of DATE, 2005.

[5] P. Bonzini and L. Pozzi. Code transformation strategies for extensi-
ble embedded processors. In Proc. of CASES, 2006.

[6] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang, and C.-M.
Kyung. Synthesis of application specific instructions for embedded
DSP software. In IEEE TC, June 1999.

[7] N. Clark, A. Hormati, and S. Mahlke. Scalable subgraph mapping
for acyclic computation accelerators. In Proc. of CASES, 2006.

[8] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through
automated instruction set customisation. In Proc. of MICRO, 2003.

[9] E. Dubrova, M. Teslenko, and A. Martinelli. On relation between
non-disjoint decomposition and multiple-vertex dominators. In
Proc. of ISCAS, 2004.

[10] R. Gupta. Generalized dominators and post-dominators. In Proc. of
POPL, 1992.

[11] T. Lengauer and R. E. Tarjan. A fast algorithm for finding domina-
tors in a flowgraph. In ACM TOPLAS, 1979.

[12] L. Pozzi, K. Atasu, and P. Ienne. Optimal and approximate algo-
rithms for the extension of embedded processor instruction sets. In
IEEE TCAD, July 2006.

[13] P. Yu and T. Mitra. Scalable custom instructions identification for
instruction set extensible processors. In Proc. of CASES, 2004.

[14] P. Bonzini and L. Pozzi Polynomial-time subgraph enumeration
for automated instruction set extension. TR 2006/07, University
of Lugano, 2006. http://www.inf.unisi.ch/file/pub/
15/bonzini-pozzi-2006-07.pdf

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

