
QuteSAT: A Robust Circuit-based SAT Solver for Complex Circuit Structure

Chi-An Wu, Ting-Hao Lin, Chih-Chun Lee and Chung-Yang (Ric) Huang
Department of Electrical Engineering
National Taiwan University, Taiwan

Abstract

We propose a robust circuit-based Boolean
Satisfiability (SAT) solver, QuteSAT, that can be applied
to complex circuit netlist structure. Several novel
techniques are proposed in this paper, including: (1) a
generic watching scheme on general gate types for
efficient Boolean Constraint Propagation (BCP), (2) an
implicit implication graph representation for efficient
learning, and (3) careful engineering on the most
advanced SAT algorithms for the circuit-based data
structure. Our experimental results show that our baseline
solver, without taking the advantage of the circuit
information, can achieve the same performance as the
fastest Conjunctive Normal Form (CNF)-based solvers.
We also demonstrate that by applying a simple circuit-
oriented decision ordering technique (J-frontier), our
solver can constantly outperform the CNF ones for more
than 15+ times. With the great flexibility on the circuit-
based data structure, our solver can serve as a solid
foundation for the general SAT research in the future.

1. Introduction

With the dramatic improvements in the last decade,
Boolean Satisfiability (SAT) solvers are casting a great
impact on the Electronic Design Automation (EDA)
industry. Many traditional EDA problems can now be
revisited by the powerful SAT solvers.

Most of the advances in the SAT techniques come from
the solvers that are designed on the Conjunctive Normal
Form (CNF) representation, namely the Product of Sum
(PoS) format. The most cited ones include: (1) two literal
watching (with lazy update) scheme for efficient Boolean
Constraint Propagation (BCP) [1][2], (2) conflict-driven
learning and non-chronological backtracking [3][4], (3)
quasi-static decision variable ordering and restart [2][5],
and (4) careful engineering for a compact and efficient
SAT solver [2][6].

Nevertheless, many of the problems in VLSI CAD are
circuit structure-oriented in nature. In other words, if we
can utilize the circuit structure information, we will be
able to devise a better SAT search strategy. However,
when we model these problems in CNF, the structure
information is lost. In general, attempts to include circuit
structure information into CNF-based SAT solvers have
been unsuccessful due to the significant overhead [7].

Therefore, realizing the SAT algorithms on the circuit data
structure directly, called circuit-based SAT, seems to be a
reasonable solution.

Kuehlmann et al. implemented a Boolean reasoning
engine on the AND/INVERTER graph (AIG) [8]. Their
results showed that with simplified circuit structure, the
circuit-based SAT can be as efficient as the CNF SAT.
However, some circuit information may be lost during the
transformation to the AIG. Ganai et al. proposed a hybrid
SAT solver in which the original problem was represented
in the circuit format, and the learned information was
recorded as CNF clauses [9]. By applying two-literal-
watching scheme on the longer clauses (i.e. the learned
clauses), and table lookup method for the gates with
smaller amount of fanins, their hybrid BCP can achieve
the best results of all. Another circuit-based SAT solver by
Lu et al. [10] tried to accrue more learning information
from the internal signal correlations. Their results show
that their circuit SAT can consistently outperform the CNF
ones. However, for the circuits that do not have as many
internal signal correlations, their solver may not perform
as well. On the other hand, the non-clausal SAT solver in
[11] generalized the two literal watch technique to the
propositional formulas represented in DAG. However,
they selected the watched points only among the gate
inputs and thus may incur unnecessary complication on
the checking of the circuit BCP.

In this paper, we propose a robust circuit-based SAT
solver, called QuteSAT, in which its baseline solver (i.e.
without using circuit information) can perform as well as
the state-of-the-art CNF solvers (e.g. zChaff [2] and
miniSat [6]), and with just a little help from the circuit
information, it can greatly outperform the CNF ones. The
key technologies of our solver include: (1) a generic
watching scheme that can seamlessly work on all kinds of
circuit gates (simple or complex gates), (2) an implicit
implication graph that enables efficient conflict-driven
learning and (3) careful engineering work to implement
most of the advanced SAT algorithm on the circuit data
structure. For comparison purpose, we also implement a
simple “J-frontier” algorithm to demonstrate that the
circuit information can greatly help in the SAT problem.

