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Abstract 

We propose a robust circuit-based Boolean 
Satisfiability (SAT) solver, QuteSAT, that can be applied 
to complex circuit netlist structure. Several novel 
techniques are proposed in this paper, including: (1) a 
generic watching scheme on general gate types for 
efficient Boolean Constraint Propagation (BCP), (2) an 
implicit implication graph representation for efficient 
learning, and (3) careful engineering on the most 
advanced SAT algorithms for the circuit-based data 
structure. Our experimental results show that our baseline 
solver, without taking the advantage of the circuit 
information, can achieve the same performance as the 
fastest Conjunctive Normal Form (CNF)-based solvers. 
We also demonstrate that by applying a simple circuit-
oriented decision ordering technique (J-frontier), our 
solver can constantly outperform the CNF ones for more 
than 15+ times. With the great flexibility on the circuit-
based data structure, our solver can serve as a solid 
foundation for the general SAT research in the future. 

1. Introduction 

With the dramatic improvements in the last decade, 
Boolean Satisfiability (SAT) solvers are casting a great 
impact on the Electronic Design Automation (EDA) 
industry. Many traditional EDA problems can now be 
revisited by the powerful SAT solvers. 

Most of the advances in the SAT techniques come from 
the solvers that are designed on the Conjunctive Normal 
Form (CNF) representation, namely the Product of Sum 
(PoS) format. The most cited ones include: (1) two literal 
watching (with lazy update) scheme for efficient Boolean 
Constraint Propagation (BCP) [1][2], (2) conflict-driven 
learning and non-chronological backtracking [3][4], (3) 
quasi-static decision variable ordering and restart [2][5], 
and (4) careful engineering for a compact and efficient 
SAT solver [2][6]. 

Nevertheless, many of the problems in VLSI CAD are 
circuit structure-oriented in nature. In other words, if we 
can utilize the circuit structure information, we will be 
able to devise a better SAT search strategy. However, 
when we model these problems in CNF, the structure 
information is lost. In general, attempts to include circuit 
structure information into CNF-based SAT solvers have 
been unsuccessful due to the significant overhead [7]. 

Therefore, realizing the SAT algorithms on the circuit data 
structure directly, called circuit-based SAT, seems to be a 
reasonable solution. 

Kuehlmann et al. implemented a Boolean reasoning 
engine on the AND/INVERTER graph (AIG) [8]. Their 
results showed that with simplified circuit structure, the 
circuit-based SAT can be as efficient as the CNF SAT. 
However, some circuit information may be lost during the 
transformation to the AIG. Ganai et al. proposed a hybrid 
SAT solver in which the original problem was represented 
in the circuit format, and the learned information was 
recorded as CNF clauses [9]. By applying two-literal-
watching scheme on the longer clauses (i.e. the learned 
clauses), and table lookup method for the gates with 
smaller amount of fanins, their hybrid BCP can achieve 
the best results of all. Another circuit-based SAT solver by 
Lu et al. [10] tried to accrue more learning information 
from the internal signal correlations. Their results show 
that their circuit SAT can consistently outperform the CNF 
ones. However, for the circuits that do not have as many 
internal signal correlations, their solver may not perform 
as well. On the other hand, the non-clausal SAT solver in 
[11] generalized the two literal watch technique to the 
propositional formulas represented in DAG. However, 
they selected the watched points only among the gate 
inputs and thus may incur unnecessary complication on 
the checking of the circuit BCP. 

In this paper, we propose a robust circuit-based SAT 
solver, called QuteSAT, in which its baseline solver (i.e. 
without using circuit information) can perform as well as 
the state-of-the-art CNF solvers (e.g. zChaff [2] and 
miniSat [6]), and with just a little help from the circuit 
information, it can greatly outperform the CNF ones. The 
key technologies of our solver include: (1) a generic 
watching scheme that can seamlessly work on all kinds of 
circuit gates (simple or complex gates), (2) an implicit 
implication graph that enables efficient conflict-driven 
learning and (3) careful engineering work to implement 
most of the advanced SAT algorithm on the circuit data 
structure. For comparison purpose, we also implement a 
simple “J-frontier” algorithm to demonstrate that the 
circuit information can greatly help in the SAT problem. 

