
A New Hybrid Solution to Boost SAT Solver Performance ∗

Lei Fang and Michael S. Hsiao
{leifang, mhsiao}@vt.edu

Department of Electrical and Computer Engineering, Virginia Tech
Blacksburg,VA, 24061

Abstract

Due to the widespread demands for efficient SAT solvers in
Electronic Design Automation applications, methods to boost
the performance of the SAT solver are highly desired. We pro-
pose a Hybrid Solution to boost SAT solver performance in this
paper, via an integration of local and DPLL-based search ap-
proaches. A local search is used to identify a subset of clauses
to be passed to a DPLL SAT solver through an incremental in-
terface. In addition, the solution obtained by the DPLL solver
on the subset of clauses is fed back to the local search solver to
jump over any locally optimal points. The proposed solution is
highly portable to the existing SAT solvers. For satisfiable in-
stances, up to an order of magnitude speedup can be obtained
via the proposed hybrid solver.

1 Introduction
Boolean Satisfiability (SAT) has a wide-spread applica-

tion domain, including computer aided design, artificial in-
telligence, planning, etc. Various Electronic Design Automa-
tion (EDA) applications such as equivalence checking, model
checking, test pattern generation, placement and route, etc., can
be formulated as SAT problems. Much research has been ded-
icated on developing highly scalable and efficient SAT solvers.
Although a number of practical instances can be solved within
reasonable computational resources by the state-of-the-art SAT
solvers, due to the NP-Complete nature of SAT [2], many in-
stances still remain extremely difficult.

A SAT problem takes as input a propositional formula that
is often represented as the conjunctive normal form (CNF), in
which a formula is a conjunction of clauses, each of which
is a disjunction of literals. A literal is a variable in its pos-
itive or negative polarity. There are two broad, search-based
approaches to modern search-based SAT solvers. One is a
systematic search-tree based and the other is stochastic local-
search based. The classical DPLL [3] algorithm and its deriva-
tives like Chaff [11], Minisat [4] are all search-tree based. In
a search-tree-based algorithm, a variable is selected and as-
signed at each step. This assignment will be applied onto the
formula, through which new assignments of variables may be
implied. If the current assignment to the variables causes a
conflict, the solver will backtrack and make a different deci-
sion. In the process, conflict analysis can be performed to yield
additional knowledge to aid future searches. These steps are re-

∗supported in part by NSF Grants 0305881 and 0417340

peated until either a solution is found or no solution is proved.
On the other hand, local-search solvers such as GSAT [14] and
WALKSAT [13] generate a complete assignment for all the
variables at the beginning. Because every variable has been
assigned, each clause is either satisfied or unsatisfied (all liter-
als in the clause evaluated to false). A number of steps of local
greedy search are followed to try to minimize the number of
unsatisfied clauses. For example, in WALKSAT, at each step
a clause is selected from the current set of unsatisfied clauses
and the assignment to one of its literals is flipped. After a num-
ber of iterations, the set of the unsatisfied clauses is hoped to
become empty and thus a solution can be found. Nevertheless,
it should be noted that it may be possible for the search to be
trapped in a locally optimal point where at least one unsatisfied
clause still remains. To avoid being trapped indefinitely at lo-
cal optimal points, a CUTOFF threshold is used to denote the
maximum number of steps allowed. If the CUTOFF threshold
is reached without obtaining a solution, a re-start in the solver
may be invoked.

Generally, search-tree based algorithms are complete while
local search algorithms are incomplete (note that Fang had pub-
lished a complete local search algorithm [5]). Although local
search algorithms can perform faster on a number of applica-
tions, it is hindered by its incompleteness.

Because both DPLL search and local search have their own
strengths, there has been various attempts to combine them [8]
[10]. In [10], a local search is used to help the DPLL-based
solver select the next decision variable. Because the decision
order of the DPLL SAT solver is directly modified by the local
search part, the underlying decision order heuristics may po-
tentially be degraded. This approach may not gain much per-
formance as shown in [6]. In [8], WALKSAT is used to exploit
the variable equivalences and dependencies at certain nodes of
the DPLL tree.

