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Abstract

This paper focuses on inductive invariants in unbounded
model checking to improve efficiency and scalability.

First of all, it introduces optimized techniques to speed-
up the computation of inductive invariants, considering
both equivalences and implications between pairs of nodes
in the logic network. Secondly, it presents a very effi-
cient dynamic procedure, based on an incremental SAT ap-
proach, to reduce the set of checked invariants. Finally, it
shows how to effectively integrate inductive invariant com-
putations with state-of-the-art model checking procedures.

Experiments address different property verification as-
pects, and specifically consider cases where inductive in-
variants alone are not sufficient for the final proof.

1. Introduction

Given a transition system, an inductive invariant is a
safety property p, written as AG(p) in Computation Tree
Logic (CTL), that has been proved to hold by induction.
Given a depth k, a k-step inductive check verifies that:

• Starting from the initial state set of the system, p holds
for k consecutive time steps.

• If p holds for k consecutive time steps, regardless the ini-
tial state, then it holds also at time step k + 1.

If both the above conditions (the base case and proving step,
respectively) are true, then p is always true for the system.
Obviously, if the base case is false, then p does not hold. If
the base case is true but the proving step fails, then nothing
can be said about p. At this point, k is increased and the two
conditions are verified again.

The use of inductive invariants in formal verification was
initially proposed by van Eijk [12] for sequential equiva-
lence checking. His approach finds initial candidate equiva-
lences with random simulation and carries out all computa-
tions by BDD-based manipulations. Moreover, the process
is limited to 1-step induction, and it requires a quadratic

number of iterations (with respect to the total number of
nodes in the system) to reach the fix-point. Bjesse et al. [2]
applied van Eijk’s algorithm to property checking. The
method relies on a SAT tool instead of BDDs, and it ex-
tends van Eijk’s approach by strengthening the induction to
k steps. In order to avoid the quadratic complexity, the au-
thors also put forward an incomplete method to trade-off
the quality of the result for the execution time. With the
target of simultaneously checking a set of properties, Fraer
et al. [7] proposed a linear complexity algorithm that, given
the invariant set and an induction depth k, finds the maxi-
mum subset of invariants provable through k-step induction.
More recently, invariants in the form of implications have
been considered in [5]. Because of the huge amount of po-
tential invariants, the authors adopted a divide-and-conquer
strategy, which considers invariants only inside a window of
the circuit. Once a fix-point has been reached, the window
is enlarged and the process restarts.

In this paper, we combine equivalence and implication
invariant management in a global effort to minimize the
amount of invariants to manipulate. We improve over the
previous approaches in the following directions:

• Equivalence classes are used as a (reduced) representa-
tion of all node equivalences. Given a set of equivalent
nodes and a class representative, we avoid a quadratic
number of equivalences by expressing (a linear number
of) equivalences with the class representative.

• Implications are kept reduced by filtering out equiva-
lences, representing implications between equivalence
classes, and pruning out transitive implications.

• Equivalences and implications are proved under exter-
nal care set conditions, which allow a tighter integration
(and inter-twining) with other verification engines and/or
strategies.

• We adopt state-of-the-art partitioning/windowing strate-
gies, in view of a scalable approach, able to tackle large
problem instances.

• Within the verification field, implications have been tra-
ditionally used as a pre-processing step able to poten-
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tially provide early solutions by pure induction [11].
We provide, instead, a dynamic and unified framework
which tightly integrates invariant-based optimization and
re-synthesis with various verification strategies. In this
scheme, invariants are generally considered as a restric-
tion of the state space.

Our experiments specifically address over-approximate
reachability analysis and BDD/SAT-based property verifi-
cation.

2. Background

The sequential systems we address are modeled as Finite
State Machines (FSMs). We denote with S the set of states,
with S0⊆ S the initial states, and with TR the transition re-
lation of the system, TR: S × S → {0, 1}. We call L the set
of potential invariants, to be proved inductively.