The outline of the paper is as follows: in Section 2, we 
describe several novel techniques for the efficient circuit-
based BCP. Other algorithms that contribute to the success 
of our solver are presented in Section 3. In Section 4 the 
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experimental results demonstrate the robustness of our 
solver. Section 5 concludes the paper. 

 
2. Efficient circuit-based BCP  

Boolean Constraint Propagation (BCP) is the most time 
consuming process in the SAT algorithm. It derives the 
logic implications in the deduction procedure. In a modern 
SAT solver, BCP may perform millions of implications 
per second, which is about 80% of the total SAT time [9]. 
Therefore, an efficient BCP is a critical factor for a 
powerful SAT solver. 

With the “2-literal-watching” scheme, the BCP step 
implemented in CNF SAT usually yields a higher 
efficiency. Circuit SAT, on the other hand, usually adopts 
the “table-lookup” method for logic implications. This 
method is more efficient for circuits with limited gate 
types and with small number of fanins. However, for 
complex circuit structure, the “table-lookup” method may 
not be as efficient. 

We propose several novel techniques to enhance the 
BCP process for the circuit SAT. Our main contributions 
include: (1) direct implication graph, (2) generic watching 
algorithm, and (3) implicit implication recording. Our 
methods enable the circuit-based SAT solver to have the 
similar BCP performance as the CNF SAT, and at the 
same time to maintain the great flexibility for the circuit 
SAT to work on the circuit netlist structure. 

We will first review the similarities and differences 
between CNF and circuit-based BCPs. 

2.1. CNF vs. circuit-based BCP 

The BCP process in the CNF SAT is very simple. To 
satisfy a CNF formula, all the clauses must be asserted. In 
other words, each clause must have at least one literal 
assigned to ‘1’. This monotonic satisfiability check makes 
the BCP process in CNF SAT very simple and efficient.  

Most of the modern CNF SAT solvers utilize the “2-
literal-watching” scheme for BCP, which is essentially a 
“lazy evaluation” technique — any assignment on the non-
watched literal will not be processed; only the clauses on 
the watching list of the implied literal will be updated. 
This can greatly reduce the number of useless updates in 
the BCP process. 

The circuit-based SAT, on the other hand, usually 
builds on a netlist of different gate types, and for each gate 
type, it has even several different implications (Fig. 1). 
Therefore, it may not be easy to implement the “watching” 
scheme for the circuit SAT. However, after carefully 
examining the similarities and differences of the CNF and 
circuit-based BCPs, we find that the watching scheme can 
be generalized for complex circuit netlists. This is 

achieved by several of our novel techniques and will be 
described in the following subsections. 

 
 
2.2. Direct implication graph 

The idea of circuit-based watching scheme may 
become easier to understand if we separate the direct from 
the indirect implications. 

An implication is called a “direct implication” if it can 
be derived from a single source. On the other hand, it is 
called an “indirect implication” if it takes multiple sources 
to conclude this implication. For the AND gate in Fig. 1 as 
an example, the implications “¬xi  ¬f” and  “f  xi” are 
direct implications, while the implications “x1 ∧ ... ∧ xn  
f” and “x1 ∧ ... ∧ xn-1 ∧ ¬f  ¬xn” are indirect. 

The causality of the direct implications in a circuit 
depends only statically on the netlist structure, not 
dynamically on the other implications during the decision 
process. In other words, the relationship of the direct 
implications can be derived during the circuit 
preprocessing step, and it will remain unchanged in the 
entire search process. In addition, there will never be a 
conflict arisen from the direct implications. Therefore, we 
can record the direct implication relations as a graph in the 
circuit parsing step, and then in the BCP process, 
whenever a gate gets an implication, we can immediately 
obtain its direct implications by tracing the direct 
implication graph. 