The outline of the paper is as follows: in Section 2, we
describe several novel techniques for the efficient circuit-
based BCP. Other algorithms that contribute to the success
of our solver are presented in Section 3. In Section 4 the

978-3-9810801-2-4/DATE07 © 2007 EDAA

experimental results demonstrate the robustness of our
solver. Section 5 concludes the paper.

2. Efficient circuit-based BCP

Boolean Constraint Propagation (BCP) is the most time
consuming process in the SAT algorithm. It derives the
logic implications in the deduction procedure. In a modern
SAT solver, BCP may perform millions of implications
per second, which is about 80% of the total SAT time [9].
Therefore, an efficient BCP is a critical factor for a
powerful SAT solver.

With the “2-literal-watching” scheme, the BCP step
implemented in CNF SAT usually yields a higher
efficiency. Circuit SAT, on the other hand, usually adopts
the “table-lookup” method for logic implications. This
method is more efficient for circuits with limited gate
types and with small number of fanins. However, for
complex circuit structure, the “table-lookup” method may
not be as efficient.

We propose several novel techniques to enhance the
BCP process for the circuit SAT. Our main contributions
include: (1) direct implication graph, (2) generic watching
algorithm, and (3) implicit implication recording. Our
methods enable the circuit-based SAT solver to have the
similar BCP performance as the CNF SAT, and at the
same time to maintain the great flexibility for the circuit
SAT to work on the circuit netlist structure.

We will first review the similarities and differences
between CNF and circuit-based BCPs.

2.1. CNF vs. circuit-based BCP

The BCP process in the CNF SAT is very simple. To
satisfy a CNF formula, all the clauses must be asserted. In
other words, each clause must have at least one literal
assigned to ‘1’. This monotonic satisfiability check makes
the BCP process in CNF SAT very simple and efficient.

Most of the modern CNF SAT solvers utilize the “2-
literal-watching” scheme for BCP, which is essentially a
“lazy evaluation” technique — any assignment on the non-
watched literal will not be processed; only the clauses on
the watching list of the implied literal will be updated.
This can greatly reduce the number of useless updates in
the BCP process.

The circuit-based SAT, on the other hand, usually
builds on a netlist of different gate types, and for each gate
type, it has even several different implications (Fig. 1).
Therefore, it may not be easy to implement the “watching”
scheme for the circuit SAT. However, after carefully
examining the similarities and differences of the CNF and
circuit-based BCPs, we find that the watching scheme can
be generalized for complex circuit netlists. This is

achieved by several of our novel techniques and will be
described in the following subsections.

2.2. Direct implication graph

The idea of circuit-based watching scheme may
become easier to understand if we separate the direct from
the indirect implications.

An implication is called a “direct implication” if it can
be derived from a single source. On the other hand, it is
called an “indirect implication” if it takes multiple sources
to conclude this implication. For the AND gate in Fig. 1 as
an example, the implications “¬xi ¬f” and “f xi” are
direct implications, while the implications “x1 ∧ ... ∧ xn
f” and “x1 ∧ ... ∧ xn-1 ∧ ¬f ¬xn” are indirect.

The causality of the direct implications in a circuit
depends only statically on the netlist structure, not
dynamically on the other implications during the decision
process. In other words, the relationship of the direct
implications can be derived during the circuit
preprocessing step, and it will remain unchanged in the
entire search process. In addition, there will never be a
conflict arisen from the direct implications. Therefore, we
can record the direct implication relations as a graph in the
circuit parsing step, and then in the BCP process,
whenever a gate gets an implication, we can immediately
obtain its direct implications by tracing the direct
implication graph.