The high-level algorithm to inductively compute invari-
ants is shown in Figure 1. In the algorithm, d is the maxi-
mum value for the induction depth, and Care represents a set
of external constraints to restrict the space while checking
for invariants. BDD-based approximate reachable states are
an example of external care set. The INDUCTIVEINV func-
tion returns the set P of invariants that have been proved
inductively.

1 INDUCTIVEINV (TR, S0, L, d, Care)
2 L = L ∪ RANDOMSIMINV (TR, S0)
3 P = ∅
4 for k = 0 to d
5 // Proving Step
6 P = P ∪ CHECKINV (TR, Care, L, k)
7 L = L \ P
8 // Base Case
9 L = CHECKINV (TR, S0, L, k)

10 return (P )

Figure 1. Top level algorithm.

The function first extends L from the pure set of prop-
erties under check, with more potential invariants obtained
through simulation. Then, it loops through inductive proofs
with increasing k depths, where the proving step and the
base case are executed. Proved invariants are accumulated
into the P set. Note that we start from induction depth
0, i.e., the set L is checked against the full set of states,
without any assumption other than the Care set. All redun-
dancies which hold “combinationally” are thus immediately
captured.

A unique SAT-based proof function (CHECKINV) is used
for the proving (line 6) as well as the base (line 9) case.
For this function, we choose the implementation presented
in [7] and reported in Figure 2. We use subscripts to indicate
time-frames, i.e., TRi means TR(si, si+1), where s0, s1, . . . ,

sk indicate a sequence of states. Similarly, I0 represents
the (current) set of initial states, expressed in the first time
frame, and Li denotes the conjunction of all the candidate
invariants in time frame i.

1 CHECKINV (TR, I , L, k)
2 do
3 f = I0 ∧

(∧k−1

i=0
TRi ∧ Li

)
∧ (TRk ∧¬ Lk)

4 cex = SOLVE (f )
5 if (cex �= ∅)
6 L = VALIDINV (Lk, cex)
7 while (cex �= ∅)
8 return (L)

Figure 2. Inductive invariant checking.

For each iteration of the main loop, the propositional for-
mula f is built and verified with a SAT solver. The target
of the SAT solver is to falsify at least one of the potential
invariants in the final time frame (¬ Lk), when all the in-
variants are true in the previous ones. If such an invariant
can be found, then the instance is satisfiable. The produced
counter-example is used by function VALIDINV to refine the
set of potential invariants for the next iteration, by keeping
only the ones which have not yet been disproved.

As noticed in previous works, a key feature for efficiency
is the use of incremental SAT. It essentially consists in
reusing (partially or completely) the conflict clauses across
different SAT calls. We also adopt this mechanism in our
formulation using the unit assumptions strategy (see [6] for
further details).

3. Equivalences and Implications

We propose in this section a specialized version of the
algorithm presented in Section 2 to deal with both equiv-
alences and implications. We start by considering only
equivalences. Then we describe how we handle implica-
tions.

3.1. Equivalence classes

In principle, the algorithm of Section 2 may work with
any kind of invariants, including equivalences. The draw-
back is that the number of candidate invariants to be
checked may be too large, being potentially quadratic in
the size of the network. In order to efficiently reduce the
number of checks, we adopt the idea introduced in [3] for
latch mapping in equivalence checking. We assume that the
initial random simulation partitions all the nodes (or their
negations) in a set of equivalence classes, characterized by
the following properties:

• Given two distinct classes Ci and Cj , they do not overlap,
i.e., Ci ∩ Cj = ∅



• Given any two circuit nodes ni and nj and an equiva-
lence class C, if both the nodes belong to C, they are
equivalent, i.e., ni ∈ C ∧ nj ∈ C ⇒ ni = nj

With abuse of notation, we call L the set of equivalence
classes. The key idea of [3] is to start with an initial set of
equivalence classes, and to iteratively refine them by split-
ting, until a fix-point is reached. In our case, this is done in
the following way.

First, we represent all equivalences by means of a suf-
ficient, i.e., linear, number of equivalences. More specifi-
cally, for each class C, we randomly choose a class repre-
sentative, or leader, lC . We then explicitly represent equiv-
alences between all class members and lC . We call such
equivalences atomic. All other equivalences can be transi-
tively derived from the atomic relations. The union of all the
atomic equivalences provides the set of potential invariants
to be checked.