 
Please note that the direct implications actually 

correspond to the 2-literal clauses in the CNF, and many 
CNF SAT solvers also have special treatments for these 
clauses. For example, miniSat does not store the 2-literal 
clauses. Instead, it records them directly in the “watched 
list”.  This is similar to our “direct implication graph” idea. 

2.3. Watching scheme for primitive gates 

The primitive gates here refer to AND, OR, NAND, 
and NOR. Buffers and inverters are collapsed as attributes 
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Fig 1. Implications of an AND gate 



to the gate inputs. We will use an n-input AND gate to 
illustrate the watching scheme for the primitive gates. The 
rules for other primitive gates can be deduced similarly. 

Consider the CNF of an n-input AND gate. It consists 
of n “2-literal clauses” and one “(n+1)-literal clause”: 

AND: (x1 + ¬f)...(xn + ¬f)( ¬x1 + ... + ¬xn + f) 
Since the 2-literal clauses have been recorded in the direct 
implication graph, we only need to consider the single 
clause for the indirect implication. It is worthwhile to note 
that the two indirect implications for the AND gate, 
namely “x1 ∧ ... ∧ xn  f” and “x1 ∧ ... ∧ xn-1 ∧ ¬f  ¬xn” 
in Fig. 1, actually corresponds to the same CNF clause 
(¬x1 + ... + ¬xn + f). Therefore, we can use an unified 
watching scheme to handle these two indirect implications. 

The idea can then become straightforward — just adds 
the gate output ‘f’ and inputs ‘x1’... ‘xn’ to the watched 
candidate list and select two of them as the watched 
pointers. The watched value for the output ‘f’, as 
suggested by the CNF clause, should be ‘0’, while the 
watched values for the gate inputs ‘x1’... ‘xn’ should be ‘1’. 
However, since there is no separated data structure for 
positive and negative literals in circuit SAT, we will 
record the “watching gates” as two lists (“watching-0” and 
“watching-1”) in the gate data structure. 

 

2.4. Watching scheme for complex gate 

The complex gates here refer to arbitrary Boolean 
function that can be represented by Boolean variables. We 
will illustrate the watching scheme for the complex gates 
by three examples: XOR, multiplexer (MUX), and 
Pseudo-Boolean constraint (PB) gates. The generic 
algorithm will be presented in the next subsection. 

2.4.1. XOR gate An n-input XOR gate corresponds to 2n 
(n+1)-literal clauses in CNF, each of which requires 2 
watched pointers in the CNF SAT. The indirect 
implication of an XOR gate occurs only when there are n 
assignments on the gate output and inputs, be them ‘0’ or 
‘1’, and when this happens, all the clauses will be satisfied 
at the same time. Therefore, these clauses can actually be 
watched together by two pointers on the gate. 

We introduce the “watching-known” concept to our 
watching scheme. In other words, if a gate x is in the 
“watching-known list” of another gate y, when the value 

of gate y becomes known (i.e. 0 or 1), it will notify gate x 
to update its watched pointers and potentially generate a 
new indirect implication. 

 
 

2.4.2. MUX gate The implications and corresponding 
CNF clauses of a MUX gate are as shown below.  

MUX function: f = ¬s ∧ a + s ∧ b 
Implication CNF clauses 

¬s  (f = a) (s + f + ¬a)(s + ¬f + a) 
s  (f = b) (¬s + f + ¬b)(¬s + ¬f + b) 

(a = b)  (f = a) (¬f + a + b)(f + ¬a + ¬b) 

There are six 3-literal clauses for a MUX gate, with 
each variable appearing twice in the positive and negative 
literals. Therefore, an intuition for the MUX gate watching 
scheme is to pick 2 watched variables from { f, s, a, b } for 
“watched known”. However, this may miss some indirect 
implications. For example, if we are watching f and s (both 
have unknown values), while a and b have been assigned 
to the same known value, then we will miss the indirect 
implication that f should have the same value as a. 

