
Image Computation and Predicate Refinement
for RTL Verilog using Word Level Proofs∗

Daniel Kroening
ETH Zurich

Natasha Sharygina
University of Lugano

Abstract

Automated abstraction is the enabling technique for
model checking large circuits. Predicate Abstraction is one
of the most promising abstraction techniques. It relies on
the efficient computation of predicate images and the right
choice of predicates. Existing algorithms use a net-list-level
circuit model for computing predicate images. 1) This pa-
per describes a proof-based algorithm that computes an
over-approximation of the predicate image at the word-
level, and thus, scales to larger circuits. 2) The previous
work relies on the computation of the weakest preconditions
in order to refine the set of predicates. In contrast to that,
we propose to extract predicates from a word-level proof to
refine the set of predicates.

1 Introduction

Model checking [7] is a popular approach to formal ver-
ification in the hardware design industry. Algorithms devel-
oped to avoid the state space explosion enable the verifica-
tion of large circuits. One principal method in state space
reduction is abstraction. Abstraction techniques reduce the
state space by mapping the set of states of the actual, con-
crete system to an abstract, and smaller, set of states in a
way that preserves the relevant behavior of the system.

In hardware verification, the most commonly used ab-
straction technique is localization reduction [16, 20, 4]. The
abstract model is created from the given circuit by removing
a large number latches together with the logic required to
compute their next state. The removed latches are the ones
that are irrelevant to establishing correctness of the particu-
lar property.

Localization reduction is a conservative over-approxi-
mation of the original circuit for reachability properties.
This implies that if the abstraction satisfies the property, the
property also holds on the original circuit. However, when
model checking of the abstraction fails, it may produce a

∗This research is supported by SRC contract 2006-TJ-1539.

counterexample that does not correspond to any concrete
design specification. This is called a spurious counterexam-
ple. In order to detect if the counterexample is spurious, it
is simulated on the concrete design. If the counterexample
is found to be real, the algorithm terminates. If the abstract
counterexample is spurious, abstraction refinement has to
be performed.

The basic idea of abstraction refinement techniques is to
create a new abstract model that contains more detail (e.g.,
more visible latches) in order to prevent the spurious coun-
terexample. For finite-state models this process is iterated
until the property is either proved or disproved. If the re-
finement is based on the abstract counterexample, the algo-
rithm implements Counterexample Guided Abstraction Re-
finement [16, 2, 5].

The effectiveness of localization reduction is limited if
the property actually depends on a large percentage of the
latches in the design. In this case, a large part of the original
circuit has to be contained in the abstract model, and the
verification of the abstract model becomes the bottleneck.

In software verification, the most successful abstraction
technique for large systems is predicate abstraction [10]. It
abstracts data by only keeping track of certain predicates on
the data. Each predicate is represented by a Boolean vari-
able in the abstract program, while the original data vari-
ables are eliminated.

Predicate abstraction has recently been shown to be ef-
fective for hardware verification as well [9, 12]. Tradition-
ally, model-checkers used in the hardware industry operate
at the net-list level. However, predicate abstraction is only
effective if the predicates cover the relationship between
multiple latches. This typically requires a word-level model
given in register transfer language (RTL), e.g., in Verilog.
When applying predicate abstraction to circuits, two prob-
lems arise:

1) If done precisely, the computation of the abstract tran-
sition relation is exponential in the number of predicates. In
software, the abstraction is performed separately for each
control location, and the number of predicates for a given
location is usually small. In hardware, the abstract transi-
tion relation has to be computed for the whole circuit at once

1
978-3-9810801-2-4/DATE07 © 2007 EDAA

due to the high degree of concurrency. Thus, the computa-
tion of the abstract model becomes prohibitively expensive.

2) Abstraction refinement is performed by computing
new predicates. In software, this is commonly done by com-
puting weakest liberal preconditions. If applied to hardware
as described in [12], this approach corresponds to a partial
unwinding of the circuit as in BMC. It is ineffective if the
property depends on counters.

