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Abstract 
An important aspect of Design for Yield for 

embedded SRAM is identifying the expected worst case 
behavior in order to guarantee that sufficient design 
margin is present. Previously, this has involved 
multiple simulation corners and extreme test 
conditions. It is shown that statistical concerns and 
device variability now require a different approach, 
based on work in Extreme Value Theory. This method is 
used to develop a lower-bound for variability-related 
yield in memories. 

1 Background and motivation 
Device variability is becoming important in 

embedded memory design, and a fundamental question 
is how much margin is enough to ensure high quality 
and robust operation without over-constraining 
performance. For example, it is very unlikely that the 
“worst” bit cell is associated with the “worst” sense 
amplifier, making an absolute “worst-case” margin 
method overly conservative, but this assertion needs to 
be formalized and tested. Setting the margin places a 
lower bound on yield – devices whose parameters are 
no worse than the margin case will operate correctly. 
Devices on the other side are not checked, so the bound 
is not tight. 

1.1 Design Margin and Embedded Memory 

Embedded memory product designs are specified 
to meet operating standards across a range of defined 
variations that are derived from the expected operating 
variations and manufacturing variations. Common 
variables include process, voltage, temperature, 
threshold voltage (Vt),   and offsets between matched 
sensitive circuits. The design space in which circuit 
operation is guaranteed is called the operating range. In 
order to be confident that a manufactured circuit will 
function properly across its operating range (where 
conditions will not be as ideal as they are in 
simulation), it is necessary to stress variations beyond 
the operating range. The difference between the design 
space defined by the stress variations and the operating 
variations is called “margin”.  

When multiple copies of an object Z are present in 
a memory, it is important for margin purposes to cover 
the worst-case behavior of any instance of Z within the 
memory. For example, sense amplifier timing must 
accommodate the slowest bit cell (i.e. the cell with the 
lowest read current). The memory in turn must 

accommodate the worst case combination of sense amp 
and bit cell variation, in the context of its own variation. 
The general issue is shown graphically in Figure 1. 

For design attributes that vary statistically, the 
worst case value is itself covered by a distribution. 
Experimental evidence shows that read current has 
roughly a Gaussian (normal) distribution (see Figure 2, 
and also [6]). The mean of this distribution depends on 
global process parameters (inter-die variation, whether 
the chip is “fast” or “slow” relative to others), and on 
chip-level variation (intra-die variation; e.g. across-chip 
line-width variation). Margining is concerned with 
random (e.g. dopant) variation about this mean. Within 
each manufactured instance, individual bit cells can be 
treated as statistically independent of one another; that 
is, correlation between nearby cells, even adjacent cells, 
is minimal. Every manufactured memory instance will 
have a bit cell with lowest read current. After thousands 
of die have been produced, a distribution of “weakest 
cells” can be gathered. This distribution will have a 
mean, the “expected worst-case cell”, and a variance. 

Figure 1 System of variation within a memory 

Figure 2 Read current variation, 65nm bit cell 

This paper shows that setting effective margins for 
memories depends on carefully analyzing this 
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distribution of worst-case values. It will be shown that 
the distribution is not Gaussian, even if the underlying 
data are Gaussian, and that effective margin setting 
requires separate treatment of bit cells, sense amplifiers, 
and self-timing paths. 

The remainder of the paper is organized as 
follows: Section 2 covers margin and yield. Section 3 
introduces extreme value theory and shows its 
applicability to the margin problem. Section 4 develops 
a statistical margining technique for memories in a 
bottom-up fashion, and section 5 gives areas for further 
research and conclusions. 

2 Margin and Yield 

Increased design margin generally translates into 
improved product yield, but the relationship is complex. 
Yield is composed of three components: random 
(defect-related) yield, systematic (design-dependent) 
yield, and parametric (process-related) yield. Electrical 
design margin translates into a lower bound on 
systematic and parametric yield, but does not affect 
defect-related yield. Most layout margins (adjustments 
for manufacturability) translate into improved random 
yield, although some are systematic and some 
parametric.  