Therefore, we need to have a 3-watching scheme for a 
MUX gate. Although this may sound inefficient (i.e. 3 
watched variables out of 4), yet compared to the six CNF 
clauses and 12 watched literals, our circuit-based BCP for 
watching MUX will perform better. 

2.4.3. Pseudo Boolean gate A pseudo Boolean (PB) 
constraint is said to be in the normal form as: 

∑ =
≥

n

i ii bxa
0
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ii xZba &  

where ix&  denotes a literal xi or xi’, and the terms ii xa &  are 

usually sorted by the coefficients in the descending order. 
PB constraints are mostly used in describing a linear 

system and representing the 0-1 integer programming 
problem. To perform the BCP on the PB constraints, for 
example, miniSat+ converted the PB inequalities to CNF 
clauses so that the PB satisfiability can be checked by the 
CNF SAT solver [12]. However, the transformation from 
PB to CNF constraints usually results in significant 
overhead and may lose much implicability. On the other 
hand, Chai and Kuehlmann in [13] applied the “watching 
scheme” for PB constraint propagation. However, due to 
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the overhead in updating the watched pointers and the 
number of watches, they decided to discard the watching 
scheme and use “counters” to implement the PB constraint 
propagation instead. 

In order to be consistent in the BCP algorithm with 
other part of the circuit, we choose to stay with the 
“watching scheme” for the PB constraints. Different from 
[13], we do not change the number of watches during the 
decision process. The price we pay is that we may need to 
watch more variables by considering the worst case. For 
example, in the PB constraint “4x1 + 3x2 + 2x3 + x4 >= 3”, 
we need 3 watched pointers for watching value ‘0’ (rules 
will be described in the next subsection), while in [13] 
their method will pick 2 or 3 watches, depending on the 
values assigned. If we are watching { x1, x2, x3 }, and x4 = 
‘0’,  then the new assignment x3 = ‘0’ will trigger the 
watch update. However, we cannot find another non-0 
variable to update the watched pointer, and we cannot 
deduce any indirect implication yet either. Nevertheless, 
we find that our method is a good balance between the 
“counters” method, where all the variables are watched, 
and the dynamic number of watches approach, where the 
overhead in maintaining watches is big. 

2.5. Generic watching algorithm  

Considering the watching scheme on a gate, the main 
difference between circuit and CNF SAT is that in CNF 
we can have different watched literals for different clauses, 
while in circuit SAT these clauses need to be watched on 
the same gate by choosing pointers from the gate itself and 
its inputs. In other words, we need to design the circuit-
based watching algorithm that can take care of all the 
watched literals for all the clauses at the same time. 

Let’s first review the principle of the CNF-based 
watching scheme — whenever there are value assignments 
on the non-watched literals, or ‘1’ assignments on the 
watched literals, we need not to do anything. We can delay 
the evaluation of the clause until one of the watched 
literals is assigned ‘0’, and then we will try to find a non-0 
non-watched literal to move the watched pointer. If we fail 
to update the watched pointer, we will either conclude an 
indirect implication, or find a conflict assignment. 

Following the same spirit, we design our generic 
circuit-based watching algorithm as follows: 

Generic watching algorithm for circuit SAT: 

1. Let the output and input pins of the gate be the 
watched candidates. Let ‘n’ be the size of the watch 
candidate set. 

2. Determine the ‘watched value” for each pin: if 
assigning a value ‘v’ on this pin may eventually 
lead to an indirect implication on other pin(s), then 
‘v’ is the watched value of this pin. For example, 

assigning a ‘1’ to the input of an AND, or ‘0’ to a 
variable of a PB constraint may eventually lead to 
an indirect implication. Therefore, ‘1’ and ‘0’ are 
their watched values, respectively. On the other 
hand, for an XOR or MUX gate, both ‘0’ and ‘1’ 
may lead to indirect implications. Therefore, their 
watched value is “known”. 