Contribution This paper addresses the problems above
and enables the application of predicate abstraction to larger
designs. We propose new techniques for both the abstrac-
tion and refinement procedures that are used for word-level
abstraction of circuits: 1) proof-based word-level predicate
image computation and 2) proof-based word-level predicate
refinement for circuits given in Verilog RTL.
Proof-based word-level image computation. In order to
build abstract models of large circuits efficiently, we pro-
pose to use proof-based predicate image computation for
bit-vector logic. It extends the algorithm proposed for soft-
ware verification in [15] by providing features typical to
hardware description (i.e., large Boolean structures in the
concrete transition relation). The algorithm scales better
both in the number of predicates and the circuit size than
the existing approach that is based on all-SAT.
Proof-based word-level refinement. We propose a word-
level algorithm for the refinement of the set of predicates
based on a word-level proof of unsatisfiability of the simu-
lation instance. In the presence of wide counters, the proof-
based refinement results in a faster convergence of a refine-
ment loop (as compared to traditional net-list level tech-
niques) due to better predicates.

To the best of our knowledge, our algorithm is the first
to apply proof-based predicate abstraction and proof-based
predicate refinement to hardware designs. Note that the ab-
straction and the refinement algorithms implement different
ideas, despite of the fact that they share the concept of a
word-level proof-engine. The formal semantics of the sub-
set of Verilog we handle can be found in a technical re-
port [8].

Related Work For hardware verification, Clarke et al. [9]
introduce a SAT-based technique for predicate abstraction
of circuits given in Verilog. The circuit is synthesized and
transformed into net-list level. A SAT solver is used to com-
pute the abstraction, which allows to support all bit-level
constructs. However, if refinement becomes necessary, only
bit-level predicates are introduced.

Andraus et al. [1] present a scheme for automatic ab-
straction of behavioral RTL Verilog to the CLU language
used by the UCLID system [3]. However, the abstractions
produced by their approach can be coarse as the seman-
tics of the bit-vector operators are not taken into account

when computing the abstraction. Also, no refinement is
done when a spurious counterexample is obtained.

2 Predicate Abstraction

Predicate abstraction maps the variables of the concrete
model to Boolean variables that correspond to a predicate
on the variables in the concrete model [10]. Formally, these
predicates are functions that map a concrete state s ∈ S into
a Boolean value. Let B= {π1, . . . ,πk} be the set of predi-
cates. When applying all predicates to a specific concrete
state, one obtains a vector of Boolean values, which repre-
sents an abstract state ŝ ∈ {0,1}k. We denote this abstrac-
tion function by α(s).

Predicate abstraction is typically performed using an ex-
istential abstraction [6], i.e., the abstract model can make a
transition from an abstract state ŝ to ŝ′ iff there is a transi-
tion from a corresponding state s to s′ in the concrete model
and s is abstracted to ŝ and s′ is abstracted to ŝ′. Let R(s,s′)
denote the concrete transition relation. We call the abstract
machine T̂ , and we denote the transition relation of T̂ by R̂.

R̂ := {(ŝ, ŝ′) |∃s,s′ ∈ S : R(s,s′)∧
α(s) = ŝ∧α(s′) = ŝ′} (1)

The initial state I(s) is abstracted to Î(ŝ) as follows:

Î(ŝ) := ∃s ∈ S. (α(s) = ŝ)∧ I(s)

The abstraction of a safety property P(s) is defined as fol-
lows: for the property to hold on an abstract state ŝ, the
property must hold on all states s that are abstracted to ŝ.

P̂(ŝ) := ∀s ∈ S. (α(s) = ŝ) ⇒ P(s)

Consequently, if P̂ holds on all reachable states of the ab-
stract model, P also holds on all reachable states of the con-
crete model.

As introduced in [9], a SAT solver is used to compute
the abstraction. This approach supports all Verilog opera-
tors, including the bit-vector operators. The formula that is
passed to the SAT solver directly follows from the defini-
tion of the abstract transition relation R̂ as given in equa-
tion 1. The satisfying assignments obtained from the SAT
solver form the abstract transition relation R̂. Even if im-
plemented using an efficient all-SAT solver, this techniquie
suffers from the fact that the number of satisfying assign-
ments is exponential in the number of predicates. As a re-
sult, the computation of the abstract model can be very slow
even for a small number of predicates.