In this paper we propose a new framework to integrate lo-
cal search and DPLL search. This integration does not change
the decision order in the underlying DPLL SAT solver, and it
offers completeness in the search. A local search is used to
identify a subset of clauses to be passed to a DPLL SAT solver
through an incremental solver interface [1]. In addition, the so-
lution obtained by the DPLL solver on the subset of clauses is
fed back to the local search solver to jump over any local opti-
mal points. In order to take advantage from both the local and
DPLL search strategies, several features are proposed to make
the integration seamlessly. For satisfiable instances, up to an
order of magnitude speedup can be obtained via the proposed

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



hybrid solver.
The remainder of the paper is organized as follows: The next

section describes the preliminaries of DPLL and WALKSAT al-
gorithm. The details behind our hybrid incremental SAT solver
are presented at Section 3. Section 4 discusses the synergies
between the DPLL and WALKSAT via some case studies. Sec-
tion 5 presents the empirical evaluation of our proposed SAT
solver. Our work is concluded in Section 6.

2 Preliminaries
We first provide a quick overview of the DPLL and the

WALKSAT algorithms in this section. The DPLL algorithm
was first published by Davis, Logeman and Loveland, and it is
the basis for most modern SAT solvers. The pseudo-code of
DPLL is listed in Listing 1 [11].

Listing 1. DPLL Algorithm
def DPLL
begin

while (true)
if (!decide()) /*if no unassigned vars*/

return SAT
while (!bcp())

if (!ResolveConflict())
return UNSAT

end
def ResolveConflict()
begin

d = most recent decision not tried bothways
if (d == NULL) // no such d was found

return false;
flip the value of d;
mark d as tried both ways;
undo any invalidated implications;
return true;

end

The decide() function in the DPLL algorithm incorporates
the decision order heuristic. The most time-consuming part is
the bcp() function, where the formula is evaluated under the
current variable assignments to check if any other variable as-
signments may be implied, or that a conflict has been encoun-
tered. If the formula is satisfiable, an assignment, A, to the
variables will be generated.

WALKSAT [13] was proposed in 1994 as an improvement
of the previous GSAT [14]. First, several definitions will be
explained before going deeper in the WALKSAT algorithm,
shown in Listing 2. A clause is said to be broken if all the
literals in this clause are evaluated to be false under the current
variable assignment. The broken-count of a variable is the num-
ber of clauses that will be broken if the value of this variable is
flipped. The broken-count of a variable is used to evaluate the
gain for flipping the given variable. When a broken clause be-
comes non-broken by flipping the value of a variable, usually it
is referred to as this clause is healed by this flipping. For exam-
ple, given the formula (ā+ b)(b+ c)(a+ c̄) and the assignment
{a = 1, b = 0, c = 0}, clauses (ā + b) and (b + c) are broken
by this assignment. If the value of variable a is flipped from 1
to 0, clause (ā + b) will be healed by this flip and only clause
(b + c) is left as broken. Now the broken-counts of variable
{a, b, c} are {1, 0, 1}.

Listing 2. WALKSAT Algorithm

def WALKSAT
begin

A=randomly generate truth assignment
for i=1 to CUTOFF

if (A satisfies the formula)
return A /*SAT*/

C=choose a broken clause
if (rand() %100 < p) /*with prob. p*/

v= var with smallest broken-count in C
else /*with probability 1-p*/

v= randomly select a variable in C
Flip(v) /*reverse value of v*/
UpdateAssignment(A) /*A is updated with the

value of v reversed*/
return FAIL /* can’t determine */

end

In the WALKSAT algorithm, a variable v is chosen from a
broken clause C; the value of v is flipped in an attempt to re-
verse the conflict currently caused in C. Normally v is selected
among several variable candidates by comparing the potential
gains of the eligible candidates. When the value of a variable v
is flipped, some broken clauses may be healed while some pre-
viously satisfied clauses may be broken. In the basic WALK-
SAT, a variable with the smallest broken-count will be the cho-
sen to be flipped. This can be implemented in an efficient way
like two-literal watching scheme in Chaff [7]. WALKSAT will
try a preset number of steps (CUTOFF) before it claims that it
has failed to find a solution.