Please note that the direct implications actually

correspond to the 2-literal clauses in the CNF, and many
CNF SAT solvers also have special treatments for these
clauses. For example, miniSat does not store the 2-literal
clauses. Instead, it records them directly in the “watched
list”. This is similar to our “direct implication graph” idea.

2.3. Watching scheme for primitive gates

The primitive gates here refer to AND, OR, NAND,
and NOR. Buffers and inverters are collapsed as attributes

0

0

(1) Forward
 direct

(2) Forward
 indirect

(3) Backward
 direct

1 1 1 1 1 1 1 1

1 1

1 1 1 0

0

(4) Backward
 indirect

¬xi ¬f x1 ∧ ... ∧ xn f f xi

a b

_0DirImps: { ... }
_1DirImps: { a, c, ... }

c

Fig 2. Direct implications graph

x1 ∧ ... ∧ xn-1 ∧ ¬f
 ¬xn

_0DirImps: { -b, ... }
_1DirImps: { ... }

_0DirImps: { -b, ... }
_1DirImps: { ... }

Fig 1. Implications of an AND gate

to the gate inputs. We will use an n-input AND gate to
illustrate the watching scheme for the primitive gates. The
rules for other primitive gates can be deduced similarly.

Consider the CNF of an n-input AND gate. It consists
of n “2-literal clauses” and one “(n+1)-literal clause”:

AND: (x1 + ¬f)...(xn + ¬f)(¬x1 + ... + ¬xn + f)
Since the 2-literal clauses have been recorded in the direct
implication graph, we only need to consider the single
clause for the indirect implication. It is worthwhile to note
that the two indirect implications for the AND gate,
namely “x1 ∧ ... ∧ xn f” and “x1 ∧ ... ∧ xn-1 ∧ ¬f ¬xn”
in Fig. 1, actually corresponds to the same CNF clause
(¬x1 + ... + ¬xn + f). Therefore, we can use an unified
watching scheme to handle these two indirect implications.

The idea can then become straightforward — just adds
the gate output ‘f’ and inputs ‘x1’... ‘xn’ to the watched
candidate list and select two of them as the watched
pointers. The watched value for the output ‘f’, as
suggested by the CNF clause, should be ‘0’, while the
watched values for the gate inputs ‘x1’... ‘xn’ should be ‘1’.
However, since there is no separated data structure for
positive and negative literals in circuit SAT, we will
record the “watching gates” as two lists (“watching-0” and
“watching-1”) in the gate data structure.

2.4. Watching scheme for complex gate

The complex gates here refer to arbitrary Boolean
function that can be represented by Boolean variables. We
will illustrate the watching scheme for the complex gates
by three examples: XOR, multiplexer (MUX), and
Pseudo-Boolean constraint (PB) gates. The generic
algorithm will be presented in the next subsection.

2.4.1. XOR gate An n-input XOR gate corresponds to 2n
(n+1)-literal clauses in CNF, each of which requires 2
watched pointers in the CNF SAT. The indirect
implication of an XOR gate occurs only when there are n
assignments on the gate output and inputs, be them ‘0’ or
‘1’, and when this happens, all the clauses will be satisfied
at the same time. Therefore, these clauses can actually be
watched together by two pointers on the gate.

We introduce the “watching-known” concept to our
watching scheme. In other words, if a gate x is in the
“watching-known list” of another gate y, when the value

of gate y becomes known (i.e. 0 or 1), it will notify gate x
to update its watched pointers and potentially generate a
new indirect implication.

2.4.2. MUX gate The implications and corresponding
CNF clauses of a MUX gate are as shown below.

MUX function: f = ¬s ∧ a + s ∧ b
Implication CNF clauses

¬s (f = a) (s + f + ¬a)(s + ¬f + a)
s (f = b) (¬s + f + ¬b)(¬s + ¬f + b)

(a = b) (f = a) (¬f + a + b)(f + ¬a + ¬b)

There are six 3-literal clauses for a MUX gate, with
each variable appearing twice in the positive and negative
literals. Therefore, an intuition for the MUX gate watching
scheme is to pick 2 watched variables from { f, s, a, b } for
“watched known”. However, this may miss some indirect
implications. For example, if we are watching f and s (both
have unknown values), while a and b have been assigned
to the same known value, then we will miss the indirect
implication that f should have the same value as a.