When a SAT counter-example is found in function
CHECKINV, at least one equivalence has been falsified. We
thus loop through all classes, refining them. For each class
C, all nodes satisfying their atomic equivalence with lC are
actually kept in the class itself. All other nodes (if any) are
removed from the class and collected into a new one, to be
finally added back to L. The pseudo-code for such a “split”
algorithm is given in Figure 3.

1 VALIDINV (L, cex)
2 for C ∈ L
3 N = ∅
4 for n ∈ C
5 if (cex(n) �= cex(lC ))
6 C = C \ n
7 N = N ∪ n
8 if (|N | > 0)
9 L = L ∪ N

10 return (L)

Figure 3. Refining the equivalence classes.

3.2. Managing implications

As previously mentioned, the authors of [5] handle sets
of implications. Equivalences are possibly obtained from
the subset of proved invariants.

We explicitly represent potential equivalences by means
of equivalence classes. As a consequence, we may consider
a smaller set of implication invariants, because implications
between leaders are sufficient.

Hence, let us assume now that function CHECKINV re-
ceives a set of potential invariants made up of equivalence
classes and implications among them. The inductive proof
algorithm may proceed exactly as previously described, up
to the SAT counter-example analysis. Function VALIDINV

is now in charge for both refining the equivalence classes
and for updating the set of candidate implications. This im-
plies removing falsified implications from the potential list,
but also adding new potential implications, arising as a re-
sult of the class splitting process. More in detail, whenever
an equivalence class is split, the two newly generated parti-
tions are still related by an implication (the one compatible
with the current SAT counter-example). Furthermore, some
more implications may be generated.

Example 1 Assume that function CHECKINV is called with
a single potential equivalence class X0, made up of 5 nodes,
namely (x1, . . ., x5). Let be x1 the class representative.

The initial problem we provide the SAT solver is: (x1 �=
x2) ∨ (x1 �= x3) ∨ (x1 �= x4) ∨ (x1 �= x5). Let us suppose
that the solver returns the counter-example: x1x2x3x4x5 =
10110. Hence the original class X0 is partitioned into
X1 = {x1, x3, x4} and X2 = {x2, x5}, x1 and x2 being
the two leaders. Furthermore, the “implication” x1 ∨ x2 is
generated and added to the candidate invariant set.

The second call to the SAT solver is done to solve the
problem: (x1 �= x3) ∨ (x1 �= x4)∨ (x2 �= x5) ∨ (x1 ∧ x2).
Assume that now the solver returns the counter-example
x1x2x3x4x5 = 01011. The equivalence class X2 remains
unchanged, whereas X1 is split into X3 = {x1, x3} and
X4 = {x4}. Such a split introduces also the new impli-
cation x1 ∨ x4. The same counter-example also disproves
the implication generated at the previous step, but a new
implication, x4 ∨ x2, is created as a result of the splitting
process.

In general, let us assume that two equivalence classes P
and Q are given, p and q being their leaders respectively.
Assume that p ∨ q is one of the candidate invariants (we
use hereon the disjunctive notation for implications, based
on the known equivalence: p ⇒ q ≡ p ∨ q) and, finally,
that the current counter-example has caused both P and Q
to split, p′ and q′ being the two representatives of the newly
created classes. Then, Table 1 schematically reports the set
of generated implications, according to the value of p and
q in the counter-example. Implications marked with an ‘o’
symbol are “alive” for the next SAT iteration.

p q p ∨ q p ∨ q′ p′ ∨ q p′ ∨ q′

0 0 x o o o
0 1 o x o o
1 0 o o x o
1 1 o o o x

Table 1. Implications and class splitting.

Note that no negation signs have been considered in Ta-
ble 1, whereas the complete algorithm appropriately deals
with the general case.