3. Find a minimum subset of watched candidates so 
that (a) assigning watched values on all the 
variables of the subset will produce an indirect 
implication, but (b) removing any of these 
assignments will void the implication. Let ‘k’ be 
the size of this subset. 

4. We will need (n – k + 1) watched pointers. 
5. Whenever there are assignments on the non-

watched pins, or non-watched value assignments 
on the watched pins, we do nothing. The update of 
the watched pointer is called only when there is a 
watched-value assignment on the watched pin. 

For example, for a 4-input AND gate, we have 5 (= 4+1) 
watch candidates and need 4 assignments on the output or 
inputs to trigger the indirect implication. Therefore, the 
number of watched pointers is 2 (= 5 – 4 + 1). As for a 
MUX gate, the minimum number of assignments to 
generate an indirect implication is 2. Therefore, we need 3 
(= 4 – 2 + 1) watched pointers for it. On the other hand, 
for the PB constraint “4x1 + 3x2 + 2x3 + x4 >= 3”, the 
minimum subset that satisfies the step 3 in the above 
algorithm is { x1, x2 } (checking from the variables with 
largest coefficients). Therefore, we need (4 – 2 + 1) = 3 
watch variables for this constraint. 

It can be shown that the circuit BCP based on our 
watching scheme is safe and efficient because we will not 
miss any indirect implication or assignment conflict. In 
addition, for the primitive gates, it functions the same way 
as the CNF SAT. It can also seamlessly work on complex 
gates and generic Boolean functions like the PB 
constraints. 

 
3. Engineering an efficient circuit SAT 

In order to implement an efficient circuit-based SAT 
solver, we adopt most of the advanced CNF SAT 
algorithms, and then further improve it by the circuit 
specific techniques. The outline of our SAT algorithm is 
similar to most of the CNF-based SAT (e.g. [3]). We will 
just highlight some of our key improvements in this 
section. 

3.1. Decision variable ordering 

Decision variable ordering has exponential impact on 
the SAT runtime. Most of the modern SAT solvers adopt 



the quasi-static decision ordering approach [2][5] in which 
a good initial decision ordering is further improved by the 
learned information. We adopt the similar concept for our 
circuit SAT — the initial decision ordering is determined 
by the number of fanins and fanouts of the gates, and then 
the order is further adjusted by the learned gate during the 
search process. The experimental results show that the 
above baseline algorithm can achieve similar performance 
as the state-of-the-art CNF solvers. 

Moreover, in order to testify the superiority of the 
circuit-based SAT solver, we also implement a simple “J-
frontier” algorithm to prune out the irrelevant decision 
variables. Slightly different from the definition in ATPG, 
our J-frontiers are gates (“J-gates”) whose justifications 
are necessary (not just sufficient) to satisfy the original 
SAT problem. After the BCP of a decision, we update the 
J-frontier by replacing the satisfied J-gates with their 
fanins that can determine the gate’s output values. (Fig. 5) 
Note that this update is very cheap because we can easily 
figure out which fanins are the new J-gates by looking at 
the watched and “antecedent” (described later) pointers. 

 
 

3.2. Learning 

Modern SAT solvers apply various learning techniques 
to prune out the search space [3][14]. In CNF SAT, 
learned information is stored as clauses such that the SAT 
algorithms can be applied on both the original and the new 
clauses. In circuit SAT, on the other hand, the learned 
information is usually recorded as attached AND gates 
with tied ‘0’ at the outputs. Therefore, the circuit SAT 
algorithms can then be executed on the same data structure. 

Note that circuit SAT also provides the flexibility in 
storing and optimizing the learned information into 
different formats. For example, multi-level logic or more 
general constraints, etc. We will explore in this direction 
in the future. 

 
3.3. Implicit implication graph 

During the learning process, it is essential to figure out 
the causes of the implications. An intuitive way is to store 
this information as an explicit implication graph. However, 
this requires an extra amount of storage, and may lead to 
great overhead in the backtracking process. 