3 Our Approach
In order to combine the powers of both local search and

DPLL-based search, the previous approaches mainly tried to
embed the local search result into a DPLL-based SAT solver to
guide the decision order. In such approaches, the local search is
invoked at each DPLL decision step to supply the information
for the next decision. On the contrary, in our approach, the lo-
cal search portion is used to identify a subset of clauses, which
are passed to a DPLL-based incremental SAT solver. Further-
more, the solution obtained by the incremental DPLL solver on
the subset of clauses is fed back to the local search solver to
jump over the locally optimal points encountered in the pre-
vious iteration to continue the search. We call our solution
HBISAT (HyBrid Incremental SAT Solver). It should be noted
that HBISAT does not necessarily rely on a specific SAT solver.
HBISAT actually is a universal solution to boost existing SAT
solver performance.

We use the WALKSAT v43 algorithm as the base local
search part. In the rest of the paper, the local search solver
will be referred to as WALKSAT. The complete HBISAT al-
gorithm is shown in Listing 3. In each iteration, WALKSAT
first performs a local search in an attempt to find a satisfying
assignment for the entire Boolean formula. If it is successful,
then HBISAT will verify the solution and return it. If the local
search cannot find a solution within a given CUTOFF value, it
will collect the subset of broken (unsatisfied) clauses (Bi) un-
der the current assignment and add them to the clause database
of the DPLL solver. Note that the initial clause database, C0,
of the DPLL solver is empty, and Ci−1 (for i > 1) denotes the
subset of clauses that has already been added into the DPLL
solver before the current ith iteration. If the DPLL solver can
prove Bi

⋃
Ci−1 is UNSAT in any iteration i, then the original

formula is guaranteed to be UNSAT; this allows for early termi-
nation of the SAT search. On the other hand, if an assignment



is obtained by the DPLL solver for Ci, the variable assignment
will be passed back to WALKSAT as the starting assignment
for the next iteration. We can see that the set of clauses added
into the clause database of the DPLL solver grows gradually
with the increasing number of iterations. This is the underly-
ing essence of a typical incremental SAT solver, and it is also
key to our hybrid incremental framework. To avoid duplication
of broken clauses, in our implementation, each clause carries
a flag to indicate whether it has been added or not. Another
advantage of employing an incremental SAT solver is that con-
flict clauses obtained can be carried from one iteration to the
next [15] [17].

Listing 3. HBISAT Algorithm
def HBISAT_Solver(F/*input formula*/)
begin

C=∅ /*Set of broken clauses*/
A=∅ /*Assignment*/
i=0 /*iteration counter*/
CUTOFF=MAX_LOCAL_SEARCH_STEP
while (true)

if (A==∅)
RandomInitalWalkSAT()

else
InitialWalkSAT(A)

Status=WALKSAT_Solver(CUTOFF)
if (Status==SAT)

return SAT
else if (Status==UNKNOWN)

Result=CallDPLL(i)
if (Result==SAT)

A=GetAssignmentFromDPLL()
else /*UNSAT or out of memory*/

return Result
i++ /*count interation*/

end
def CallDPLL(i)
begin

B=GetBrokenclause()
/*guarantee one more clause will be added*/
B = B

⋃
RandomPickOneNewClause()

C = B
⋃

C
AddClauseToDPLLSolver(C)
Status=DPLL_Solver()
return Status

end

Theorem 1. HBISAT is complete

Proof. In the HBISAT Algorithm shown in Listing 3, when-
ever Bi from iteration i is empty, then a satisfying solution has
been found for the formula. Otherwise, with a non-empty Bi at
iteration i, we know that Bi contains at least one clause from
the original formula that has not been included in the clause
database of the DPLL solver. With Bi added into the clause
database of the DPLL solver, after a finite number of iterations
the DPLL solver will eventually contain the entire original for-
mula. Because the DPLL solver is complete, we can conclude
that HBISAT is also complete.