Predicate partitioning [12] improves this method
by partitioning the set of the predicates and their
next-state versions into clusters C1, . . . ,Cl , with C j ⊆
{π1, . . . ,πk,π

′
1, . . . ,π

′
k}, where π′i denotes the next state ver-

sion of πi. The number of satisfying assignments is limited
by the size of cluster C j to 2|C j |. Clearly, by limiting the
size of C j, one can compute the abstract transition relation

much faster as compared to the exact approach. The draw-
back of predicate partitioning is that the resulting abstrac-
tions contains additional spurious behavior. The coarser the
partitioning of the predicates, the more abstraction refine-
ment iterations are required to rule out the spurious transi-
tions. Jhala and McMillan [13] introduce interpolants for
approximating R̂: The interpolant is constructed using a
proof that the trace is infeasible. However, their method is
implemented for a theory of linear arithmetic over integers,
which is not suitable for verifying hardware descriptions.

3 Propositional Encodings using Proofs

We present the most important concepts of propositional
encodings of decision problems using proofs [15].

Proofs in any logic follow a pre-defined set of proof
rules. A proof rule consists of a set of antecedents
A1, . . . ,Ak, which are the premises that have to hold for the
rule to be applicable, and a consequence C. The rule is writ-
ten as follows, where γ denotes the ”name” of the rule:

A1, . . . ,Ak

C
γ

Definition 1 (Proof Step) A proof step is a triple 〈r, p,A〉
where r is a proof rule, p is a proposition, and A is a (pos-
sibly empty) list of antecedents A1, . . . ,Ak.

A major challenge of constructing a proof for ϕ is the
propositional structure in ϕ, i.e., the Boolean operators ∧,
∨, and so on. If ϕ represents a word-level encoding of
a large circuit, a non-trivial propositional structure is to
be expected due to control logic. The existing proof en-
gines have difficulties handling large and non-trivial propo-
sitional structures, as they usually perform case-splitting on
Boolean subexpressions of ϕ.

An Atom in a given formula ϕ is a subexpression of
ϕ that does not contain a Boolean operator. In order to
address the case-splitting problem in proof construction,
Strichman [18] introduced the following method: by assign-
ing propositional variables to each atom in ϕ, the proposi-
tional structure of ϕ can be disregarded during the construc-
tion of the proof. The proof is built as if all atoms are con-
joined. The prover has to be modified to continue the proof-
search even if a contradiction is detected. Strichman’s algo-
rithm proceeds by extracting a propositional formula from
the proof, which we call Proof Constraint. The proof con-
straint is conjoined with the Propositional Skeleton of ϕ.
The resulting formula is equi-satisfiable with ϕ.

Definition 2 (Propositional Skeleton) Let ϕ denote a for-
mula. The set of all atoms in ϕ that are not Boolean iden-
tifiers is denoted by A(ϕ). The i-th distinct atom in ϕ is
denoted by Ai(ϕ). The Propositional Skeleton ϕsk of a for-
mula ϕ is obtained by replacing all atoms a∈A(ϕ) by fresh

Boolean identifiers e1, . . . ,eν, where ν = |A(ϕ)|. We denote
the identifier to replace atom Ai by e(Ai).

The fact that the dependence between the proof steps is
directed and acyclic is captured by the following definition.

Definition 3 (Proof Graph) A Proof Graph is a directed
acyclic graph in which the nodes correspond to the steps,
and there is an edge (x,y) if and only if x represents an an-
tecedent of step y.

Definition 4 (Proof-Step Encoder) Given a proof step s =
(r, p,A), its Proof-Step Encoder is a function e(s) such that:

e(s) =

 false : p =⊥
¬e(p′) : p = ¬p′

new propositional variable : otherwise

For a proof step s = (r, p,A), we denote by c(s) the con-
straint that the encoders of the antecedents imply the en-
coder of the consequence p:

c(s) := (
^
a∈A

e(a))−→ e(p)

Definition 5 (Proof Constraint) A proof P is a set of proof
steps {s1, . . . ,sn} in which the antecedence relation is
acyclic. The Proof Constraint c(P) induced by P is the con-
junction of the constraints induced by its steps:

c(P) :=
^
s∈P

c(s)

Theorem 1 ([15]) For a proof P and formula ϕ, ϕ implies
ϕsk ∧ c(P).