On the other hand, modern CNF SAT solvers utilize an 
“antecedent” (also called “reason”) pointer to record the 

implication source [2][6] — each implied “variable” has a 
pointer to the “clause” that produces this implication. The 
implication sources can then be obtained by excluding the 
corresponding literal of this variable from the antecedent 
clause. 

Note that this idea may not be easily adopted by the 
circuit SAT solvers because there is no differentiation 
between “clause”, “variable”, and “literal” in the circuit 
database. The implication sources may be a gate, or a list 
of gates. How do we represent it with just an “antecedent” 
pointer? 

We found that this is feasible by recording a flag for the 
implication type (DIRECT or INDIRECT) and with the 
watched pointers. Our algorithm for retrieving the implicit 
implication graph during the learning process is as follows: 

Implicit implication graph construction: 

1. If the implication type is “DIRECT”, then the 
antecedent pointer is the single implication source. 

2. If the implication type is “INDIRECT”, then the 
implication sources are the watched candidates of 
the antecedent gate that are (a) non-watched 
variables, and (b) watched variables with watched 
values, excluding the implied pin. 

For example, suppose the PB constraint “4x1 + 3x2 + 
2x3 + x4 >= 3” acquires the implications in the order: { x1 
= 0, x2 = 0 }, and the watched pointers are { x2, x3, x4 }. 
Then both of the indirect implications, “x3 = 1” and “x4 = 
1”, have the antecedent pointer to this PB constraint, and 
the implication sources are: { x1 = 0, x2 = 0 }. 

With the proposed implicit implication graph approach, 
we can perform the learning on circuit SAT very 
efficiently and with very low overhead. 

 
4. Experimental results 

We conduct our experiments on the Equivalence 
Checking (EC) problems for the benchmark circuits. The 
EC problem is to verify the functional equivalence 
between the original circuit and its synthesized/optimized 
revision. Without the use of the circuit information, it 
could be very difficult because functional representation 
could be arbitrarily dissimilar on both circuits. 

The benchmark we use include ISCAS 85/89 and 
ITC99 circuits. We use the logic synthesis tool ABC [15] 
to map the circuit into two different cell libraries, one 
including complex gates, and the other with primitive 
gates only. The CNF representation is based on the Tseitin 
transformation. We select two state-of-the-art CNF SAT 
solvers: zChaff [2] and miniSat [6], and one well-known 
circuit-based SAT solver: NIMO [10], for comparison. All 
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the experiments are conducted on a 3.2GHz Linux 
machine with 2GB memory. 

 

Table 1. Equivalence checking (EC) experiments 

without circuit info with circuit info  
Time: 
seconds QuteSAT zChaff miniSat QuteSAT 

-J 
NIMO 
-u 

NIMO 

C2670 0.16 0.24 0.19 0.04 0.02 0.01 

C3540 8.36 7.20 6.49 0.38 0.58 0.01 

C5315 2.39 2.62 2.48 0.27 0.61 0.02 

C7552 3.71 7.55 22.5 0.39 1.38 0.05 

S13207 1.31 1.67 1.04 1.01 0.28 0.06 

S35932 25.4 29.24 21.5 0.67 66.8 0.16 

S38417 36.2 85.59 30.9 3.14 8.62 0.45 

S38584 29.8 48.46 33.9 20.8 67.9 0.78 

B12 0.69 1.43 0.69 0.2 0.24 0.03 

B14 2529 >3600 793.4 16.7 3380 0.48 

B15 116 168.8 83.0 15.9 158.5 2.37 

B17 737 >3600 665.5 54.4 >3600 14.4 

B20 >3600 >3600 3185 76.6 >3600 2.17 

ave rank 1.69 2.69 1.39 N/R N/R N/R 

 
We categorize our experiments into two sets: one 

without the use of circuit information — CNF SAT and 
our baseline solvers belong to this category. The other 
utilizes the circuit information in different ways — our “-
J” option turns on the J-frontier technique, and the default 
NIMO applies signal correlation learning. As for the “-u” 
option of NIMO, it turns off the “explicit learning”. 
However, based on our observation1, it is still somehow 
taking the advantage of the circuit information. 