Therefore, we need to have a 3-watching scheme for a
MUX gate. Although this may sound inefficient (i.e. 3
watched variables out of 4), yet compared to the six CNF
clauses and 12 watched literals, our circuit-based BCP for
watching MUX will perform better.

2.4.3. Pseudo Boolean gate A pseudo Boolean (PB)
constraint is said to be in the normal form as:

∑ =
≥

n

i ii bxa
0

& for }1,0{,, ∈∈ +
ii xZba &

where ix& denotes a literal xi or xi’, and the terms ii xa & are

usually sorted by the coefficients in the descending order.
PB constraints are mostly used in describing a linear

system and representing the 0-1 integer programming
problem. To perform the BCP on the PB constraints, for
example, miniSat+ converted the PB inequalities to CNF
clauses so that the PB satisfiability can be checked by the
CNF SAT solver [12]. However, the transformation from
PB to CNF constraints usually results in significant
overhead and may lose much implicability. On the other
hand, Chai and Kuehlmann in [13] applied the “watching
scheme” for PB constraint propagation. However, due to

a

b

c watching-0: { a }
watching-1: { }

watching-0: { }
watching-1: { }

watching-0: { }
watching-1: { a, b }

Fig 3. Watched pointers and watching gate list

: watched pointer

a

b

c

watching-0: { }
watching-1: { b }
watching-known: { a }

Fig 4. Introducing “watching-known” list

: watched pointer

watching-0: { a }
watching-1: { }
watching-known: { }

watching-0: { }
watching-1: { }
watching-known: { }

the overhead in updating the watched pointers and the
number of watches, they decided to discard the watching
scheme and use “counters” to implement the PB constraint
propagation instead.

In order to be consistent in the BCP algorithm with
other part of the circuit, we choose to stay with the
“watching scheme” for the PB constraints. Different from
[13], we do not change the number of watches during the
decision process. The price we pay is that we may need to
watch more variables by considering the worst case. For
example, in the PB constraint “4x1 + 3x2 + 2x3 + x4 >= 3”,
we need 3 watched pointers for watching value ‘0’ (rules
will be described in the next subsection), while in [13]
their method will pick 2 or 3 watches, depending on the
values assigned. If we are watching { x1, x2, x3 }, and x4 =
‘0’, then the new assignment x3 = ‘0’ will trigger the
watch update. However, we cannot find another non-0
variable to update the watched pointer, and we cannot
deduce any indirect implication yet either. Nevertheless,
we find that our method is a good balance between the
“counters” method, where all the variables are watched,
and the dynamic number of watches approach, where the
overhead in maintaining watches is big.

2.5. Generic watching algorithm

Considering the watching scheme on a gate, the main
difference between circuit and CNF SAT is that in CNF
we can have different watched literals for different clauses,
while in circuit SAT these clauses need to be watched on
the same gate by choosing pointers from the gate itself and
its inputs. In other words, we need to design the circuit-
based watching algorithm that can take care of all the
watched literals for all the clauses at the same time.

Let’s first review the principle of the CNF-based
watching scheme — whenever there are value assignments
on the non-watched literals, or ‘1’ assignments on the
watched literals, we need not to do anything. We can delay
the evaluation of the clause until one of the watched
literals is assigned ‘0’, and then we will try to find a non-0
non-watched literal to move the watched pointer. If we fail
to update the watched pointer, we will either conclude an
indirect implication, or find a conflict assignment.