Examples of previous work in the area include 
circuit improvements for statistical robustness (e.g. [1]), 
replacing margins through Monte Carlo simulation [2], 
and improved margin sampling methods [3]. In this 
work, we retain the concept of margins, and emphasize 
a statistically valid approach to bounding yield loss 
with a margin-based design method. 

2.1 Margin statistics 

Because of the challenges in precisely quantifying 
yield, it is more useful to think of improved design 
margins in terms of the probability of variation beyond 
the margin region. If variation of a design parameter Z 
can be estimated assuming a normal probability 
distribution, and the margin limit for Z can be estimated 
as S standard deviations from its mean value, then the 
probability of a random instance of a design falling 
beyond that margin can be calculated using the standard 
normal cumulative distribution function. 

If Z is a single-sided attribute of a circuit 
replicated N times, the probability that no instance of Z 
is beyond a given margin limit S can be estimated using 
binomial probability (assuming that each instance is 
independent, making locality of the margined effect an 
important parameter to consider): 

     NSSNP ))(1(),( Φ−=                   (2) 

An attribute Z margined at 3 sigma is expected to 
be outside its margin region in 0.135% of the 
manufactured instances. If there is 1 copy of Z per 
memory, the probability that it will be within margin is 
1-0.00135 or 99.865%. If there are 2 copies of Z, the 
probability drops to (0.99865)2 or 99.73%. And so it 
goes: If there are 10 copies of Z per memory, the 
probability that all 10 will be within margin is 
(0.99865)10 or 98.7%. With 100 copies this drops to 
87.3% and with 1000 copies to 25.9%, and so on. 

Intuitively it is clear that increasing the number of 
samples decreases the probability that all of the samples 
lie within a certain margin range. The inverse 
cumulative distribution function, Φ-1(Prob), or quantile 
function, is useful for formalizing worst case 
calculations. There is no elementary primitive for this 
function, but a variety of numerical approximations for 
it exist (e.g. NORMSINV in Microsoft Excel). For 
example, Φ-1(0.99)=2.33, so an attribute margined at 
2.33 sigma has a 99% probability of being within its 
margin range. We can use equation (3) to calculate 
R(N,p), which is the margin value needed for N copies 
of an attribute in order to ensure that the probability of 
all of the N being within the margin value is p. 

For example, setting N=1024 and p=0.75 gives 
R(N,p) of 3.45. Thus, an attribute that occurs 1024 
times in a memory and which has been margined to 
3.45 sigma has 75% probability that all 1024 copies 
within a given manufactured memory are within the 
margin range (and thus a 25% probability that at least 
one of the copies is outside the margin range). For 
p=0.999 (a more reasonable margin value than 75%), 
R(N,p) is 4.76. 

2.2 Application to memory margining 

Consider a subsystem M0 within a memory 
consisting of a single sense amp and N bit cells. 
Suppose each bit cell has Gaussian-distributed mean 
read current µ and standard deviation σ. Each 
manufactured instance of M0 will include a bit cell that 
is weakest for that subsystem, in this case the bit cell 
with lowest read current. By (3), calculating R(N,0.5) 
gives the median value for this worst case value. For 
N=1024, this median value is 3.2. This means that half 
of manufactured instances of M0 will have a worst case 
cell at least 3.2 standard deviations below the mean, 
while half will have their worst case cell less than 3.2 
standard deviations from the mean. If a full memory 
contains 128 copies of M0 (we will call this system 
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M1), we would expect 64 in each category  for a typical 
instance of M1 (although clearly the actual values 
would vary for any given example of M1). 