Albeit the previous procedure provides a dynamic ap-
proach for updating the candidate invariant set, the total
number of possible implications in a circuit is still quadratic
in the circuit size. In order to attack large problem instances,
and to provide a scalable solution, we adopt two techniques
introduced in [5]. The first one, consists in a transitive re-
duction of the graph representing the implications. The aim
is to filter out candidate implications that can be derived
transitively from the other ones. The second technique is
the windowing mechanism, i.e., we iteratively consider in-
variants just on a subset of the circuit nodes.

4. Inductive Invariants and Model Checking

As an initial remark, let us observe that inductive in-
variants can be exploited for circuit optimization, as shown
in [5]. In this section, however, we explore more dynamic
approaches exploiting inductive invariants, by combining
them with other symbolic model checking techniques, such
as BDD-based reachability and verification.

4.1. Approximate Reachability

Invariants have been used in [5] to compute an over-ap-
proximation of the reachable states, with a more modular
effort than BDD-based reachability. Here we argue that the
two approaches can be intertwined in order to get further
benefits, especially in terms of accuracy of the result. From
the one hand, inductive invariants can be exploited as an ex-
ternal constraint in order to make BDD-based approximate
reachability tighter. On the other hand, BDD-based approx-
imate states can help finding more inductive invariants.

1 APPROXTRAVIMPROVED (TR, S0, d)
2 R+= 1
3 do
4 L = INDUCTIVEINV (TR, L, ∅, d, R+)
5 TR = OPTIMIZE (TR, L)
6 R+ = R+∧ L
7 R+ = R+∧ APPROXTRAV (TR, S0, R+)
8 while (¬ (fixPoint ∨ timeLimit ∨ spaceLimit))
9 return (R+)

Figure 4. Improved Approximate Traversal.

The improved reachability procedure is shown in Fig-
ure 4. The function iterates through inductive invariant
computations and approximate traversals. Both procedures
accept the current R+ expression as a “care” parameter, that
is used to enforce invariant proofs and to tighten reachabil-
ity. Function OPTIMIZE returns an optimized TR starting
from the current one and the set of available invariants.

4.2. Circuit based quantification

In the field of circuit based cofactoring [1, 8, 4], induc-
tive invariants and over-approximate reachable states can
play a key role as care set for backward reachable state
sets [10].

1 BACKVERIF (TR, S0, p, d)
2 Care = INDUCTIVEINV (TR, L, p, d, 1)
2 Reached = From = New = ¬ p
3 while (SOLVE (New))
4 if (SOLVE (From ∧ S0))
5 return (FAIL)
6 To = PREIMAGE (TR, From, Care)
7 New = (To \ Reached) ∧ Care
8 From = BESTAIG (To, ¬ Reached ∧ Care)
9 Reached = Reached ∨ To

10 return (PASS)

Figure 5. Backward traversal with care.

The approach, adapted to SAT manipulations, is shown
in Figure 5, where p is the property to prove. In this case,
the main optimization, related to the Care set, is embedded
within the PREIMAGE procedure. Based on circuit compo-
sition and existential (circuit based) quantification of pri-
mary inputs, the procedure can exploit the Care set in cir-
cuit optimizations based on redundancy removal. In our ex-
perience the benefits can be strong, sometimes making the
real difference for the applicability of the approach. Func-
tion BESTAIG returns the smallest AIG representing a set
of states included between To and ¬ Reached ∧ Care.

5. Experimental Results

Our experiments ran on a Pentium Dual Core 3 GHz
Workstation with 3 GByte of main memory, running Debian
Linux. We present results on some standard benchmarks be-
longing to the ISCAS suites, to the VIS distribution, and
to the IBM Formal Verification Benchmark Library. We
also present some results on industrial circuits coming from
STMicroelectronics.

5.1. Invariants Computation

Table 2 reports some evidence on invariants computa-
tion. In this case, only circuits coming from the ISCAS
suites have been considered, and all the experiments run
with an induction depth equal to 1.