Figure 1 illustrates how HBISAT works on SAT formulas.
Figure 1(a) shows the scenario that the formula is unsatisfiable
and Figure 1(b) is for the scenario when the formula is satisfi-
able. In both parts (a) and (b) of the figure, the outer-most circle
represents all the clauses of the formula to be solved. The in-
ner, shaded circles represent the sets of broken clauses. The
annotations I,II and III on the inner circles denote that they are

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

(a) UNSAT formula (b) SAT formula

I

II

III

I

II

III

Figure 1. HBISAT on SAT & UNSAT formulas

three different broken clause sets generated from three different
iterations.

If the original formula is unsatisfiable, there exists an un-
satisfiable core (assuming there is only one UNSAT core) [18].
This core is represented by the region enclosed by the thicker
line in part (a) of the figure. We can observe that each broken
clause set covers portions of the unsatisfiable core. In each it-
eration of HBISAT, a portion of the unsatisfiable core will be
identified. With the increasing number of iterations, the en-
tire unsatisfiable core will be extracted from the formula which
leads to an early termination.

On the other hand, if the formula is satisfiable, for hard
satisfiable instances usually there will be one or more sets
of clauses called hard-to-simultaneously-satisfy sets. Part (b)
of the figure shows such a scenario where the region en-
closed by the dashed line represents a hard-to-simultaneously-
satisfy set. With the underlying assumption that WALKSAT
can find the solution for those easy clauses outside the hard-
to-simultaneously-satisfy region, the hard-to-simultaneously-
satisfy sets will be identified by HBISAT gradually in a sim-
ilar way as to the unsatisfiable core. It is important to find and
solve these hard-to-simultaneously-satisfy sets earlier because
they are the major obstacles in solving the hard satisfiable for-
mula.

Theorem 2. If a formula, f , is unsatisfiable, every broken
clause set returned by WALKSAT contains at least one clause
that belongs to an unsatisfiable core.

Proof. We prove this by contradiction. Given f is unsatisfiable,
there always exists at least one unsatisfiable core UC ⊆ F (F :
set of clauses of f ). Let a broken clause set, B, returned
by WALKSAT not contain any clause belongs to UC, i.e.
B

⋂
UC = ∅. This means that WALKSAT must have obtained

an assignment that satisfies all clauses outside of B, where B
is the only broken clause set returned by WALKSAT. How-
ever, because B

⋂
UC = ∅, the clauses outside B contains

the complete UC, indicating that UC is satisfiable: a contra-
diction.

From Theorem 2 we know that at each iteration, at least
some portion of an unsatisfiable core will to be added to
the clause database of the DPLL solver, if the original for-
mula is unsatisfiable. Stated differently, HBISAT can filter the
hard spots like the unsatisfiable core or hard-to-simultaneously-
satisfy sets of the formula. Due to the nature of an incremental
SAT solver, these hard spots will be solved incrementally and
the conflict clauses learned through them have tremendous po-
tential to help finally solving the formula.



HBISAT actually is a flexible SAT framework. Instead of
the specific local search and DPLL solvers we used in this pa-
per, other engines can easily be plugged in. The interaction be-
tween our local-search solver and DPLL-search solver is sim-
ply through a uniform calling interface, which is supported by
most modern SAT solvers. The requirements for the DPLL
based solver is that it should support a incremental interface
and be able to return its search results. For the local search
solver, it must be able to supply the set of broken clauses. We
believe the flexibility of HBISAT offers a significant value, be-
cause it holds potential for future explorations.

3.1 Clause padding
In a given iteration, the number of broken clauses may be

small, which implies that a large number of iterations may be
needed before all clauses are added to the clause database for
the DPLL solver. Therefore, in addition to the broken clauses
from WALKSAT, some other related clauses may also be in-
serted into the DPLL solver. This feature is called clause
padding. By adding more clauses to the DPLL solver at each
iteration, there are two potential benefits. First, it may find the
unsatisfiability in the DPLL solver earlier since adding more
clauses further constrains the problem, and second, it can speed
up the incremental SAT solver process. The padded clauses
are chosen mainly based on their correlations to the broken
clauses. In HBISAT two categories of clauses are padded in
clause padding procedure: 1) Based on the assumption that the
flip frequency of a variable usually indicates its importance of
solving the formula, the clauses which contains the most fre-
quently flipped variable are padded into the clause database of
the DPLL solver. 2) We put all the literals of broken clauses
into a array R. Then any clause with two or more of its liter-
als having opposite polarities with the corresponding literals in
R will be padded into the clause database. The intuition here
is that we want to pad those clauses that are highly correlated
to the broken clause set, with the hope that they will help to
constrain the SAT solver.