This generalizes the idea of [18] to any proof-generating
decision-procedure:

• All atoms A(ϕ) are passed to the prover completely
disregarding the Boolean structure of ϕ.

• For completeness, the prover must be modified to ob-
tain all possible proofs, i.e., must not terminate even if
the empty clause is resolved. A proof P is obtained.

• Build ϕP as ϕsk ∧ c(P).

Axiomatizing Bit-Vector Arithmetic The Verilog HDL
offers a very rich set of bit-vector operators, including bit-
wise Boolean operators, bit-vector extraction and concate-
nation, and reduction operators. Even if great care is taken
to construct a very small set of axioms, the number of (po-
tential) proofs is still too large. Furthermore, the proofs in-
clude derivations that are based on reasoning about single
bits of the vectors involved, resulting in a flattening of the
formula, which resembles the circuit-based models used for
encodings of bit-vector logic into propositional logic.

For capacity reasons, we therefore propose to use an in-
complete prover. Any derivation found by the prover is still

correct, but the prover may miss a proof for a derivable fact.
We use the technique proposed in [15] in order to limit the
proof size. Note that this does not make the overall algo-
rithm incomplete: in case a proof is missed, the correspond-
ing spurious transition is removed later on by the abstraction
refinement procedure.

4 Predicate Images from Proofs

As described in Section 2, the computation of R̂ (Eq. 1)
using all-SAT is exponential in the number of predicates
k. As proposed in [15] for software verification, an over-
approximation R̂′ of R̂ can be extracted from a proof of va-
lidity of the following formula:

R(s,s′)∧α(s) = ŝ∧α(s′) = ŝ′ (2)
In case of software, the propositional structure of R is

typically trivial, as the abstraction is performed separately
for each control flow location. Circuits, however, usually
have a transition relation with a very complex Boolean
structure due to the high degree of synchronous concur-
rency. The existing work on predicate abstraction in the
domain of software verification is therefore not directly ap-
plicable.

In order to address this problem, our technique handles
the propositional structure and the atoms in R separately.
The facts (atoms) we give to the prover are:

1. All the predicates evaluated over state x, i.e., πi(x),

2. all the predicates evaluated over state x′, i.e., πi(x′),

3. the atoms in the transition relation R(x,x′).

As a running example, consider the following Verilog
HDL fragment implementing a counter c with 7 bits:

initial c=0;

always @(posedge clk)
if(c!=64 && issue && !retire)
c=c+1;

else if(c!=0 && !issue && retire)
c=c-1;

Thus, the concrete transition relation R(s,s′) is:

s′.c =

 s.c+1 : s.c 6= 64∧ s.issue∧¬s.retire
s.c−1 : s.c 6= 0∧¬s.issue∧ s.retire
s.c : otherwise

which, after lifting, is
(s.c 6= 64∧ s.issue∧¬s.retire)→ s′.c = s.c+1

∧ (s.c 6= 0∧¬s.issue∧ s.retire)→ s′.c = s.c−1
∧ (¬(s.c 6= 64∧ s.issue∧¬s.retire)∧

¬(s.c 6= 0∧¬s.issue∧ s.retire))→ s′c. = s.c

The atoms A(R) are {s.c = 0,s.c = 64,s′.c = s.c +
1,s′.c = s.c−1,s′.c = s.c}, and are encoded with the fresh

s′.c = 1s.c = 1 s′.c = 1

s.c = 0 s′.c = 0s′.c = s.c+1

Figure 1. Example of a partial proof of Eq. 2 for the run-
ning example. An arrow a → b denotes the fact that a is an
antecedent of b, a crossed out arrow denotes the fact that a
is an antecedent of ¬b.

variables e1, . . . ,e5: e(s.c = 0) = e1, e(s.c = 64) = e2,
e(s′.c = s.c + 1) = e3, e(s′.c = s.c− 1) = e4, and e(s′.c =
s.c) = e5. Note that the Boolean variables that form the
control of the circuit are not passed to the prover at all. The
propositional skeleton ϕsk of ϕ is:

(¬e2∧ s.issue∧¬s.retire)→ e3
∧ (¬e1∧¬s.issue∧ s.retire)→ e4
∧ (¬(¬e2∧ s.issue∧¬s.retire)∧

¬(¬e1∧¬s.issue∧ s.retire))→ e5

Suppose the predicates of interest are π1 ⇐⇒ (c = 0)
and π2 ⇐⇒ (c = 1). This yields the atom s′.c = 0 for the
next-state version of π1, and s.c = 1 and s′.c = 1 for π2.
Let these atoms be encoded as follows: e(s′.c = 0) = e6,
e(s.c = 1) = e7, and e(s′.c = 1) = e8.

A possible (partial) proof of Eq. 2 is shown in Fig. 1. It
is encoded as ϕP as follows:

(e1 →¬e7) ∧ (e6 →¬e8) ∧ ((e1∧ e3)→ e8)
The over-approximation R̂′(ŝ, ŝ′) of R̂ is

ŝ1 = e1∧ ŝ2 = e7∧ ŝ′1 = e6∧ ŝ′2 = e8∧
∃e2, . . . ,e5,s.issue,s.retire.ϕsk ∧ϕP

Thus, we replaced the existential quantification of the
concrete program variables c, s.issue, and s.retire by an ex-
istential quantification over 7 Boolean variables. Note that
the complexity of this operation no longer depends on the
width of the counter c. In order to obtain a closed form
for R̂′, the Boolean quantification has to be performed. The
details of this step are beyond the scope of this paper.

5 Abstraction Refinement

Once the abstract model T̂ of the circuit is computed, it
is passed to a BDD-based Model Checker such as SMV. If
the property holds on T̂ , it also holds on the original cir-
cuit, and the algorithm terminates. Otherwise, an abstract
counterexample is obtained from the model checker. This
abstract counterexample need not correspond to a concrete
counterexample due to the over-approximation in T̂ . It is
therefore simulated on the concrete model, which corre-
sponds to the following SAT-instance:

¬p(sl) ∧
l−1̂

t=0

R(st ,st+1) (3)

If this instance satisfiable, a counterexample trace is ex-
tracted and the algorithm terminates. If not so, it is neces-
sary to refine the set of predicates. In [12], weakest precon-
ditions of the property are used to generate new word-level
predicates. The main disadvantage of this approach is that
it corresponds to a syntactic unwinding of the circuit. This
produces undesirable predicates in the presence of counters
in the design.

We propose the following algorithm instead of a refine-
ment by means of weakest preconditions:

1. Let l denote the length of the abstract counterexample.
Build a formula φ that corresponds to an unwinding
with l states (i.e., BMC of depth l) and constrain it
with the abstract counterexample ŝ(1), . . . , ŝ(l).

2. Initialize the bound β with 0.
3. Attempt to refute φ using a word-level prover that is

limited to use β new facts in the proof.
4. If the proof succeeds, extract the atomic predicates

used in the proof, and add these predicates to the set
of predicates used for abstraction.

5. Otherwise, increase β, and continue with step 3.

We illustrate this algorithm by continuing the running
example from Section 4. Assume we check the property c 6=
127. The refinement loop starts with the predicate π1 ⇐⇒
c = 127, which results in the following abstract model:

c = 127c 6= 127

This model has a counterexample with two states
(〈¬π1〉,〈π1〉). The refinement algorithm proposed in [12]
computes the weakest precondition of c = 127, which is
c = 126. Let π2 denote this predicate. This results in an
abstract model with three reachable states:

c = 127c = 126
c 6= 126
c 6= 127

This model contains a counterexample with three states
(〈¬π1,¬π2〉,〈¬π1,π2〉,〈π1,¬π2〉), the weakest precondi-
tion is computed, and the predicate c = 125 is added. The
algorithm continues until the predicate c = 64 is added,
which proves the property. In total, 63 refinement iterations
are needed in order to obtain the predicates for the proof.

McMillan and Jhala [17, 11] extended a software model
checker by a refinement algorithm using Craig interpolants
extracted from the proof of unsatisfiability of Eq. 3.