Figure 3 Graph of R(N,p) for various p 

Figure 3 shows various values for R(N,p) plotted 
together. For example, the 50th percentile curve moves 
from 2.5 sigma with 128 cells to 3.40 sigma at 2048 
cells. Reading vertically gives the value for a fixed N. 
For 512 cells, the 0.1th percentile is at 2.21 sigma, and 
the 99.9th percentile is at 4.62 sigma. Three 
observations are clear from the curves: First, increasing 
N results in higher values for the worst case 
distributions – consistent with the expectation that more 
cells should lead to a worst case value farther from the 
mean. Second, the distribution for a given N is skewed 
to the right – the 99th percentile is much further from 
the 50th percentile than the 1st, meaning that extremely 
bad worst case values are more likely than values close 
to the population mean µ. Finally, the distribution 
becomes tighter with larger N. 

It turns out that the distributions implied by Figure 
3 are known to statisticians, and in fact have their own 
branch of study devoted to them. The next section gives 
details. 

3 Extreme Value Theory 
There are many areas where it is desirable to 

understand the expected behavior of a worst-case event. 
In flood control, for example, it is useful to be able to 
predict a “100 year flood”, or the worst expected flood 
in 100 years. Other weather-related areas are monthly 
rainfall, temperature extremes, wind, and so on. In the 
insurance industry, it is useful to estimate worst-case 
payouts in the event of a disaster, and in finance it is 
helpful to predict worst-case random fluctuations in 
stock price. In each case, limited data is used to predict 
worst-case events. 

There is a significant body of work in extreme 
value theory that can be drawn upon for memory 
margins. Some of the early work was conducted by 
Gumbel [4], who showed that it was possible to 
characterize the expected behavior of the maximum or 
minimum value of a sample from a continuous, 
invertible distribution. For Gaussian data, the resulting 
Gumbel distribution of the worst-case value of a sample 
is given by  

where u is the mode of the distribution and s is a scale 

factor. The mean of the distribution is 

(γ is Euler’s constant), and its standard deviation is 

Below are some sample curves. It can be seen that 
varying u moves the peak of the distribution, and that s 
controls the width of the distribution. 

Figure 4 Sample Gumbel Distributions 

4 Using Extreme Value Theory for 
Memory Margins 
We consider this problem in three steps: First, we 

consider a key subsystem in a memory: the individual 
bit cells associated with a given sense amp. Next we 
generalize these results to the entire memory. Finally, 
we extend these results to multiple instances on a chip. 

4.1 Subsystem results: Bit cells connected to a 
given sense amp 

Figure 3 shows the distribution of worst-case bit 
cell read current values. Note that the distribution 
shown in the figure is very similar to the Gumbel 
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curves in Figure 4 – right skewed, variable width. In 
fact, the work of Gumbel [4] shows that this must be so, 
given the assumption that the underlying read current 
data is Gaussian. This is demonstrated by Figure 5, 
which shows the worst case value (measured in 
standard deviations from the mean) taken from 2048 
randomly generated instances of 4096 bit cells. 

Figure 5 2048 instances of the worst case bit 
cell among 4096 random trials 

Given this, we may now attempt to identify the 
correct Gumbel parameters for a given memory setup, 
using the procedure below, applied to a system M0 
consisting of a single sense amp and N bit cells, where 
each bit cell has mean read current µ and standard 
deviation σ. Note that from equation (4) the cumulative 
distribution function of the Gumbel distribution is given 
by 

1. Begin with an estimate for a Gumbel distribution 
that matches the appropriate distribution shown in 
Figure 2 – the value for u should be slightly less 
than the 50th percentile point, and a good starting 
point for s is 0.25 (see figure 4). 

2. Given an estimated u and s, a range of CDFG(y) 
values can be calculated. We use numerical 
integration with a tight distribution around the 
mode value u and a more relaxed distribution 
elsewhere. For example, with u=3.22 and s=0.25, 
the CDFG calculated for y=3.40 is 0.710. 

3. Equation (3) allows us to calculate the cumulative 
distribution function R for a given probability p 
and sample number N. Thus, for each of the CDFG 
values arrived at in step 2, it is possible to calculate 
R. Continuing the previous example, 
R(1024,0.710)=3.402. 