Following the same spirit, we design our generic
circuit-based watching algorithm as follows:

Generic watching algorithm for circuit SAT:

1. Let the output and input pins of the gate be the
watched candidates. Let ‘n’ be the size of the watch
candidate set.

2. Determine the ‘watched value” for each pin: if
assigning a value ‘v’ on this pin may eventually
lead to an indirect implication on other pin(s), then
‘v’ is the watched value of this pin. For example,

assigning a ‘1’ to the input of an AND, or ‘0’ to a
variable of a PB constraint may eventually lead to
an indirect implication. Therefore, ‘1’ and ‘0’ are
their watched values, respectively. On the other
hand, for an XOR or MUX gate, both ‘0’ and ‘1’
may lead to indirect implications. Therefore, their
watched value is “known”.

3. Find a minimum subset of watched candidates so
that (a) assigning watched values on all the
variables of the subset will produce an indirect
implication, but (b) removing any of these
assignments will void the implication. Let ‘k’ be
the size of this subset.

4. We will need (n – k + 1) watched pointers.
5. Whenever there are assignments on the non-

watched pins, or non-watched value assignments
on the watched pins, we do nothing. The update of
the watched pointer is called only when there is a
watched-value assignment on the watched pin.

For example, for a 4-input AND gate, we have 5 (= 4+1)
watch candidates and need 4 assignments on the output or
inputs to trigger the indirect implication. Therefore, the
number of watched pointers is 2 (= 5 – 4 + 1). As for a
MUX gate, the minimum number of assignments to
generate an indirect implication is 2. Therefore, we need 3
(= 4 – 2 + 1) watched pointers for it. On the other hand,
for the PB constraint “4x1 + 3x2 + 2x3 + x4 >= 3”, the
minimum subset that satisfies the step 3 in the above
algorithm is { x1, x2 } (checking from the variables with
largest coefficients). Therefore, we need (4 – 2 + 1) = 3
watch variables for this constraint.

It can be shown that the circuit BCP based on our
watching scheme is safe and efficient because we will not
miss any indirect implication or assignment conflict. In
addition, for the primitive gates, it functions the same way
as the CNF SAT. It can also seamlessly work on complex
gates and generic Boolean functions like the PB
constraints.

3. Engineering an efficient circuit SAT

In order to implement an efficient circuit-based SAT
solver, we adopt most of the advanced CNF SAT
algorithms, and then further improve it by the circuit
specific techniques. The outline of our SAT algorithm is
similar to most of the CNF-based SAT (e.g. [3]). We will
just highlight some of our key improvements in this
section.

3.1. Decision variable ordering

Decision variable ordering has exponential impact on
the SAT runtime. Most of the modern SAT solvers adopt

the quasi-static decision ordering approach [2][5] in which
a good initial decision ordering is further improved by the
learned information. We adopt the similar concept for our
circuit SAT — the initial decision ordering is determined
by the number of fanins and fanouts of the gates, and then
the order is further adjusted by the learned gate during the
search process. The experimental results show that the
above baseline algorithm can achieve similar performance
as the state-of-the-art CNF solvers.

Moreover, in order to testify the superiority of the
circuit-based SAT solver, we also implement a simple “J-
frontier” algorithm to prune out the irrelevant decision
variables. Slightly different from the definition in ATPG,
our J-frontiers are gates (“J-gates”) whose justifications
are necessary (not just sufficient) to satisfy the original
SAT problem. After the BCP of a decision, we update the
J-frontier by replacing the satisfied J-gates with their
fanins that can determine the gate’s output values. (Fig. 5)
Note that this update is very cheap because we can easily
figure out which fanins are the new J-gates by looking at
the watched and “antecedent” (described later) pointers.

3.2. Learning

Modern SAT solvers apply various learning techniques
to prune out the search space [3][14]. In CNF SAT,
learned information is stored as clauses such that the SAT
algorithms can be applied on both the original and the new
clauses. In circuit SAT, on the other hand, the learned
information is usually recorded as attached AND gates
with tied ‘0’ at the outputs. Therefore, the circuit SAT
algorithms can then be executed on the same data structure.

Note that circuit SAT also provides the flexibility in
storing and optimizing the learned information into
different formats. For example, multi-level logic or more
general constraints, etc. We will explore in this direction
in the future.