In order to prevent predicates that contain variables from
more than one simulation step, we never generate new facts
that involve variables from more than one time-frame. Con-
tinuing our example above for the case of the counterexam-
ple of length 2, we pass the following facts to the prover for
the time-frames t = 0 and t = 1, respectively:

t = 0 t = 1
c1 = c0 +1

c0 = 0
c0 6= 64

c1 = 127

The atoms used in the proof of unsatisfiability of Eq. 3
are used as new predicates. Adding these atoms to the set
of predicates guarantees that the same spurious prefix is not
found again. Continuing our example, one possible proof
uses the fact c0 = 126, which is a contradiction to the fact
c0 = 0. The facts passed to the prover for the counterexam-
ple of length 3 are:

t = 0 t = 1 t = 2
c1 = c0 +1

c0 = 0
c0 6= 64

c2 = c1 +1
c1 6= 64 c2 = 127

Note that there also exists a proof that corresponds to an
enumeration of the values of c as illustrated above, i.e., a
proof using the facts c0 = 0, c1 = 1, and c2 = 2. Unless
care is taken, the predicates from the the proof could ac-
tually match those from a weakest precondition. However,
the prover can be forced to generalize the proof that Eq. 3
is unsatisfiable. McMillan et al. achieve this generalization
by limiting the size of constants that occur in the proof [14].
The size is gradually increased until a proof is found.

In hardware verification, we expect very large constants,
e.g., for use as bit-vector masks, and thus, use a different
approach. Continuing our example, the facts c2 ≤ 64,
c1 ≤ 64, and c0 ≤ 64 are suitable to construct a proof of
unsatisfiability, but the facts of the form c = 0, c = 1, and
so on, should be avoided. Instead of bounding the size of
constants used, we limit the number of newly introduced
atoms to a bound β. The comparison is done without the
time-frame, i.e., an atom is not considered new if it is used
in a different time-frame already. We start with β = 1, and
if no proof is found, increase β until a proof is found. In
the example above, β = 1 is sufficient to obtain a proof,
namely using c≤ 64, whereas the proof that corresponds to
unwinding requires β = 2.

6 Experimental Results

The experiments are performed on a 2.8 GHZ Intel ma-
chine with 4 GB of memory running Linux. A time limit
of one hour and a memory limit of 700 MB was set for
each run. We compare the improved techniques proposed
in this paper with the results obtained using image com-
putation based on predicate partitioning with all-SAT and
predicate refinement using weakest preconditions.

In order to permit comparison, we use the same bench-
marks as in [12]: parts of the Instruction Cache RAM
(ICRAM) from the Sun PicoJava II microprocessor [19] (M
series benchmarks), and arithmetic circuits. Both bench-
marks are parameterized, either in the size of the memory

Bench- Predicate Partitioning+WP Proof-based Image+Refinement
mark

Latches
Time Abs MC Ref P/I Time Abs MC Ref P/I

M512B 4137 107.1 2.2 0.8 104.1 3/8 75.9 4.1 0.6 71.2 3/5
M1KB 8234 180.8 9.3 0.8 170.7 3/8 115.2 4.1 0.6 110.5 3/5
M2KB 16427 450.7 24.0 0.9 425.3 3/8 306.5 4.1 0.6 301.8 3/5
M4KB 32796 843.3 37.0 0.8 805.5 3/8 525.9 4.1 0.6 521.2 3/5
AR100 202 3.5 2.8 0.1 0.6 3/3 4.1 3.6 0.1 0.4 3/3
AR200 402 9.6 8.4 0.1 1.1 3/3 4.6 3.6 0.1 0.9 3/3
AR500 1002 32.2 29.3 0.1 2.8 3/3 6.1 3.6 0.1 2.4 3/3
AR1000 2002 122.6 116.8 0.2 5.6 3/3 7.9 3.6 0.1 4.2 3/3
ROB 5136 * n/a n/a n/a n/a 15.7 5.1 0.1 10.5 6/4