4 Study of Synergies

50 100 150 200 250 300 350 400 450 500 550

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Iteration Index

 %
 C

la
us

es

 #broken clauses from WALKSAT
 #Clauses added into DPLL Solver

Figure 2. Early termination of an UNSAT in-
stance

In this section, we will explore the interactions between
WALKSAT and DPLL solver through some examples. For Fig-
ures 2, 3, and 4, the X-axis denotes the iteration index and the

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 Iteration Index

 %
 C

la
us

es

 #broken clauses from WALKSAT
 #Clauses added into DPLL Solver

Figure 3. Solution found at an early stage by
WALKSAT

Y -axis denotes the percentage of clauses. In Figure 2, a early
termination case is shown. The top curve with stars represents
the number of clauses that are added to the DPLL solver at
each iteration step. We call it the “ADD curve”. The bottom
curve shows the number of broken clauses returned by WALK-
SAT, which is called the “BRK curve”. It can be observed that
when 90% of the clauses has been added, the DPLL solver can
conclude that the instance is UNSAT. Although it does not nec-
essarily mean the current clauses in the DPLL solver form a
minimal UNSAT core, the early termination provides the po-
tential to reduce the computational effort.

Figure 3 presents an example that WALKSAT becomes
more effective when guided by the solution returned from the
DPLL solver. One can observe that the BRK curve generally
drops with the increasing number of iterations. This is be-
cause the partial assignments supplied from the DPLL solver
gives a better guide to the WALKSAT. Another interesting phe-
nomenon is the ADD curve grows much faster at certain points.
This is due to the clause padding mechanism. It is possible that
a small group of broken clauses returned by the WALKSAT can
induce a larger group of clauses to be padded, where the padded
clauses help to increase the chance of conflicts in the DPLL
solver. After 14 iterations, a solution is found by the WALK-
SAT for this SAT instance. In contrast, the pure WALKSAT
cannot obtain the solution for this instance after 200 iterations
with the same CUTOFF value.

10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Iteration Index

 %
 C

la
us

es

 #Added original clauses in DPLL Solver
 Total number of clauses in DPLL Solver

Figure 4. Example of gradually learning
If the early termination is not achievable and a solution can-

not be found by WALKSAT, the entire instance will eventu-
ally be added into the DPLL solver. Figure 4 illustrates how



the conflict clauses help to finally solve the instance. The dis-
crepancy between the two curves in the figure represents the
number of conflict learned clauses. We can see that more con-
flict learned clauses emerge when more clauses are added to
the DPLL solver. This is easy to understand because a more
strongly correlated clause set has a higher probability for learn-
ing. After 90 iterations, more than 10% of the clauses in the
DPLL solver are conflict clauses. At this point, when we add
all the clauses from the original instance to the DPLL solver it
takes 4.48 seconds to prove UNSAT with a total running time
of only 6.26 seconds. On the other hand, solving the original
instance directly by the DPLL solver requires 15.07 seconds.
The gradually learned clauses can significantly boost the DPLL
solver’s performance.