The experimental results show that our baseline solver 
can achieve the comparable performance with the fastest 
CNF solvers. To the best of our knowledge, this is the first 
time that a circuit-based SAT solver can be as efficient as 
the CNF one while still retains the complete circuit 
information. This is mainly owing to our generic watching 
scheme for general gate types and the implicit implication 
graph that facilitates the fast conflict-driven learning.  

On the other hand, the J-frontier method is a heuristic 
that should be effective not only for the EC problem but 
also for the general SAT problems like property checking. 
It concentrates on the most relevant search space, and with 
the advanced technique like “decision restart”, our 

                                                 
1  We conducted EC on structurally identical circuits and found that 
NIMO (even with –u) made 0 decision (of course no conflict) and 
finished in 0 time. This is impossible for all the other SAT solvers that do 
not use circuit (hashing) information. 

experimental results show that our circuit SAT can 
constantly beat the CNF SAT solvers for 15+ times. 

The other circuit-based SAT solver “NIMO” utilizes 
the signal correlation learning which is especially useful 
for the EC problem. By learning the internal equivalent 
pairs of signals (like most of the commercial EC tools do), 
it is no surprise that their solver can achieve the best result. 

 
5. Conclusion and future work 

With the robust circuit-based SAT solver, we can 
conduct more advanced research on the general SAT 
problems. The possible directions include: (1) utilization 
of more structural information such as signal correlation, 
(2) circuit-based proof core extraction, (3) unbounded 
circuit-SAT model checker and (4) combining circuit SAT 
with PB or ILP solvers. 
 
6. References 
[1] H. Zhang, “SATO: An efficient propositional prover”, Intl. 

Conf. on Automated Deduction 1997, pp. 272-275. 
[2] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. 

Malik, “Chaff: engineering an efficient SAT solver”, DAC 
2001, pp. 530 – 535. 

[3] J.P. Marques-Silva and K.A. Sakallah, “GRASP-A search 
algorithm for propositional satisfiability”, T. Comp., vol. 48, 
pp. 506 – 521, 1999. 

[4] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, 
“Efficient Conflict Driven Learning in a Boolean 
Satisfiability Solver”, ICCAD 2001, pp. 279 – 285. 

[5] E. Goldberg , Y. Novikov, “BerkMin: A Fast and Robust 
Sat-Solver”, DATE 2002, pp. 142 – 149. 

[6] N. Een and N. Sörensson, “MiniSat: A SAT solver with 
conflict clause minimization”, SAT ’05. 

[7] M. Prasad, A. Biere, A. Gupta, “A Survey of Recent 
Advances in SAT-Based Formal Verification”, Software 
Tools for Technology Transfer 2005. pp. 156-173. 

[8] A. Kühlmann, M. Ganai, V. Paruthi, “Circuit-based 
Boolean Reasoning”, DAC 2001, pp. 232 - 237. 

[9] M.K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik, 
“Combining strengths of circuit-based and CNF-based 
algorithms for a high performance SAT-solver”, DAC 2002, 
pp. 747-750. 

[10] http://cadlab.ece.ucsb.edu/downloads/nimo.html, 
“Sequential Circuit SAT Solver Homepage”.  

[11] C. Thiffault, F. Bacchus, and T. Walsh, “Solving Non-
clausal Formulas with DPLL search”, SAT 2004. 

[12] N. Een and N. Sörensson, “Translating pseudo-Boolean 
constraints into SAT”. JSAT 2006, pp. 1-26. 

[13] D. Chai and A. Kuehlmann, “A fast pseudo-boolean 
constraint solver”, TCAD, 24(3):305–317, 2005. 

[14] S. Shuo and M. Hsiao, “Success-driven learning in ATPG 
for preimage computation”, Design & Test of Computers 
2004, pp. 504- 512. 

[15] http://www.eecs.berkeley.edu/~alanmi/abc, “ABC: A 
system for sequential synthesis and verification” 


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