The table is conceptually divided into three sections. The
first one gives the original circuits details, in terms of num-
ber of primary inputs, latches and total combinational gates.
In the second section, we performed the analysis enabling
equivalences only: the number of proved (atomic) equiva-
lences is then specified, together with the total time for the



computation and the size of the optimized network. The
third section reports data for the case in which implications
are enabled too, with a time limit of 5 minutes. More specif-
ically, the number of proved equivalences (beyond the previ-
ous ones) and of proved (atomic) implications is provided,
as well as the total computation time and the size of the
optimized circuit. Notice that we performed only a combi-
national optimization step, i.e., implications are not used to
“sequentially” simplify the circuit as done in [5].

Furthermore, Table 2 only reports the number of implica-
tions that could be proved at depth 1, but not at depth 0. The
reason is that, unlike equivalences, we deem all the implica-
tions found with induction depth 0 as useless. For instance,
for circuit s6669, a total number of 12981 implications was
actually proved. However, removing all the non-atomic im-
plications and those proved with k = 0, only 3 implications
remain. For the largest circuits the process timed-out while
it was still proving combinational implications (we reported
0 as proved invariants and “−” as optimized circuit size).

The data in the table show that the running time is usu-
ally quite small, though the method can lead to a significant
reduction in terms of circuit size.

5.2. Approximate Reachability Analysis

In this section we present results on approximate reach-
ability analysis, by following the algorithm of Figure 4. In
other words, we use invariants (the ones computed in Sec-
tion 5.1) to constrain over-approximate reachable state sets.

Table 3 presents our data. The table reports, after the
global number of states (equal to 2FF ), the number of states
reached with the original approximate reachability analysis,
and the ones obtained considering equivalence and then im-
plication invariants.

In the table, ovf means time out (after 1800 seconds).
and “−” data not available (because of the time overflow or
the data missing in Table 3). The times necessary to tight
the original over-approximate reachability analysis are usu-
ally reasonable compared to the advantages (often several
orders of magnitude) obtained. In other words, equivalence
provide a very good constraint to improve the quality of
over-approximate reachable state sets evaluated with BDDs.
Implications restrict results even more, but can be more ex-
pensive to compute.

5.3. Property Verification

In this section we present results obtained with a tight in-
tegration of invariants computation, with forward and back-
ward BDD-based reachability analysis, SAT-based interpo-
lation and circuit-based quantification.

Table 4 reports our results. Column Method indi-
cates the verification method adopted; CBQ stands for AIG

circuit-based quantification [1, 8, 4], ITP for interpolant-
based [9], and BDD for forward or backward BDD-based
verification. Finally, IND means that inductive invariants
are sufficient to complete the task. Columns No Inv and
Inv report verification time (in seconds) without and with
invariants.

Notice that for each experiment we ran all the above
techniques with a time limit of 1800 seconds. After that, we
present in the table only the verification methodology de-
livering the best result. We specifically target experiments
where invariants alone are not sufficient to complete the ver-
ification, though a few runs of this kind are also reported.

Model FF Nodes Method No Inv Inv

Ns2 67 2949 ITP 363 148
Ns3 103 4552 CBQ ovf 565
Blackjack 103 3979 ITP 1221 46
Soap1 140 2821 BDD 681 124
Soap2 140 3572 IND ovf 17
31 1 batch 1 122 1510 BDD 518 311
31 2 batch 1 122 1506 ITP 45 10
IndustrialA 234 1755 CBQ ovf 389
IndustrialB 670 4040 IND ovf 18
IndustrialC 1681 11635 IND ovf 90

Table 4. Verification results.

Data show that there are cases in which no stand-alone
techniques was able to complete the verification, but the in-
tegrated method solve them with reasonable memory and
time resource. As far as memory is concerned, we do not
report explicit data on it but all our experiments ran with
less than 1 GByte of main memory.

6. Conclusions

This paper addresses two main topics. First of all, it
introduces optimized techniques for speeding-up the com-
putation of inductive invariants by reducing the number of
checks performed. Secondly, it proposes a tighter inte-
gration of inductive invariants within state-of-the-art model
checking procedures. Experimental results address differ-
ent property verification aspects showing very promising
results.
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