5 Experimental Results

The proposed HBISAT was implemented in C++ under the
Linux operating system, and experiments were conducted on a
Pentium-4 3.2G PC with 1GB RAM. To demonstrate the porta-
bility of our algorithm, HBISAT was built on top of two pop-
ular SAT solvers, ZChaff version 2004.11.15 Simplified and
Minisat 1.14. They are called HBIz and HBIm in the experi-
ments. Because we are interested in improving the SAT per-
formance of EDA applications, all of the benchmarks chosen
are hard publicly available EDA instances. Three categories
of benchmarks were used in our experiments. The first cate-
gory is the IBM Formal Verification Benchmarks Library [12].
Several groups of instances were chosen from the library and
each group contained six instances. Note that each group cor-
responds to a bounded model checking (BMC) application,
where instances in a group represent different lengths of time-
frame expansion. The second category comes from a param-
eterized benchmark suite of Hard-Pipelined-Machine verifica-
tion problem [9], which includes twelve instances. The third
category contains fifteen instances which are generated in the
formal verification of buggy variants of an out-of-order super-
scalar processor from CMU [16]. In order to evaluate the per-
formance of HBISAT, results for both DPLL solvers (ZChaff
and Minisat) and their corresponding HBISATs were reported.
We believe similar results can be obtained if other different SAT
solvers was used in place of ZChaff or Minisat, as the frame-
work for HBISAT requires only that the underlying DPLL-
based SAT solver includes an incremental solver interface. Fi-
nally, because completeness is needed to handle UNSAT in-
stances, pure local-search based SAT solvers were not com-
pared. In fact, for most of the satisfiable instances in the exper-
iments, the pure WALKSAT could not complete.

We first report the results for Category I benchmarks, shown
in Table 1. The upper portion represents the comparison be-
tween ZChaff and HBIz. The bottom portion compares Minisat
and HBIm. A total of four groups (24 instances) is listed in the
first column. Next, the number of variables and clauses for each
instance are reported, followed by the satisfiability of each in-
stance. The forth and fifth columns correspond to the run times
of the DPLL solvers and its HBISAT. Whenever HBISAT out-
performed the DPLL solver, the run times are highlighted in
bold. Finally, “OUT” indicates that the SAT solver aborts after
a preset limit is met, which is 3000 seconds in our experiments.

It can be observed that among all the twenty-four Category-
I instances, ZChaff aborted on four of them while HBIz could

Table 1. Category I Benchmarks
Instance #V/#C SAT? ZChaff(s) HBIz(s)
01.k40 29249/124460 SAT 158.893 102.58
01.k50 36339/154810 SAT OUT 556.91
01.k60 43429/185160 SAT OUT 917.46
04.k40 46225/198298 SAT 124.62 92.54
04.k50 58595/251378 SAT OUT 414.46
04.k60 70965/304458 SAT OUT 1648
06.k40 49126/213666 SAT 118.21 276.83
06.k50 61776/268886 SAT OUT 1731.71
06.k60 74426/324106 SAT OUT 1989.62
07.k40 13151/35904 UNSAT 5.89 20.59
07.k50 15221/40774 UNSAT 5.89 19.19
07.k60 17291/45644 UNSAT 69.83 45.02

Instance #V/#C SAT? Minisat(s) HBIm(s)
01.k70 50519/215510 SAT 59.05 53.97
01.k80 57609/245860 SAT 187.61 95.03
01.k90 64699/276210 SAT 331.447 108.39
04.k70 83335/357538 SAT 215.83 243.04
04.k80 95705/410618 SAT 420.2 323.2
04.k90 108075/463698 SAT 698.65 367.93
06.k70 87076/379326 SAT 38.55 109.09
06.k80 99726/434546 SAT 111.46 110.98
06.k90 112376/489766 SAT 161.99 151.48
07.k70 19361/50514 UNSAT 5.65 14.17
07.k80 21431/55384 UNSAT 773.6 29.39
07.k90 23501/60254 UNSAT 6.393 12.5

Table 2. Category II UNSAT Benchmarks
Instance #V/#C ZChaff HBIz Minisat HBIm

c7b 26058/77128 238.32 153.01 57.14 60.48
c8n 53697/159595 487.57 622.67 142.768 163.6
c9b 36757/109045 608.63 380.11 251.69 234.5
f9n 185149/552412 1823.24 1925.78 OUT OUT
g9n 54631/161950 361.08 312.51 61.49 49.88
g9b 59110/175387 195.27 381.55 42.24 52.53

g9idw 125885/371998 365.02 390.27 69.17 93.9
g9nidw 170918/506584 2705.64 2216.42 836.45 357.16

c10 17121/50803 10.05 13.65 13.22 25.72
c10b 43517/129265 617.53 587.73 541.66 509.12
c10bi 147116/437224 OUT OUT OUT OUT
c10bid 291912/828039 OUT OUT OUT OUT
Total 7155.08 6609.42 2015.828 1546.89

solve every instance within 2000 seconds. HBIz outperformed
ZChaff in 9 of the 12 instances. For the other three instances,
they were all easy instances. For such easier instances, the
overhead of HBISAT became a burden. On the other hand,
with larger BMC instances (due to deeper circuit unrolling),
the computational costs of ZChaff were increased dramatically
while the run times of HBIz increased relatively linearly. Simi-
larly HBIm outperformed Minisat in 8 of 12 instances. For the
UNSAT instance 07.k80, HBIm only took 29.39 second while
Minisat’s running time is 20 times that.