4. Repeat steps 2-3, adjusting u and s as necessary in 
order to minimize the least squares deviation of y 
and R(N, CDFG(y)) across the selected set y. 

Using this approach results in the following 
Gumbel values for N of interest in margining the 
combination of sense amp and bit cells: 

N 128 256 512 1024 2048 4096
mode 2.5 2.7 2.95 3.22 3.4 3.57
scale 0.28 0.28 0.27 0.25 0.23 0.21

Table 1 Gumbel parameters for sample size 

These values produce the Gumbel distributions 
shown in the figure below.  

Figure 6 Gumbel distributions for sample sizes 

Recall that these distributions show the probability 
distribution for the worst-case bit cell for sample sizes 
ranging from 128 to 2048. From these curves, it is quite 
clear that margining the bit cell and sense amp 
subsystem (M0) to 3 sigma of bit cell current variation 
is unacceptable for any of the memory configurations. 
Five sigma, on the other hand, appears to cover 
essentially all of the distributions. This covers M0, but 
now needs to be extended to a full memory. 

4.2 Generalizing to a full memory 

 Suppose that a 512Kbit memory (system M1) 
consists of 512 copies of a subsystem (M0) of one sense 
amp and 1024 bit cells. How should this be margined? 
Intuitively, the bit cells should have more influence 
than the sense amps, since there are more of them, but 
how can this be quantified? 

There are various possible approaches, but we will 
consider two representative methods: isolated and 
merged. 

Method 1 (isolated): 

In this approach, choose a high value for the CDF 
of the subsystem M0 (e.g. set up the sense amp to 
tolerate the worst case bit cell with probability 
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99.99%) and treat this as independent from system 
M1. 

Method 2 (merged): 

Attempt to merge effects of the subsystem M0 into 
the larger M1 by numerically combining the 
distributions; i.e. finding the worst case 
combination of bit cell and sense amp within the 
system, being aware that the worst case bit cell 
within the entire memory is unlikely to be 
associated with the worst case sense amp. 

Each method has some associated issues. For 
method 1, there will be many “outside of margin” cases 
(e.g. a bit cell just outside the 99.99% threshold with a 
better than average sense amp) where it cannot be 
proven that the system will pass, but where in all 
likelihood it will. Thus the margin method will be 
unduly pessimistic. On the other hand, combining the 
distributions also forces a combined margin technique 
(e.g. a sense amp offset to compensate for bit cell 
variation) which requires that the relative contributions 
of both effects to be calculated prior to setting up the 
margin check. We have chosen to use Method 2 for this 
work, for reasons that will become clear shortly. 

Before continuing, it is worthwhile to point out 
some general issues with extreme value theory: 
Attempting to predict behavior of tails of distributions, 
where there is always a lack of data, is inherently 
challenging and subject to error. In particular, the 
underlying Gaussian assumptions about sample 
distributions (e.g. central limit theorem) are known to 
apply only weakly in the tails. Because of the slightly 
non-Gaussian nature of read current, it is necessary to 
make some slight adjustments when calculating its 
extreme values of read current (directly using sample 
sigma underestimates actual read current for sigma 
values beyond about -3). There is a branch of extreme 
value theory devoted to this subject (see for example 
[5]), but this is beyond the scope of this work. 

Consider systems M1 and M0 as described above. 
We are concerned with local variation within these 
systems (mainly implant), and, as with Monte Carlo 
SPICE simulation, we can assume that variations in bit 
cells and sense amps are independent. Since there are 
1024 bit cells in M0, we can use a Gumbel distribution 
with x=3.22 and s=0.25 (see Table 2). Similarly, with 
512 sense amps in system M1, we can use a Gumbel 
distribution with x=2.95 and s=0.27. We can plot the 
combined distribution in 3 dimensions as shown in 
Figure 6. The skewed nature of both distributions can 
be seen, as well as the combined probability, which 
shows that the most likely worst case combination is, as 
expected, a sense amp 2.95 sigma from the mean 
together with a bit cell 3.22 sigma from the mean. 