3.3. Implicit implication graph

During the learning process, it is essential to figure out
the causes of the implications. An intuitive way is to store
this information as an explicit implication graph. However,
this requires an extra amount of storage, and may lead to
great overhead in the backtracking process.

On the other hand, modern CNF SAT solvers utilize an
“antecedent” (also called “reason”) pointer to record the

implication source [2][6] — each implied “variable” has a
pointer to the “clause” that produces this implication. The
implication sources can then be obtained by excluding the
corresponding literal of this variable from the antecedent
clause.

Note that this idea may not be easily adopted by the
circuit SAT solvers because there is no differentiation
between “clause”, “variable”, and “literal” in the circuit
database. The implication sources may be a gate, or a list
of gates. How do we represent it with just an “antecedent”
pointer?

We found that this is feasible by recording a flag for the
implication type (DIRECT or INDIRECT) and with the
watched pointers. Our algorithm for retrieving the implicit
implication graph during the learning process is as follows:

Implicit implication graph construction:

1. If the implication type is “DIRECT”, then the
antecedent pointer is the single implication source.

2. If the implication type is “INDIRECT”, then the
implication sources are the watched candidates of
the antecedent gate that are (a) non-watched
variables, and (b) watched variables with watched
values, excluding the implied pin.

For example, suppose the PB constraint “4x1 + 3x2 +
2x3 + x4 >= 3” acquires the implications in the order: { x1
= 0, x2 = 0 }, and the watched pointers are { x2, x3, x4 }.
Then both of the indirect implications, “x3 = 1” and “x4 =
1”, have the antecedent pointer to this PB constraint, and
the implication sources are: { x1 = 0, x2 = 0 }.

With the proposed implicit implication graph approach,
we can perform the learning on circuit SAT very
efficiently and with very low overhead.

4. Experimental results

We conduct our experiments on the Equivalence
Checking (EC) problems for the benchmark circuits. The
EC problem is to verify the functional equivalence
between the original circuit and its synthesized/optimized
revision. Without the use of the circuit information, it
could be very difficult because functional representation
could be arbitrarily dissimilar on both circuits.

The benchmark we use include ISCAS 85/89 and
ITC99 circuits. We use the logic synthesis tool ABC [15]
to map the circuit into two different cell libraries, one
including complex gates, and the other with primitive
gates only. The CNF representation is based on the Tseitin
transformation. We select two state-of-the-art CNF SAT
solvers: zChaff [2] and miniSat [6], and one well-known
circuit-based SAT solver: NIMO [10], for comparison. All

1

1

x

x

x

x

x
x

0

x

1

1

1

1

x

0

0
0

0

x

: J-gate

(1) Before BCP (2) After BCP

Fig 5. J-frontier

the experiments are conducted on a 3.2GHz Linux
machine with 2GB memory.

Table 1. Equivalence checking (EC) experiments

without circuit info with circuit info
Time:
seconds QuteSAT zChaff miniSat QuteSAT

-J
NIMO
-u

NIMO

C2670 0.16 0.24 0.19 0.04 0.02 0.01

C3540 8.36 7.20 6.49 0.38 0.58 0.01

C5315 2.39 2.62 2.48 0.27 0.61 0.02

C7552 3.71 7.55 22.5 0.39 1.38 0.05

S13207 1.31 1.67 1.04 1.01 0.28 0.06

S35932 25.4 29.24 21.5 0.67 66.8 0.16

S38417 36.2 85.59 30.9 3.14 8.62 0.45

S38584 29.8 48.46 33.9 20.8 67.9 0.78

B12 0.69 1.43 0.69 0.2 0.24 0.03

B14 2529 >3600 793.4 16.7 3380 0.48

B15 116 168.8 83.0 15.9 158.5 2.37

B17 737 >3600 665.5 54.4 >3600 14.4

B20 >3600 >3600 3185 76.6 >3600 2.17

ave rank 1.69 2.69 1.39 N/R N/R N/R

We categorize our experiments into two sets: one

without the use of circuit information — CNF SAT and
our baseline solvers belong to this category. The other
utilizes the circuit information in different ways — our “-
J” option turns on the J-frontier technique, and the default
NIMO applies signal correlation learning. As for the “-u”
option of NIMO, it turns off the “explicit learning”.
However, based on our observation1, it is still somehow
taking the advantage of the circuit information.