Next, experiment II was set up to evaluate the unsatisfiable
instances, with the results reported in Table 2. The first four
columns of Table 2 are similar as in Table 1. The run time of
Minisat and HBIm were reported in the last two columns. The
performance of HBISAT was comparable to the DPLL solver
for most instances. ZChaff and HBIz aborted on exactly two in-
stances and the average run times for the other instances were
nearly equal. Meanwhile, Minisat and HBIm aborted on three
instances. Generally HBIm gives better performance on harder
instances thus leads to a total 500 seconds run time reduction.
The reason that the performance gain on unsatisfied instances
sometimes was not as significant can be explained by the na-
ture of incremental SAT solvers. For hard UNSAT instances, it
may not be easy to obtain a small UNSAT core (or a superset



Table 3. Category III Benchmarks
Instances #V/#C SAT? ZChaff(s) HBIz(s) Minisat(s) HBIm(s)

fvp-sat3.0/pipe-64-4-bug01.cnf 35853/1021170 SAT 37.9 8.27 1.58 4.1
fvp-sat3.0/pipe-64-4-bug02.cnf 35853/1021171 SAT OUT 12.81 OUT OUT
fvp-sat3.0/pipe-64-4-bug03.cnf 35947/992674 SAT 4.33 14.27 0.93 3.88
fvp-sat3.0/pipe-64-4-bug04.cnf 35854/1012315 SAT 35.88 11.16 4.75 34.97
fvp-sat3.0/pipe-64-4-bug05.cnf 35853/1022271 SAT 823.53 40.56 OUT OUT
fvp-sat3.0/pipe-64-4-bug06.cnf 35853/1022271 SAT 253.97 6.67 OUT 9.21
fvp-sat3.0/pipe-64-4-bug07.cnf 35853/1022271 SAT 916.74 10.19 OUT 110.77
fvp-sat3.0/pipe-64-4-bug08.cnf 35622/1003074 SAT 36.03 6.44 OUT 6.35
fvp-sat3.0/pipe-64-4-bug09.cnf 35726/1011764 SAT 0.4 5.34 164.34 6.05
fvp-sat3.0/pipe-64-4-bug10.cnf 35839/1012135 SAT 0.57 3.62 528 4.02
fvp-sat3.0/pipe-64-4-bug11.cnf 35853/1012271 SAT 1152 127.37 2.63 6.9

Total 3261.35 246.7 702.23 186.25
fvp-unsat2.0/5pipe.cnf 9471/195452 UNSAT 22.77 31.28 86.68 203.82
fvp-unsat2.0/6pipe.cnf 15800/394739 UNSAT 169.9 126.97 OUT OUT

fvp-unsat2.0/6pipe-6-ooo.cnf 17064/545612 UNSAT 292.6 301.51 230.49 235.6
fvp-unsat2.0/7pipe.cnf 23910/751118 UNSAT 386.87 408.06 OUT OUT

of the UNSAT core) from the original formula. Subsequently,
the incremental clause databases may all be satisfiable, and we
may need to wait until nearly all the original clauses have been
added before concluding that the formula is UNSAT. Further-
more, during the incremental steps, the subset of clauses cur-
rently in the database of the DPLL solver may constitute a hard
satisfiable instance, and this hard satisfiable instance may con-
sume significant computational resources. On the other hand,
the non-incremental DPLL solver searches directly on the en-
tire formula, where such hard intermediate steps are implicitly
avoided.