Table 1. Experimental results. All run-times are in seconds. The column ”Latches” contains the total number of latches in the
cone of influence of the property. The ”Time” column contains the total time, the ”Abs”, ”MC”, and ”Ref” columns show the time
taken for abstraction, model checking, and refinement (which includes simulation), respectively. The P/I column shows the number
of predicate and refinement iterations, respectively. A * denotes that the 1 hour timeout was exceeded.

or the width of the words on which arithmetic is performed
on. The experimental results are summarized in Table 1. We
provide the results from [12] for reference. Note that these
results were obtained on a different (slower!) machine. As a
SAT-solver, we use Booleforce1. The columns marked with
”Predicate Partitioning+WP” contain the results of apply-
ing the techniques presented in [12], whereas the columns
marked with ”Proof-based Image+Refinement” contain the
results of applying the techniques presented in this paper.

The performance of the M-series benchmarks improves
despite of the fact that the algorithm described in [12]
spends most time in simulation/refinement. This is due to
the fact that the predicate image generated by the prover
is more precise, and thus, less refinement is needed. As
expected, the performance of the abstraction-intensive AR-
series benchmarks benefits dramatically from the proof-
based abstraction. In particular, the run-time of the abstrac-
tion phase no longer depends on the bit-width. The run-time
of the refinement phase still depends on the number of bits,
as a net-list-level model is used for simulation. No benefit is
obtained from the proof-based refinement, as the weakest-
precondition method already computes optimal predicates.

In order to quantify the benefit of the proof-based predi-
cate refinement, we added the benchmark ROB that requires
a generalization for a deep counter, similar to the running
example used in this paper. The method based on the weak-
est preconditions unwinds the counter, and times out. The
proof-based predicate refinement algorithm generates the
appropriate predicate for the counter, and shows the prop-
erty efficiently.

References

[1] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and veri-
fication of Verilog models. In DAC, pages 218–223, 2004.

1A recent SAT-solver based on MiniSAT by A. Biere

[2] T. Ball and S. Rajamani. Boolean programs: A model and pro-
cess for software analysis. Technical Report 2000-14, Microsoft
Research, 2000.

[3] R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying sys-
tems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions. In CAV, 2002.

[4] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang.
Automated abstraction refinement for model checking large state
spaces using SAT based conflict analysis. In FMCAD, 2002.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. H. Counterexample-
guided abstraction refinement. In CAV, pages 154–169, 2000.

[6] E. Clarke, O. Grumberg, and D. Long. Model checking and abstrac-
tion. In POPL, 1992.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[8] E. Clarke, H. Jain, and D. Kroening. Predicate Abstraction and
Refinement Techniques for Verifying Verilog. Technical Report
CMU-CS-04-139, Carnegie Mellon University, 2004.

[9] E. Clarke, M. Talupur, and D. Wang. SAT based predicate abstrac-
tion for hardware verification. In SAT, 2003.

[10] S. Graf and H. Saı̈di. Construction of abstract state graphs with
PVS. In CAV, volume 1254, pages 72–83, 1997.

[11] T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstrac-
tions from proofs. In POPL, pages 232–244. ACM Press, 2004.

[12] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Word level
predicate abstraction and refinement for verifying RTL Verilog. In
Proceedings of DAC 2005, pages 445–450, 2005.

[13] R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In CAV, pages 39–64. Springer, 2005.

[14] R. Jhala and K. L. McMillan. A practical and complete approach
to predicate refinement. In TACAS, volume 3920 of LNCS, pages
459–473. Springer, 2006.

[15] D. Kroening and N. Sharygina. Approximating predicate images for
bit-vector logic. In TACAS, LNCS, pages 242–256. Springer, 2006.

[16] R. Kurshan. Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press, 1994.

[17] K. L. McMillan. An interpolating theorem prover. In Proceedings
of TACS, volume 2988, pages 16–30. Springer, 2004.

[18] O. Strichman. On solving Presburger and linear arithmetic with
SAT. In FMCAD, volume 2517, pages 160–170. Springer, 2002.

[19] http://www.sun.com/processors/technologies.html.
[20] D. Wang, P. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano.

Formal property verification by abstraction refinement with formal,
simulation and hybrid engines. In DAC, pages 35–40, 2001.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