The experimental results show that our baseline solver
can achieve the comparable performance with the fastest
CNF solvers. To the best of our knowledge, this is the first
time that a circuit-based SAT solver can be as efficient as
the CNF one while still retains the complete circuit
information. This is mainly owing to our generic watching
scheme for general gate types and the implicit implication
graph that facilitates the fast conflict-driven learning.

On the other hand, the J-frontier method is a heuristic
that should be effective not only for the EC problem but
also for the general SAT problems like property checking.
It concentrates on the most relevant search space, and with
the advanced technique like “decision restart”, our

1 We conducted EC on structurally identical circuits and found that
NIMO (even with –u) made 0 decision (of course no conflict) and
finished in 0 time. This is impossible for all the other SAT solvers that do
not use circuit (hashing) information.

experimental results show that our circuit SAT can
constantly beat the CNF SAT solvers for 15+ times.

The other circuit-based SAT solver “NIMO” utilizes
the signal correlation learning which is especially useful
for the EC problem. By learning the internal equivalent
pairs of signals (like most of the commercial EC tools do),
it is no surprise that their solver can achieve the best result.

5. Conclusion and future work

With the robust circuit-based SAT solver, we can
conduct more advanced research on the general SAT
problems. The possible directions include: (1) utilization
of more structural information such as signal correlation,
(2) circuit-based proof core extraction, (3) unbounded
circuit-SAT model checker and (4) combining circuit SAT
with PB or ILP solvers.

6. References
[1] H. Zhang, “SATO: An efficient propositional prover”, Intl.

Conf. on Automated Deduction 1997, pp. 272-275.
[2] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S.

Malik, “Chaff: engineering an efficient SAT solver”, DAC
2001, pp. 530 – 535.

[3] J.P. Marques-Silva and K.A. Sakallah, “GRASP-A search
algorithm for propositional satisfiability”, T. Comp., vol. 48,
pp. 506 – 521, 1999.

[4] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik,
“Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver”, ICCAD 2001, pp. 279 – 285.

[5] E. Goldberg , Y. Novikov, “BerkMin: A Fast and Robust
Sat-Solver”, DATE 2002, pp. 142 – 149.

[6] N. Een and N. Sörensson, “MiniSat: A SAT solver with
conflict clause minimization”, SAT ’05.

[7] M. Prasad, A. Biere, A. Gupta, “A Survey of Recent
Advances in SAT-Based Formal Verification”, Software
Tools for Technology Transfer 2005. pp. 156-173.

[8] A. Kühlmann, M. Ganai, V. Paruthi, “Circuit-based
Boolean Reasoning”, DAC 2001, pp. 232 - 237.

[9] M.K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik,
“Combining strengths of circuit-based and CNF-based
algorithms for a high performance SAT-solver”, DAC 2002,
pp. 747-750.

[10] http://cadlab.ece.ucsb.edu/downloads/nimo.html,
“Sequential Circuit SAT Solver Homepage”.

[11] C. Thiffault, F. Bacchus, and T. Walsh, “Solving Non-
clausal Formulas with DPLL search”, SAT 2004.

[12] N. Een and N. Sörensson, “Translating pseudo-Boolean
constraints into SAT”. JSAT 2006, pp. 1-26.

[13] D. Chai and A. Kuehlmann, “A fast pseudo-boolean
constraint solver”, TCAD, 24(3):305–317, 2005.

[14] S. Shuo and M. Hsiao, “Success-driven learning in ATPG
for preimage computation”, Design & Test of Computers
2004, pp. 504- 512.

[15] http://www.eecs.berkeley.edu/~alanmi/abc, “ABC: A
system for sequential synthesis and verification”

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