Finally, the results for Category III benchmarks are shown
in Table 3. For all the SAT instances, HBISAT exhibits a very
significant performance gain, where HBISAT achieved nearly
an order of magnitude reduction in run times. For instance, in
benchmark bug07, where Minisat failed in 3000 seconds and
ZChaff took 916.74 seconds, HBIm cost roughly 110 seconds
while HBIz needed only 10.19 seconds. The power of combin-
ing local search and DPLL search is evident via both experi-
ments I, II and III. In terms of UNSAT instances in experiments
II and III, HBISAT performances comparably with its DPLL
counterpart with acceptable overhead on some instances. The
experimental results between HBIz and HBIm are consistently
matched, which demonstrate the flexibility and effectiveness of
our proposed hybrid framework.

6 Conclusions
In this paper, a new Hybrid SAT solver framework

(HBISAT) has been presented that combines the power of lo-
cal search and modern DPLL-based search with conflict-driven
learning. In HBISAT, the local search instructs a DPLL SAT
solver through an incremental solver interface. The synergies
from both the local search and DPLL search are investigated.
In effect, our guided local search identifies incremental sets of
clauses that are hard, and these clauses are subsequently added
to the clause database of the DPLL-based solver. Experimen-
tal results demonstrated that up to an order of magnitude per-
formance improvement has been achieved for the hard satisfi-
able instances. Future research directions include WALKSAT
guided preprocessing and alternative padding mechanisms.

References

[1] H. Bennaceur, I. Gouachi, and G. Plateau. An incremental
branch-and-bound method for the satisfiability problem. IN-

FORMS J. on Computing, 10(3):301–308, 1998.
[2] S. Cook. The complexity of theorem proving procedures. In

Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158, 1971.

[3] M. Davis, G. Logemann, and D. W. Loveland. Machine program
for theorem proving. In Communications of the ACM, volume 5,
pages 394–397, 1962.

[4] N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages
502–518, 2003.

[5] R. W. Fang H. Complete local search for propositional satisfia-
bility. In Proc. of 19th National Conference on Artificial Intelli-
gence, pages 161–166, 2004.

[6] B. Ferris and J. Froehlich. Walksat as an informed heuristic
to dpll in sat solving. ”http://www.cs.washington.edu/homes/
bdferris/papers/WalkSAT-DPLL.pdf”.

[7] A. S. Fukunaga. Efficient implementations of sat local search. In
SAT, 2004.

[8] D. Habet, C. M. Li, L. Devendeville, and M. Vasquez. A hybrid
approach for sat. In CP ’02: Proceedings of the 8th International
Conference on Principles and Practice of Constraint Program-
ming, pages 172–184, London, UK, 2002. Springer-Verlag.

[9] P. Manolios and S. K. Srinivasan. A parameterized bench-
mark suite of hard pipelined-machine-verification problems. In
CHARME, pages 363–366, 2005.

[10] B. Mazure, L. Sais, and E. Gregoire. Boosting complete tech-
niques thanks to local search methods. Annals of Mathematics
and Artificial Intelligence, 22(3-4):319–331, 1998.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an Efficient SAT Solver. In Proceedings
of the 38th Design Automation Conference (DAC’01), 2001.

[12] I. Research. http://www.haifa.ibm.com/projects/ verifica-
tion/rb homepage/bmcbenchmarks.html.

[13] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for
improving local search. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI’94), pages 337–343,
Seattle, 1994.

[14] B. Selman, H. J. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In P. Rosenbloom and
P. Szolovits, editors, Proceedings of the Tenth National Confer-
ence on Artificial Intelligence, pages 440–446, Menlo Park, Cal-
ifornia, 1992. AAAI Press.

[15] O. Shtrichman. Pruning techniques for the SAT-based bounded
model checking problem. Lecture Notes in Computer Science,
2144:58–70, 2001.

[16] M. Velev. http://www.ece.cmu.edu/∼mvelev/sat benchmarks.html.
[17] J. Whittemore, J. Kim, and K. A. Sakallah. Satire: A new incre-

mental satisfiability engine. In DAC, pages 542–545, 2001.
[18] L. Zhang and S. Malik. Extracting small unsatisfiable cores from

unsatisfiable boolean formulas. In SAT, May 2003.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