Margin methodologies can be considered 
graphically by looking on Figure 7 from above. Method 
1 consists of drawing two lines, one for bit cells and 
one for sense amps, cutting the space into quadrants, as 
shown in Figure 8, set to (for example) 5 sigma for both 
bit cells and sense amps. Only the lower left quadrant is 
guaranteed to be covered by the margin methodology; 
these designs have both sense amp and bit cell within 
the margined range.  Various approaches to method 2 
are possible, but one involves converting bit cell current 
variation to a sense amp voltage offset via Monte Carlo 
simulation. For example, if expected bit line voltage 
separation when the sense amp is latched is 100mVand 
Monte Carlo simulation shows that a 3 sigma bit cell 
produces only 70mV of separation, then 1 sigma of bit 
cell read current variation is equivalent to 10mV of bit 
line differential. This method is represented graphically 
by an angled line, as shown in Figure 9. Regions to the 
left of the line are combinations of bit cell and sense 
amp within margin range. 

Figure 7 Combined Gumbel Distribution 

Using numerical integration methods, the relative 
coverage of the margin approaches can be compared. 
Method 1 covers 99.8% of the total distribution 
(roughly 0.1% in each of the top left and lower right 
quadrants).  Method 2 covers 99.9% of the total 
distribution, and is easier for a design to meet, because 
it passes closer to the peak of the distribution (a margin 
line that passes through the intersection of the two lines 
in Figure 8 requires an additional 0.5 sigma of bit cell 
offset in this case. For this reason, we have adopted 
Method 2 for margining at 65nm and beyond.  

A complete memory, as in Figure 1, has an 
additional layer of complexity beyond what has been 
considered so far (e.g. self-timing path, clocking 
circuitry), which we denote as system M2. There is 
only one copy of M2, so a Gaussian distribution will 
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suffice for it. It is difficult to represent this effect 
graphically, but it too can be compensated for by 
adding offset to a sense amplifier. 

Figure 8 Margin Method 1 

Figure 9 Margin Method 2 

Extension to repairable memory: Note that the 
existence of repairable elements does not alter these 
calculations much. System M0 cannot in most 
architectures be improved by repair, but system M1 
can. However, repair is primarily dedicated to defects, 
so the number of repairs that can be allocated to out-of-
margin design is usually small. We are currently 
developing the mathematics for repair and will submit it 
for publication in the future. 

4.3 Generalization to multiple memories 

Since failure of a single memory can cause the 
entire chip to fail, the margin calculation is quite 
straightforward. 

 

 

where each MAR(m) is the probability that a given 
memory m is within margin. For a chip with 1 copy of 
the memory in the previous section, this probability is 
99.9% under Method 2. This drops to 95% for 50 
memories and to 37% for 1000 memories. The latter 
two numbers are significant. If 50 memories is typical, 
then this approach leads to a margin method that will 
cover all memories on a typical chip 95% of the time, 
so variability related yield will be at least 95%. This is 
not ideal, but perhaps adequate. On the other hand, if 
1000 memories is typical, the majority of chips will 
contain at least one memory that is outside its margin 
range, and the lower bound on variability related yield 
is only 37%. This is clearly unacceptable. To achieve a 
99% lower bound for yield on 1000 memories, each 
individual yield must be 99.999%, which is outside the 
shaded area in Figure 9. For this reason, it is vital to 
consider the entire chip when developing a margin 
method. 

5 Conclusions and future work 

We have shown a margin method based on 
extreme value theory that is able to accommodate 
multiple distributions of bit cell variation, sense amp 
variation, and memory variation across chip. We are 
currently extending the method to multi-port memories 
and to include redundancy and repair. These will be 
reported in future works. 
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